ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimCreator.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimCreator.cpp (file contents), Revision 381 by tim, Tue Mar 1 14:45:45 2005 UTC vs.
branches/development/src/brains/SimCreator.cpp (file contents), Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < /**
43 < * @file SimCreator.cpp
44 < * @author tlin
45 < * @date 11/03/2004
46 < * @time 13:51am
47 < * @version 1.0
48 < */
49 <
50 < #include <sprng.h>
51 <
52 < #include "brains/MoleculeCreator.hpp"
53 < #include "brains/SimCreator.hpp"
54 < #include "brains/SimSnapshotManager.hpp"
55 < #include "io/DumpReader.hpp"
56 < #include "io/parse_me.h"
57 < #include "UseTheForce/ForceFieldFactory.hpp"
58 < #include "utils/simError.h"
59 < #include "utils/StringUtils.hpp"
60 < #ifdef IS_MPI
61 < #include "io/mpiBASS.h"
62 < #include "math/randomSPRNG.hpp"
63 < #endif
64 <
65 < namespace oopse {
66 <
67 < void SimCreator::parseFile(const std::string mdFileName,  MakeStamps* stamps, Globals* simParams){
68 <
69 < #ifdef IS_MPI
70 <
71 <    if (worldRank == 0) {
72 < #endif // is_mpi
73 <
74 <        simParams->initalize();
75 <        set_interface_stamps(stamps, simParams);
76 <
77 < #ifdef IS_MPI
78 <
79 <        mpiEventInit();
80 <
81 < #endif
82 <
83 <        yacc_BASS(mdFileName.c_str());
84 <
85 < #ifdef IS_MPI
86 <
87 <        throwMPIEvent(NULL);
88 <    } else {
89 <        set_interface_stamps(stamps, simParams);
90 <        mpiEventInit();
91 <        MPIcheckPoint();
92 <        mpiEventLoop();
93 <    }
94 <
95 < #endif
96 <
97 < }
98 <
99 < SimInfo*  SimCreator::createSim(const std::string & mdFileName, bool loadInitCoords) {
100 <    
101 <    MakeStamps * stamps = new MakeStamps();
102 <
103 <    Globals * simParams = new Globals();
104 <
105 <    //parse meta-data file
106 <    parseFile(mdFileName, stamps, simParams);
107 <
108 <    //create the force field
109 <    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(
110 <                          simParams->getForceField());
111 <    
112 <    if (ff == NULL) {
113 <        sprintf(painCave.errMsg, "ForceField Factory can not create %s force field\n",
114 <                simParams->getForceField());
115 <        painCave.isFatal = 1;
116 <        simError();
117 <    }
118 <
119 <    if (simParams->haveForceFieldFileName()) {
120 <        ff->setForceFieldFileName(simParams->getForceFieldFileName());
121 <    }
122 <    
123 <    std::string forcefieldFileName;
124 <    forcefieldFileName = ff->getForceFieldFileName();
125 <
126 <    if (simParams->haveForceFieldVariant()) {
127 <        //If the force field has variant, the variant force field name will be
128 <        //Base.variant.frc. For exampel EAM.u6.frc
129 <        
130 <        std::string variant = simParams->getForceFieldVariant();
131 <
132 <        std::string::size_type pos = forcefieldFileName.rfind(".frc");
133 <        variant = "." + variant;
134 <        if (pos != std::string::npos) {
135 <            forcefieldFileName.insert(pos, variant);
136 <        } else {
137 <            //If the default force field file name does not containt .frc suffix, just append the .variant
138 <            forcefieldFileName.append(variant);
139 <        }
140 <    }
141 <    
142 <    ff->parse(forcefieldFileName);
143 <    
144 <    //extract the molecule stamps
145 <    std::vector < std::pair<MoleculeStamp *, int> > moleculeStampPairs;
146 <    compList(stamps, simParams, moleculeStampPairs);
147 <
148 <    //create SimInfo
149 <    SimInfo * info = new SimInfo(moleculeStampPairs, ff, simParams);
150 <
151 <    //gather parameters (SimCreator only retrieves part of the parameters)
152 <    gatherParameters(info, mdFileName);
153 <
154 <    //divide the molecules and determine the global index of molecules
155 < #ifdef IS_MPI
156 <    divideMolecules(info);
157 < #endif
158 <
159 <    //create the molecules
160 <    createMolecules(info);
161 <
162 <
163 <    //allocate memory for DataStorage(circular reference, need to break it)
164 <    info->setSnapshotManager(new SimSnapshotManager(info));
165 <    
166 <    //set the global index of atoms, rigidbodies and cutoffgroups (only need to be set once, the
167 <    //global index will never change again). Local indices of atoms and rigidbodies are already set by
168 <    //MoleculeCreator class which actually delegates the responsibility to LocalIndexManager.
169 <    setGlobalIndex(info);
170 <
171 <    //Alought addExculdePairs is called inside SimInfo's addMolecule method, at that point
172 <    //atoms don't have the global index yet  (their global index are all initialized to -1).
173 <    //Therefore we have to call addExcludePairs explicitly here. A way to work around is that
174 <    //we can determine the beginning global indices of atoms before they get created.
175 <    SimInfo::MoleculeIterator mi;
176 <    Molecule* mol;
177 <    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
178 <        info->addExcludePairs(mol);
179 <    }
180 <    
181 <
182 <    //load initial coordinates, some extra information are pushed into SimInfo's property map ( such as
183 <    //eta, chi for NPT integrator)
184 <    if (loadInitCoords)
185 <        loadCoordinates(info);    
186 <    
187 <    return info;
188 < }
189 <
190 < void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
191 <
192 <    //setup seed for random number generator
193 <    int seedValue;
194 <    Globals * simParams = info->getSimParams();
195 <
196 <    if (simParams->haveSeed()) {
197 <        seedValue = simParams->getSeed();
198 <
199 <        if (seedValue < 100000000 ) {
200 <            sprintf(painCave.errMsg,
201 <                    "Seed for sprng library should contain at least 9 digits\n"
202 <                        "OOPSE will generate a seed for user\n");
203 <
204 <            painCave.isFatal = 0;
205 <            simError();
206 <
207 <            //using seed generated by system instead of invalid seed set by user
208 <
209 < #ifndef IS_MPI
210 <
211 <            seedValue = make_sprng_seed();
212 <
213 < #else
214 <
215 <            if (worldRank == 0) {
216 <                seedValue = make_sprng_seed();
217 <            }
218 <
219 <            MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
220 <
221 < #endif
222 <
223 <        } //end if (seedValue /1000000000 == 0)
224 <    } else {
225 <
226 < #ifndef IS_MPI
227 <
228 <        seedValue = make_sprng_seed();
229 <
230 < #else
231 <
232 <        if (worldRank == 0) {
233 <            seedValue = make_sprng_seed();
234 <        }
235 <
236 <        MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);
237 <
238 < #endif
239 <
240 <    } //end of simParams->haveSeed()
241 <
242 <    info->setSeed(seedValue);
243 <
244 <
245 <    //figure out the ouput file names
246 <    std::string prefix;
247 <
248 < #ifdef IS_MPI
249 <
250 <    if (worldRank == 0) {
251 < #endif // is_mpi
252 <
253 <        if (simParams->haveFinalConfig()) {
254 <            prefix = getPrefix(simParams->getFinalConfig());
255 <        } else {
256 <            prefix = getPrefix(mdfile);
257 <        }
258 <
259 <        info->setFinalConfigFileName(prefix + ".eor");
260 <        info->setDumpFileName(prefix + ".dump");
261 <        info->setStatFileName(prefix + ".stat");
262 <
263 < #ifdef IS_MPI
264 <
265 <    }
266 <
267 < #endif
268 <
269 < }
270 <
271 < #ifdef IS_MPI
272 < void SimCreator::divideMolecules(SimInfo *info) {
273 <    double numerator;
274 <    double denominator;
275 <    double precast;
276 <    double x;
277 <    double y;
278 <    double a;
279 <    int old_atoms;
280 <    int add_atoms;
281 <    int new_atoms;
282 <    int nTarget;
283 <    int done;
284 <    int i;
285 <    int j;
286 <    int loops;
287 <    int which_proc;
288 <    int nProcessors;
289 <    std::vector<int> atomsPerProc;
290 <    int nGlobalMols = info->getNGlobalMolecules();
291 <    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
292 <    
293 <    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
294 <
295 <    if (nProcessors > nGlobalMols) {
296 <        sprintf(painCave.errMsg,
297 <                "nProcessors (%d) > nMol (%d)\n"
298 <                    "\tThe number of processors is larger than\n"
299 <                    "\tthe number of molecules.  This will not result in a \n"
300 <                    "\tusable division of atoms for force decomposition.\n"
301 <                    "\tEither try a smaller number of processors, or run the\n"
302 <                    "\tsingle-processor version of OOPSE.\n", nProcessors, nGlobalMols);
303 <
304 <        painCave.isFatal = 1;
305 <        simError();
306 <    }
307 <
308 <    MTRand myRandom(info->getSeed(), nProcessors, worldRank);
309 <
310 <
311 <    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
312 <
313 <    //initialize atomsPerProc
314 <    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
315 <
316 <    if (worldRank == 0) {
317 <        numerator = info->getNGlobalAtoms();
318 <        denominator = nProcessors;
319 <        precast = numerator / denominator;
320 <        nTarget = (int)(precast + 0.5);
321 <
322 <        for(i = 0; i < nGlobalMols; i++) {
323 <            done = 0;
324 <            loops = 0;
325 <
326 <            while (!done) {
327 <                loops++;
328 <
329 <                // Pick a processor at random
330 <
331 <                which_proc = (int) (myRandom.rand() * nProcessors);
332 <
333 <                //get the molecule stamp first
334 <                int stampId = info->getMoleculeStampId(i);
335 <                MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
336 <
337 <                // How many atoms does this processor have so far?
338 <                old_atoms = atomsPerProc[which_proc];
339 <                add_atoms = moleculeStamp->getNAtoms();
340 <                new_atoms = old_atoms + add_atoms;
341 <
342 <                // If we've been through this loop too many times, we need
343 <                // to just give up and assign the molecule to this processor
344 <                // and be done with it.
345 <
346 <                if (loops > 100) {
347 <                    sprintf(painCave.errMsg,
348 <                            "I've tried 100 times to assign molecule %d to a "
349 <                                " processor, but can't find a good spot.\n"
350 <                                "I'm assigning it at random to processor %d.\n",
351 <                            i, which_proc);
352 <
353 <                    painCave.isFatal = 0;
354 <                    simError();
355 <
356 <                    molToProcMap[i] = which_proc;
357 <                    atomsPerProc[which_proc] += add_atoms;
358 <
359 <                    done = 1;
360 <                    continue;
361 <                }
362 <
363 <                // If we can add this molecule to this processor without sending
364 <                // it above nTarget, then go ahead and do it:
365 <
366 <                if (new_atoms <= nTarget) {
367 <                    molToProcMap[i] = which_proc;
368 <                    atomsPerProc[which_proc] += add_atoms;
369 <
370 <                    done = 1;
371 <                    continue;
372 <                }
373 <
374 <                // The only situation left is when new_atoms > nTarget.  We
375 <                // want to accept this with some probability that dies off the
376 <                // farther we are from nTarget
377 <
378 <                // roughly:  x = new_atoms - nTarget
379 <                //           Pacc(x) = exp(- a * x)
380 <                // where a = penalty / (average atoms per molecule)
381 <
382 <                x = (double)(new_atoms - nTarget);
383 <                y = myRandom.getRandom();
384 <
385 <                if (y < exp(- a * x)) {
386 <                    molToProcMap[i] = which_proc;
387 <                    atomsPerProc[which_proc] += add_atoms;
388 <
389 <                    done = 1;
390 <                    continue;
391 <                } else {
392 <                    continue;
393 <                }
394 <            }
395 <        }
396 <
397 <        // Spray out this nonsense to all other processors:
398 <
399 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
400 <    } else {
401 <
402 <        // Listen to your marching orders from processor 0:
403 <
404 <        MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
405 <    }
406 <
407 <    info->setMolToProcMap(molToProcMap);
408 <    sprintf(checkPointMsg,
409 <            "Successfully divided the molecules among the processors.\n");
410 <    MPIcheckPoint();
411 < }
412 <
413 < #endif
414 <
415 < void SimCreator::createMolecules(SimInfo *info) {
416 <    MoleculeCreator molCreator;
417 <    int stampId;
418 <
419 <    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
420 <
421 < #ifdef IS_MPI
422 <
423 <        if (info->getMolToProc(i) == worldRank) {
424 < #endif
425 <
426 <            stampId = info->getMoleculeStampId(i);
427 <            Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
428 <                                                                                    stampId, i, info->getLocalIndexManager());
429 <
430 <            info->addMolecule(mol);
431 <
432 < #ifdef IS_MPI
433 <
434 <        }
435 <
436 < #endif
437 <
438 <    } //end for(int i=0)  
439 < }
440 <
441 < void SimCreator::compList(MakeStamps *stamps, Globals* simParams,
442 <                        std::vector < std::pair<MoleculeStamp *, int> > &moleculeStampPairs) {
443 <    int i;
444 <    char * id;
445 <    MoleculeStamp * currentStamp;
446 <    Component** the_components = simParams->getComponents();
447 <    int n_components = simParams->getNComponents();
448 <
449 <    if (!simParams->haveNMol()) {
450 <        // we don't have the total number of molecules, so we assume it is
451 <        // given in each component
452 <
453 <        for(i = 0; i < n_components; i++) {
454 <            if (!the_components[i]->haveNMol()) {
455 <                // we have a problem
456 <                sprintf(painCave.errMsg,
457 <                        "SimCreator Error. No global NMol or component NMol given.\n"
458 <                            "\tCannot calculate the number of atoms.\n");
459 <
460 <                painCave.isFatal = 1;
461 <                simError();
462 <            }
463 <
464 <            id = the_components[i]->getType();
465 <            currentStamp = (stamps->extractMolStamp(id))->getStamp();
466 <
467 <            if (currentStamp == NULL) {
468 <                sprintf(painCave.errMsg,
469 <                        "SimCreator error: Component \"%s\" was not found in the "
470 <                            "list of declared molecules\n", id);
471 <
472 <                painCave.isFatal = 1;
473 <                simError();
474 <            }
475 <
476 <            moleculeStampPairs.push_back(
477 <                std::make_pair(currentStamp, the_components[i]->getNMol()));
478 <        } //end for (i = 0; i < n_components; i++)
479 <    } else {
480 <        sprintf(painCave.errMsg, "SimSetup error.\n"
481 <                                     "\tSorry, the ability to specify total"
482 <                                     " nMols and then give molfractions in the components\n"
483 <                                     "\tis not currently supported."
484 <                                     " Please give nMol in the components.\n");
485 <
486 <        painCave.isFatal = 1;
487 <        simError();
488 <    }
489 <
490 < #ifdef IS_MPI
491 <
492 <    strcpy(checkPointMsg, "Component stamps successfully extracted\n");
493 <    MPIcheckPoint();
494 <
495 < #endif // is_mpi
496 <
497 < }
498 <
499 < void SimCreator::setGlobalIndex(SimInfo *info) {
500 <    SimInfo::MoleculeIterator mi;
501 <    Molecule::AtomIterator ai;
502 <    Molecule::RigidBodyIterator ri;
503 <    Molecule::CutoffGroupIterator ci;
504 <    Molecule * mol;
505 <    Atom * atom;
506 <    RigidBody * rb;
507 <    CutoffGroup * cg;
508 <    int beginAtomIndex;
509 <    int beginRigidBodyIndex;
510 <    int beginCutoffGroupIndex;
511 <    int nGlobalAtoms = info->getNGlobalAtoms();
512 <    
513 < #ifndef IS_MPI
514 <
515 <    beginAtomIndex = 0;
516 <    beginRigidBodyIndex = 0;
517 <    beginCutoffGroupIndex = 0;
518 <
519 < #else
520 <
521 <    int nproc;
522 <    int myNode;
523 <
524 <    myNode = worldRank;
525 <    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
526 <
527 <    std::vector < int > tmpAtomsInProc(nproc, 0);
528 <    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
529 <    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
530 <    std::vector < int > NumAtomsInProc(nproc, 0);
531 <    std::vector < int > NumRigidBodiesInProc(nproc, 0);
532 <    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
533 <
534 <    tmpAtomsInProc[myNode] = info->getNAtoms();
535 <    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
536 <    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
537 <
538 <    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
539 <    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
540 <                  MPI_SUM, MPI_COMM_WORLD);
541 <    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
542 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
543 <    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
544 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
545 <
546 <    beginAtomIndex = 0;
547 <    beginRigidBodyIndex = 0;
548 <    beginCutoffGroupIndex = 0;
549 <
550 <    for(int i = 0; i < myNode; i++) {
551 <        beginAtomIndex += NumAtomsInProc[i];
552 <        beginRigidBodyIndex += NumRigidBodiesInProc[i];
553 <        beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
554 <    }
555 <
556 < #endif
557 <
558 <    //rigidbody's index begins right after atom's
559 <    beginRigidBodyIndex += info->getNGlobalAtoms();
560 <
561 <    for(mol = info->beginMolecule(mi); mol != NULL;
562 <        mol = info->nextMolecule(mi)) {
563 <
564 <        //local index(index in DataStorge) of atom is important
565 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
566 <            atom->setGlobalIndex(beginAtomIndex++);
567 <        }
568 <
569 <        for(rb = mol->beginRigidBody(ri); rb != NULL;
570 <            rb = mol->nextRigidBody(ri)) {
571 <            rb->setGlobalIndex(beginRigidBodyIndex++);
572 <        }
573 <
574 <        //local index of cutoff group is trivial, it only depends on the order of travesing
575 <        for(cg = mol->beginCutoffGroup(ci); cg != NULL;
576 <            cg = mol->nextCutoffGroup(ci)) {
577 <            cg->setGlobalIndex(beginCutoffGroupIndex++);
578 <        }
579 <    }
580 <
581 <    //fill globalGroupMembership
582 <    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
583 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
584 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
585 <
586 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
587 <                globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
588 <            }
589 <
590 <        }      
591 <    }
592 <
593 < #ifdef IS_MPI    
594 <    // Since the globalGroupMembership has been zero filled and we've only
595 <    // poked values into the atoms we know, we can do an Allreduce
596 <    // to get the full globalGroupMembership array (We think).
597 <    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
598 <    // docs said we could.
599 <    std::vector<int> tmpGroupMembership(nGlobalAtoms, 0);
600 <    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
601 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
602 <     info->setGlobalGroupMembership(tmpGroupMembership);
603 < #else
604 <    info->setGlobalGroupMembership(globalGroupMembership);
605 < #endif
606 <
607 <    //fill molMembership
608 <    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
609 <    
610 <    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
611 <
612 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
613 <            globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
614 <        }
615 <    }
616 <
617 < #ifdef IS_MPI
618 <    std::vector<int> tmpMolMembership(nGlobalAtoms, 0);
619 <
620 <    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
621 <                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
622 <    
623 <    info->setGlobalMolMembership(tmpMolMembership);
624 < #else
625 <    info->setGlobalMolMembership(globalMolMembership);
626 < #endif
627 <
628 < }
629 <
630 < void SimCreator::loadCoordinates(SimInfo* info) {
631 <    Globals* simParams;
632 <    simParams = info->getSimParams();
633 <    
634 <    if (!simParams->haveInitialConfig()) {
635 <        sprintf(painCave.errMsg,
636 <                "Cannot intialize a simulation without an initial configuration file.\n");
637 <        painCave.isFatal = 1;;
638 <        simError();
639 <    }
640 <        
641 <    DumpReader reader(info, simParams->getInitialConfig());
642 <    int nframes = reader.getNFrames();
643 <
644 <    if (nframes > 0) {
645 <        reader.readFrame(nframes - 1);
646 <    } else {
647 <        //invalid initial coordinate file
648 <        sprintf(painCave.errMsg, "Initial configuration file %s should at least contain one frame\n",
649 <                simParams->getInitialConfig());
650 <        painCave.isFatal = 1;
651 <        simError();
652 <    }
653 <
654 <    //copy the current snapshot to previous snapshot
655 <    info->getSnapshotManager()->advance();
656 < }
657 <
658 < } //end namespace oopse
659 <
660 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimCreator.cpp
44 > * @author tlin
45 > * @date 11/03/2004
46 > * @time 13:51am
47 > * @version 1.0
48 > */
49 > #include <exception>
50 > #include <iostream>
51 > #include <sstream>
52 > #include <string>
53 >
54 > #include "brains/MoleculeCreator.hpp"
55 > #include "brains/SimCreator.hpp"
56 > #include "brains/SimSnapshotManager.hpp"
57 > #include "io/DumpReader.hpp"
58 > #include "UseTheForce/ForceFieldFactory.hpp"
59 > #include "utils/simError.h"
60 > #include "utils/StringUtils.hpp"
61 > #include "math/SeqRandNumGen.hpp"
62 > #include "mdParser/MDLexer.hpp"
63 > #include "mdParser/MDParser.hpp"
64 > #include "mdParser/MDTreeParser.hpp"
65 > #include "mdParser/SimplePreprocessor.hpp"
66 > #include "antlr/ANTLRException.hpp"
67 > #include "antlr/TokenStreamRecognitionException.hpp"
68 > #include "antlr/TokenStreamIOException.hpp"
69 > #include "antlr/TokenStreamException.hpp"
70 > #include "antlr/RecognitionException.hpp"
71 > #include "antlr/CharStreamException.hpp"
72 >
73 > #include "antlr/MismatchedCharException.hpp"
74 > #include "antlr/MismatchedTokenException.hpp"
75 > #include "antlr/NoViableAltForCharException.hpp"
76 > #include "antlr/NoViableAltException.hpp"
77 >
78 > #ifdef IS_MPI
79 > #include "math/ParallelRandNumGen.hpp"
80 > #endif
81 >
82 > namespace OpenMD {
83 >  
84 >  Globals* SimCreator::parseFile(std::istream& rawMetaDataStream, const std::string& filename, int startOfMetaDataBlock ){
85 >    Globals* simParams = NULL;
86 >    try {
87 >
88 >      // Create a preprocessor that preprocesses md file into an ostringstream
89 >      std::stringstream ppStream;
90 > #ifdef IS_MPI            
91 >      int streamSize;
92 >      const int masterNode = 0;
93 >      int commStatus;
94 >      if (worldRank == masterNode) {
95 > #endif
96 >                
97 >        SimplePreprocessor preprocessor;
98 >        preprocessor.preprocess(rawMetaDataStream, filename, startOfMetaDataBlock, ppStream);
99 >                
100 > #ifdef IS_MPI            
101 >        //brocasting the stream size
102 >        streamSize = ppStream.str().size() +1;
103 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);                  
104 >
105 >        commStatus = MPI_Bcast(static_cast<void*>(const_cast<char*>(ppStream.str().c_str())), streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
106 >            
107 >                
108 >      } else {
109 >        //get stream size
110 >        commStatus = MPI_Bcast(&streamSize, 1, MPI_LONG, masterNode, MPI_COMM_WORLD);  
111 >
112 >        char* buf = new char[streamSize];
113 >        assert(buf);
114 >                
115 >        //receive file content
116 >        commStatus = MPI_Bcast(buf, streamSize, MPI_CHAR, masterNode, MPI_COMM_WORLD);
117 >                
118 >        ppStream.str(buf);
119 >        delete [] buf;
120 >
121 >      }
122 > #endif            
123 >      // Create a scanner that reads from the input stream
124 >      MDLexer lexer(ppStream);
125 >      lexer.setFilename(filename);
126 >      lexer.initDeferredLineCount();
127 >    
128 >      // Create a parser that reads from the scanner
129 >      MDParser parser(lexer);
130 >      parser.setFilename(filename);
131 >
132 >      // Create an observer that synchorizes file name change
133 >      FilenameObserver observer;
134 >      observer.setLexer(&lexer);
135 >      observer.setParser(&parser);
136 >      lexer.setObserver(&observer);
137 >    
138 >      antlr::ASTFactory factory;
139 >      parser.initializeASTFactory(factory);
140 >      parser.setASTFactory(&factory);
141 >      parser.mdfile();
142 >
143 >      // Create a tree parser that reads information into Globals
144 >      MDTreeParser treeParser;
145 >      treeParser.initializeASTFactory(factory);
146 >      treeParser.setASTFactory(&factory);
147 >      simParams = treeParser.walkTree(parser.getAST());
148 >    }
149 >
150 >      
151 >    catch(antlr::MismatchedCharException& e) {
152 >      sprintf(painCave.errMsg,
153 >              "parser exception: %s %s:%d:%d\n",
154 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
155 >      painCave.isFatal = 1;
156 >      simError();          
157 >    }
158 >    catch(antlr::MismatchedTokenException &e) {
159 >      sprintf(painCave.errMsg,
160 >              "parser exception: %s %s:%d:%d\n",
161 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
162 >      painCave.isFatal = 1;
163 >      simError();  
164 >    }
165 >    catch(antlr::NoViableAltForCharException &e) {
166 >      sprintf(painCave.errMsg,
167 >              "parser exception: %s %s:%d:%d\n",
168 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
169 >      painCave.isFatal = 1;
170 >      simError();  
171 >    }
172 >    catch(antlr::NoViableAltException &e) {
173 >      sprintf(painCave.errMsg,
174 >              "parser exception: %s %s:%d:%d\n",
175 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
176 >      painCave.isFatal = 1;
177 >      simError();  
178 >    }
179 >      
180 >    catch(antlr::TokenStreamRecognitionException& e) {
181 >      sprintf(painCave.errMsg,
182 >              "parser exception: %s %s:%d:%d\n",
183 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
184 >      painCave.isFatal = 1;
185 >      simError();  
186 >    }
187 >        
188 >    catch(antlr::TokenStreamIOException& e) {
189 >      sprintf(painCave.errMsg,
190 >              "parser exception: %s\n",
191 >              e.getMessage().c_str());
192 >      painCave.isFatal = 1;
193 >      simError();
194 >    }
195 >        
196 >    catch(antlr::TokenStreamException& e) {
197 >      sprintf(painCave.errMsg,
198 >              "parser exception: %s\n",
199 >              e.getMessage().c_str());
200 >      painCave.isFatal = 1;
201 >      simError();
202 >    }        
203 >    catch (antlr::RecognitionException& e) {
204 >      sprintf(painCave.errMsg,
205 >              "parser exception: %s %s:%d:%d\n",
206 >              e.getMessage().c_str(),e.getFilename().c_str(), e.getLine(), e.getColumn());
207 >      painCave.isFatal = 1;
208 >      simError();          
209 >    }
210 >    catch (antlr::CharStreamException& e) {
211 >      sprintf(painCave.errMsg,
212 >              "parser exception: %s\n",
213 >              e.getMessage().c_str());
214 >      painCave.isFatal = 1;
215 >      simError();        
216 >    }
217 >    catch (OpenMDException& e) {
218 >      sprintf(painCave.errMsg,
219 >              "%s\n",
220 >              e.getMessage().c_str());
221 >      painCave.isFatal = 1;
222 >      simError();
223 >    }
224 >    catch (std::exception& e) {
225 >      sprintf(painCave.errMsg,
226 >              "parser exception: %s\n",
227 >              e.what());
228 >      painCave.isFatal = 1;
229 >      simError();
230 >    }
231 >
232 >    return simParams;
233 >  }
234 >  
235 >  SimInfo*  SimCreator::createSim(const std::string & mdFileName,
236 >                                  bool loadInitCoords) {
237 >    
238 >    const int bufferSize = 65535;
239 >    char buffer[bufferSize];
240 >    int lineNo = 0;
241 >    std::string mdRawData;
242 >    int metaDataBlockStart = -1;
243 >    int metaDataBlockEnd = -1;
244 >    int i;
245 >    int mdOffset;
246 >
247 > #ifdef IS_MPI            
248 >    const int masterNode = 0;
249 >    if (worldRank == masterNode) {
250 > #endif
251 >
252 >      std::ifstream mdFile_(mdFileName.c_str());
253 >      
254 >      if (mdFile_.fail()) {
255 >        sprintf(painCave.errMsg,
256 >                "SimCreator: Cannot open file: %s\n",
257 >                mdFileName.c_str());
258 >        painCave.isFatal = 1;
259 >        simError();
260 >      }
261 >
262 >      mdFile_.getline(buffer, bufferSize);
263 >      ++lineNo;
264 >      std::string line = trimLeftCopy(buffer);
265 >      i = CaseInsensitiveFind(line, "<OpenMD");
266 >      if (static_cast<size_t>(i) == string::npos) {
267 >        // try the older file strings to see if that works:
268 >        i = CaseInsensitiveFind(line, "<OOPSE");
269 >      }
270 >      
271 >      if (static_cast<size_t>(i) == string::npos) {
272 >        // still no luck!
273 >        sprintf(painCave.errMsg,
274 >                "SimCreator: File: %s is not a valid OpenMD file!\n",
275 >                mdFileName.c_str());
276 >        painCave.isFatal = 1;
277 >        simError();
278 >      }
279 >
280 >      //scan through the input stream and find MetaData tag        
281 >      while(mdFile_.getline(buffer, bufferSize)) {
282 >        ++lineNo;
283 >        
284 >        std::string line = trimLeftCopy(buffer);
285 >        if (metaDataBlockStart == -1) {
286 >          i = CaseInsensitiveFind(line, "<MetaData>");
287 >          if (i != string::npos) {
288 >            metaDataBlockStart = lineNo;
289 >            mdOffset = mdFile_.tellg();
290 >          }
291 >        } else {
292 >          i = CaseInsensitiveFind(line, "</MetaData>");
293 >          if (i != string::npos) {
294 >            metaDataBlockEnd = lineNo;
295 >          }
296 >        }
297 >      }
298 >
299 >      if (metaDataBlockStart == -1) {
300 >        sprintf(painCave.errMsg,
301 >                "SimCreator: File: %s did not contain a <MetaData> tag!\n",
302 >                mdFileName.c_str());
303 >        painCave.isFatal = 1;
304 >        simError();
305 >      }
306 >      if (metaDataBlockEnd == -1) {
307 >        sprintf(painCave.errMsg,
308 >                "SimCreator: File: %s did not contain a closed MetaData block!\n",
309 >                mdFileName.c_str());
310 >        painCave.isFatal = 1;
311 >        simError();
312 >      }
313 >        
314 >      mdFile_.clear();
315 >      mdFile_.seekg(0);
316 >      mdFile_.seekg(mdOffset);
317 >
318 >      mdRawData.clear();
319 >
320 >      for (int i = 0; i < metaDataBlockEnd - metaDataBlockStart - 1; ++i) {
321 >        mdFile_.getline(buffer, bufferSize);
322 >        mdRawData += buffer;
323 >        mdRawData += "\n";
324 >      }
325 >
326 >      mdFile_.close();
327 >
328 > #ifdef IS_MPI
329 >    }
330 > #endif
331 >
332 >    std::stringstream rawMetaDataStream(mdRawData);
333 >
334 >    //parse meta-data file
335 >    Globals* simParams = parseFile(rawMetaDataStream, mdFileName, metaDataBlockStart+1);
336 >    
337 >    //create the force field
338 >    ForceField * ff = ForceFieldFactory::getInstance()->createForceField(simParams->getForceField());
339 >
340 >    if (ff == NULL) {
341 >      sprintf(painCave.errMsg,
342 >              "ForceField Factory can not create %s force field\n",
343 >              simParams->getForceField().c_str());
344 >      painCave.isFatal = 1;
345 >      simError();
346 >    }
347 >    
348 >    if (simParams->haveForceFieldFileName()) {
349 >      ff->setForceFieldFileName(simParams->getForceFieldFileName());
350 >    }
351 >    
352 >    std::string forcefieldFileName;
353 >    forcefieldFileName = ff->getForceFieldFileName();
354 >    
355 >    if (simParams->haveForceFieldVariant()) {
356 >      //If the force field has variant, the variant force field name will be
357 >      //Base.variant.frc. For exampel EAM.u6.frc
358 >      
359 >      std::string variant = simParams->getForceFieldVariant();
360 >      
361 >      std::string::size_type pos = forcefieldFileName.rfind(".frc");
362 >      variant = "." + variant;
363 >      if (pos != std::string::npos) {
364 >        forcefieldFileName.insert(pos, variant);
365 >      } else {
366 >        //If the default force field file name does not containt .frc suffix, just append the .variant
367 >        forcefieldFileName.append(variant);
368 >      }
369 >    }
370 >    
371 >    ff->parse(forcefieldFileName);
372 >    //create SimInfo
373 >    SimInfo * info = new SimInfo(ff, simParams);
374 >
375 >    info->setRawMetaData(mdRawData);
376 >    
377 >    //gather parameters (SimCreator only retrieves part of the
378 >    //parameters)
379 >    gatherParameters(info, mdFileName);
380 >    
381 >    //divide the molecules and determine the global index of molecules
382 > #ifdef IS_MPI
383 >    divideMolecules(info);
384 > #endif
385 >    
386 >    //create the molecules
387 >    createMolecules(info);
388 >    
389 >    //allocate memory for DataStorage(circular reference, need to
390 >    //break it)
391 >    info->setSnapshotManager(new SimSnapshotManager(info));
392 >    
393 >    //set the global index of atoms, rigidbodies and cutoffgroups
394 >    //(only need to be set once, the global index will never change
395 >    //again). Local indices of atoms and rigidbodies are already set
396 >    //by MoleculeCreator class which actually delegates the
397 >    //responsibility to LocalIndexManager.
398 >    setGlobalIndex(info);
399 >    
400 >    //Although addInteractionPairs is called inside SimInfo's addMolecule
401 >    //method, at that point atoms don't have the global index yet
402 >    //(their global index are all initialized to -1).  Therefore we
403 >    //have to call addInteractionPairs explicitly here. A way to work
404 >    //around is that we can determine the beginning global indices of
405 >    //atoms before they get created.
406 >    SimInfo::MoleculeIterator mi;
407 >    Molecule* mol;
408 >    for (mol= info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
409 >      info->addInteractionPairs(mol);
410 >    }
411 >    
412 >    if (loadInitCoords)
413 >      loadCoordinates(info, mdFileName);    
414 >    return info;
415 >  }
416 >  
417 >  void SimCreator::gatherParameters(SimInfo *info, const std::string& mdfile) {
418 >    
419 >    //figure out the output file names
420 >    std::string prefix;
421 >    
422 > #ifdef IS_MPI
423 >    
424 >    if (worldRank == 0) {
425 > #endif // is_mpi
426 >      Globals * simParams = info->getSimParams();
427 >      if (simParams->haveFinalConfig()) {
428 >        prefix = getPrefix(simParams->getFinalConfig());
429 >      } else {
430 >        prefix = getPrefix(mdfile);
431 >      }
432 >      
433 >      info->setFinalConfigFileName(prefix + ".eor");
434 >      info->setDumpFileName(prefix + ".dump");
435 >      info->setStatFileName(prefix + ".stat");
436 >      info->setRestFileName(prefix + ".zang");
437 >      
438 > #ifdef IS_MPI
439 >      
440 >    }
441 >    
442 > #endif
443 >    
444 >  }
445 >  
446 > #ifdef IS_MPI
447 >  void SimCreator::divideMolecules(SimInfo *info) {
448 >    RealType numerator;
449 >    RealType denominator;
450 >    RealType precast;
451 >    RealType x;
452 >    RealType y;
453 >    RealType a;
454 >    int old_atoms;
455 >    int add_atoms;
456 >    int new_atoms;
457 >    int nTarget;
458 >    int done;
459 >    int i;
460 >    int j;
461 >    int loops;
462 >    int which_proc;
463 >    int nProcessors;
464 >    std::vector<int> atomsPerProc;
465 >    int nGlobalMols = info->getNGlobalMolecules();
466 >    std::vector<int> molToProcMap(nGlobalMols, -1); // default to an error condition:
467 >    
468 >    MPI_Comm_size(MPI_COMM_WORLD, &nProcessors);
469 >    
470 >    if (nProcessors > nGlobalMols) {
471 >      sprintf(painCave.errMsg,
472 >              "nProcessors (%d) > nMol (%d)\n"
473 >              "\tThe number of processors is larger than\n"
474 >              "\tthe number of molecules.  This will not result in a \n"
475 >              "\tusable division of atoms for force decomposition.\n"
476 >              "\tEither try a smaller number of processors, or run the\n"
477 >              "\tsingle-processor version of OpenMD.\n", nProcessors, nGlobalMols);
478 >      
479 >      painCave.isFatal = 1;
480 >      simError();
481 >    }
482 >    
483 >    int seedValue;
484 >    Globals * simParams = info->getSimParams();
485 >    SeqRandNumGen* myRandom; //divide labor does not need Parallel random number generator
486 >    if (simParams->haveSeed()) {
487 >      seedValue = simParams->getSeed();
488 >      myRandom = new SeqRandNumGen(seedValue);
489 >    }else {
490 >      myRandom = new SeqRandNumGen();
491 >    }  
492 >    
493 >    
494 >    a = 3.0 * nGlobalMols / info->getNGlobalAtoms();
495 >    
496 >    //initialize atomsPerProc
497 >    atomsPerProc.insert(atomsPerProc.end(), nProcessors, 0);
498 >    
499 >    if (worldRank == 0) {
500 >      numerator = info->getNGlobalAtoms();
501 >      denominator = nProcessors;
502 >      precast = numerator / denominator;
503 >      nTarget = (int)(precast + 0.5);
504 >      
505 >      for(i = 0; i < nGlobalMols; i++) {
506 >        done = 0;
507 >        loops = 0;
508 >        
509 >        while (!done) {
510 >          loops++;
511 >          
512 >          // Pick a processor at random
513 >          
514 >          which_proc = (int) (myRandom->rand() * nProcessors);
515 >          
516 >          //get the molecule stamp first
517 >          int stampId = info->getMoleculeStampId(i);
518 >          MoleculeStamp * moleculeStamp = info->getMoleculeStamp(stampId);
519 >          
520 >          // How many atoms does this processor have so far?
521 >          old_atoms = atomsPerProc[which_proc];
522 >          add_atoms = moleculeStamp->getNAtoms();
523 >          new_atoms = old_atoms + add_atoms;
524 >          
525 >          // If we've been through this loop too many times, we need
526 >          // to just give up and assign the molecule to this processor
527 >          // and be done with it.
528 >          
529 >          if (loops > 100) {
530 >            sprintf(painCave.errMsg,
531 >                    "I've tried 100 times to assign molecule %d to a "
532 >                    " processor, but can't find a good spot.\n"
533 >                    "I'm assigning it at random to processor %d.\n",
534 >                    i, which_proc);
535 >            
536 >            painCave.isFatal = 0;
537 >            simError();
538 >            
539 >            molToProcMap[i] = which_proc;
540 >            atomsPerProc[which_proc] += add_atoms;
541 >            
542 >            done = 1;
543 >            continue;
544 >          }
545 >          
546 >          // If we can add this molecule to this processor without sending
547 >          // it above nTarget, then go ahead and do it:
548 >          
549 >          if (new_atoms <= nTarget) {
550 >            molToProcMap[i] = which_proc;
551 >            atomsPerProc[which_proc] += add_atoms;
552 >            
553 >            done = 1;
554 >            continue;
555 >          }
556 >          
557 >          // The only situation left is when new_atoms > nTarget.  We
558 >          // want to accept this with some probability that dies off the
559 >          // farther we are from nTarget
560 >          
561 >          // roughly:  x = new_atoms - nTarget
562 >          //           Pacc(x) = exp(- a * x)
563 >          // where a = penalty / (average atoms per molecule)
564 >          
565 >          x = (RealType)(new_atoms - nTarget);
566 >          y = myRandom->rand();
567 >          
568 >          if (y < exp(- a * x)) {
569 >            molToProcMap[i] = which_proc;
570 >            atomsPerProc[which_proc] += add_atoms;
571 >            
572 >            done = 1;
573 >            continue;
574 >          } else {
575 >            continue;
576 >          }
577 >        }
578 >      }
579 >      
580 >      delete myRandom;
581 >      
582 >      // Spray out this nonsense to all other processors:
583 >      
584 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
585 >    } else {
586 >      
587 >      // Listen to your marching orders from processor 0:
588 >      
589 >      MPI_Bcast(&molToProcMap[0], nGlobalMols, MPI_INT, 0, MPI_COMM_WORLD);
590 >    }
591 >    
592 >    info->setMolToProcMap(molToProcMap);
593 >    sprintf(checkPointMsg,
594 >            "Successfully divided the molecules among the processors.\n");
595 >    errorCheckPoint();
596 >  }
597 >  
598 > #endif
599 >  
600 >  void SimCreator::createMolecules(SimInfo *info) {
601 >    MoleculeCreator molCreator;
602 >    int stampId;
603 >    
604 >    for(int i = 0; i < info->getNGlobalMolecules(); i++) {
605 >      
606 > #ifdef IS_MPI
607 >      
608 >      if (info->getMolToProc(i) == worldRank) {
609 > #endif
610 >        
611 >        stampId = info->getMoleculeStampId(i);
612 >        Molecule * mol = molCreator.createMolecule(info->getForceField(), info->getMoleculeStamp(stampId),
613 >                                                   stampId, i, info->getLocalIndexManager());
614 >        
615 >        info->addMolecule(mol);
616 >        
617 > #ifdef IS_MPI
618 >        
619 >      }
620 >      
621 > #endif
622 >      
623 >    } //end for(int i=0)  
624 >  }
625 >    
626 >  void SimCreator::setGlobalIndex(SimInfo *info) {
627 >    SimInfo::MoleculeIterator mi;
628 >    Molecule::AtomIterator ai;
629 >    Molecule::RigidBodyIterator ri;
630 >    Molecule::CutoffGroupIterator ci;
631 >    Molecule::IntegrableObjectIterator  ioi;
632 >    Molecule * mol;
633 >    Atom * atom;
634 >    RigidBody * rb;
635 >    CutoffGroup * cg;
636 >    int beginAtomIndex;
637 >    int beginRigidBodyIndex;
638 >    int beginCutoffGroupIndex;
639 >    int nGlobalAtoms = info->getNGlobalAtoms();
640 >
641 >    /**@todo fixme */
642 > #ifndef IS_MPI
643 >    
644 >    beginAtomIndex = 0;
645 >    beginRigidBodyIndex = 0;
646 >    beginCutoffGroupIndex = 0;
647 >    
648 > #else
649 >    
650 >    int nproc;
651 >    int myNode;
652 >    
653 >    myNode = worldRank;
654 >    MPI_Comm_size(MPI_COMM_WORLD, &nproc);
655 >    
656 >    std::vector < int > tmpAtomsInProc(nproc, 0);
657 >    std::vector < int > tmpRigidBodiesInProc(nproc, 0);
658 >    std::vector < int > tmpCutoffGroupsInProc(nproc, 0);
659 >    std::vector < int > NumAtomsInProc(nproc, 0);
660 >    std::vector < int > NumRigidBodiesInProc(nproc, 0);
661 >    std::vector < int > NumCutoffGroupsInProc(nproc, 0);
662 >    
663 >    tmpAtomsInProc[myNode] = info->getNAtoms();
664 >    tmpRigidBodiesInProc[myNode] = info->getNRigidBodies();
665 >    tmpCutoffGroupsInProc[myNode] = info->getNCutoffGroups();
666 >    
667 >    //do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups
668 >    MPI_Allreduce(&tmpAtomsInProc[0], &NumAtomsInProc[0], nproc, MPI_INT,
669 >                  MPI_SUM, MPI_COMM_WORLD);
670 >    MPI_Allreduce(&tmpRigidBodiesInProc[0], &NumRigidBodiesInProc[0], nproc,
671 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
672 >    MPI_Allreduce(&tmpCutoffGroupsInProc[0], &NumCutoffGroupsInProc[0], nproc,
673 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
674 >    
675 >    beginAtomIndex = 0;
676 >    beginRigidBodyIndex = 0;
677 >    beginCutoffGroupIndex = 0;
678 >    
679 >    for(int i = 0; i < myNode; i++) {
680 >      beginAtomIndex += NumAtomsInProc[i];
681 >      beginRigidBodyIndex += NumRigidBodiesInProc[i];
682 >      beginCutoffGroupIndex += NumCutoffGroupsInProc[i];
683 >    }
684 >    
685 > #endif
686 >    
687 >    //rigidbody's index begins right after atom's
688 >    beginRigidBodyIndex += info->getNGlobalAtoms();
689 >    
690 >    for(mol = info->beginMolecule(mi); mol != NULL;
691 >        mol = info->nextMolecule(mi)) {
692 >      
693 >      //local index(index in DataStorge) of atom is important
694 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
695 >        atom->setGlobalIndex(beginAtomIndex++);
696 >      }
697 >      
698 >      for(rb = mol->beginRigidBody(ri); rb != NULL;
699 >          rb = mol->nextRigidBody(ri)) {
700 >        rb->setGlobalIndex(beginRigidBodyIndex++);
701 >      }
702 >      
703 >      //local index of cutoff group is trivial, it only depends on the order of travesing
704 >      for(cg = mol->beginCutoffGroup(ci); cg != NULL;
705 >          cg = mol->nextCutoffGroup(ci)) {
706 >        cg->setGlobalIndex(beginCutoffGroupIndex++);
707 >      }
708 >    }
709 >    
710 >    //fill globalGroupMembership
711 >    std::vector<int> globalGroupMembership(info->getNGlobalAtoms(), 0);
712 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {        
713 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
714 >        
715 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
716 >          globalGroupMembership[atom->getGlobalIndex()] = cg->getGlobalIndex();
717 >        }
718 >        
719 >      }      
720 >    }
721 >  
722 > #ifdef IS_MPI    
723 >    // Since the globalGroupMembership has been zero filled and we've only
724 >    // poked values into the atoms we know, we can do an Allreduce
725 >    // to get the full globalGroupMembership array (We think).
726 >    // This would be prettier if we could use MPI_IN_PLACE like the MPI-2
727 >    // docs said we could.
728 >    std::vector<int> tmpGroupMembership(info->getNGlobalAtoms(), 0);
729 >    MPI_Allreduce(&globalGroupMembership[0], &tmpGroupMembership[0], nGlobalAtoms,
730 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
731 >    info->setGlobalGroupMembership(tmpGroupMembership);
732 > #else
733 >    info->setGlobalGroupMembership(globalGroupMembership);
734 > #endif
735 >    
736 >    //fill molMembership
737 >    std::vector<int> globalMolMembership(info->getNGlobalAtoms(), 0);
738 >    
739 >    for(mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
740 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
741 >        globalMolMembership[atom->getGlobalIndex()] = mol->getGlobalIndex();
742 >      }
743 >    }
744 >    
745 > #ifdef IS_MPI
746 >    std::vector<int> tmpMolMembership(info->getNGlobalAtoms(), 0);
747 >    
748 >    MPI_Allreduce(&globalMolMembership[0], &tmpMolMembership[0], nGlobalAtoms,
749 >                  MPI_INT, MPI_SUM, MPI_COMM_WORLD);
750 >    
751 >    info->setGlobalMolMembership(tmpMolMembership);
752 > #else
753 >    info->setGlobalMolMembership(globalMolMembership);
754 > #endif
755 >
756 >    // nIOPerMol holds the number of integrable objects per molecule
757 >    // here the molecules are listed by their global indices.
758 >
759 >    std::vector<int> nIOPerMol(info->getNGlobalMolecules(), 0);
760 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
761 >      nIOPerMol[mol->getGlobalIndex()] = mol->getNIntegrableObjects();      
762 >    }
763 >    
764 > #ifdef IS_MPI
765 >    std::vector<int> numIntegrableObjectsPerMol(info->getNGlobalMolecules(), 0);
766 >    MPI_Allreduce(&nIOPerMol[0], &numIntegrableObjectsPerMol[0],
767 >                  info->getNGlobalMolecules(), MPI_INT, MPI_SUM, MPI_COMM_WORLD);
768 > #else
769 >    std::vector<int> numIntegrableObjectsPerMol = nIOPerMol;
770 > #endif    
771 >
772 >    std::vector<int> startingIOIndexForMol(info->getNGlobalMolecules());
773 >    
774 >    int startingIndex = 0;
775 >    for (int i = 0; i < info->getNGlobalMolecules(); i++) {
776 >      startingIOIndexForMol[i] = startingIndex;
777 >      startingIndex += numIntegrableObjectsPerMol[i];
778 >    }
779 >    
780 >    std::vector<StuntDouble*> IOIndexToIntegrableObject(info->getNGlobalIntegrableObjects(), (StuntDouble*)NULL);
781 >    for (mol = info->beginMolecule(mi); mol != NULL; mol = info->nextMolecule(mi)) {
782 >      int myGlobalIndex = mol->getGlobalIndex();
783 >      int globalIO = startingIOIndexForMol[myGlobalIndex];
784 >      for (StuntDouble* integrableObject = mol->beginIntegrableObject(ioi); integrableObject != NULL;
785 >           integrableObject = mol->nextIntegrableObject(ioi)) {
786 >        integrableObject->setGlobalIntegrableObjectIndex(globalIO);
787 >        IOIndexToIntegrableObject[globalIO] = integrableObject;
788 >        globalIO++;
789 >      }
790 >    }
791 >    
792 >    info->setIOIndexToIntegrableObject(IOIndexToIntegrableObject);
793 >    
794 >  }
795 >  
796 >  void SimCreator::loadCoordinates(SimInfo* info, const std::string& mdFileName) {
797 >    Globals* simParams;
798 >
799 >    simParams = info->getSimParams();
800 >    
801 >    DumpReader reader(info, mdFileName);
802 >    int nframes = reader.getNFrames();
803 >
804 >    if (nframes > 0) {
805 >      reader.readFrame(nframes - 1);
806 >    } else {
807 >      //invalid initial coordinate file
808 >      sprintf(painCave.errMsg,
809 >              "Initial configuration file %s should at least contain one frame\n",
810 >              mdFileName.c_str());
811 >      painCave.isFatal = 1;
812 >      simError();
813 >    }
814 >    //copy the current snapshot to previous snapshot
815 >    info->getSnapshotManager()->advance();
816 >  }
817 >  
818 > } //end namespace OpenMD
819 >
820 >

Comparing:
trunk/src/brains/SimCreator.cpp (property svn:keywords), Revision 381 by tim, Tue Mar 1 14:45:45 2005 UTC vs.
branches/development/src/brains/SimCreator.cpp (property svn:keywords), Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines