| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
*/ |
| 41 |
|
| 42 |
/** |
| 43 |
* @file SimInfo.cpp |
| 44 |
* @author tlin |
| 45 |
* @date 11/02/2004 |
| 46 |
* @version 1.0 |
| 47 |
*/ |
| 48 |
|
| 49 |
#include <algorithm> |
| 50 |
#include <set> |
| 51 |
#include <map> |
| 52 |
|
| 53 |
#include "brains/SimInfo.hpp" |
| 54 |
#include "math/Vector3.hpp" |
| 55 |
#include "primitives/Molecule.hpp" |
| 56 |
#include "primitives/StuntDouble.hpp" |
| 57 |
#include "utils/MemoryUtils.hpp" |
| 58 |
#include "utils/simError.h" |
| 59 |
#include "selection/SelectionManager.hpp" |
| 60 |
#include "io/ForceFieldOptions.hpp" |
| 61 |
#include "UseTheForce/ForceField.hpp" |
| 62 |
#include "nonbonded/SwitchingFunction.hpp" |
| 63 |
|
| 64 |
using namespace std; |
| 65 |
namespace OpenMD { |
| 66 |
|
| 67 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
| 68 |
forceField_(ff), simParams_(simParams), |
| 69 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
| 70 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
| 71 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
| 72 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
| 73 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
| 74 |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
| 75 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
| 76 |
|
| 77 |
MoleculeStamp* molStamp; |
| 78 |
int nMolWithSameStamp; |
| 79 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
| 80 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
| 81 |
CutoffGroupStamp* cgStamp; |
| 82 |
RigidBodyStamp* rbStamp; |
| 83 |
int nRigidAtoms = 0; |
| 84 |
|
| 85 |
vector<Component*> components = simParams->getComponents(); |
| 86 |
|
| 87 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
| 88 |
molStamp = (*i)->getMoleculeStamp(); |
| 89 |
nMolWithSameStamp = (*i)->getNMol(); |
| 90 |
|
| 91 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
| 92 |
|
| 93 |
//calculate atoms in molecules |
| 94 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
| 95 |
|
| 96 |
//calculate atoms in cutoff groups |
| 97 |
int nAtomsInGroups = 0; |
| 98 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
| 99 |
|
| 100 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
| 101 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
| 102 |
nAtomsInGroups += cgStamp->getNMembers(); |
| 103 |
} |
| 104 |
|
| 105 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
| 106 |
|
| 107 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
| 108 |
|
| 109 |
//calculate atoms in rigid bodies |
| 110 |
int nAtomsInRigidBodies = 0; |
| 111 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
| 112 |
|
| 113 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
| 114 |
rbStamp = molStamp->getRigidBodyStamp(j); |
| 115 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
| 116 |
} |
| 117 |
|
| 118 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
| 119 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
| 120 |
|
| 121 |
} |
| 122 |
|
| 123 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
| 124 |
//group therefore the total number of cutoff groups in the system is |
| 125 |
//equal to the total number of atoms minus number of atoms belong to |
| 126 |
//cutoff group defined in meta-data file plus the number of cutoff |
| 127 |
//groups defined in meta-data file |
| 128 |
|
| 129 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
| 130 |
|
| 131 |
//every free atom (atom does not belong to rigid bodies) is an |
| 132 |
//integrable object therefore the total number of integrable objects |
| 133 |
//in the system is equal to the total number of atoms minus number of |
| 134 |
//atoms belong to rigid body defined in meta-data file plus the number |
| 135 |
//of rigid bodies defined in meta-data file |
| 136 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
| 137 |
+ nGlobalRigidBodies_; |
| 138 |
|
| 139 |
nGlobalMols_ = molStampIds_.size(); |
| 140 |
molToProcMap_.resize(nGlobalMols_); |
| 141 |
} |
| 142 |
|
| 143 |
SimInfo::~SimInfo() { |
| 144 |
map<int, Molecule*>::iterator i; |
| 145 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
| 146 |
delete i->second; |
| 147 |
} |
| 148 |
molecules_.clear(); |
| 149 |
|
| 150 |
delete sman_; |
| 151 |
delete simParams_; |
| 152 |
delete forceField_; |
| 153 |
} |
| 154 |
|
| 155 |
|
| 156 |
bool SimInfo::addMolecule(Molecule* mol) { |
| 157 |
MoleculeIterator i; |
| 158 |
|
| 159 |
i = molecules_.find(mol->getGlobalIndex()); |
| 160 |
if (i == molecules_.end() ) { |
| 161 |
|
| 162 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
| 163 |
|
| 164 |
nAtoms_ += mol->getNAtoms(); |
| 165 |
nBonds_ += mol->getNBonds(); |
| 166 |
nBends_ += mol->getNBends(); |
| 167 |
nTorsions_ += mol->getNTorsions(); |
| 168 |
nInversions_ += mol->getNInversions(); |
| 169 |
nRigidBodies_ += mol->getNRigidBodies(); |
| 170 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
| 171 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
| 172 |
nConstraints_ += mol->getNConstraintPairs(); |
| 173 |
|
| 174 |
addInteractionPairs(mol); |
| 175 |
|
| 176 |
return true; |
| 177 |
} else { |
| 178 |
return false; |
| 179 |
} |
| 180 |
} |
| 181 |
|
| 182 |
bool SimInfo::removeMolecule(Molecule* mol) { |
| 183 |
MoleculeIterator i; |
| 184 |
i = molecules_.find(mol->getGlobalIndex()); |
| 185 |
|
| 186 |
if (i != molecules_.end() ) { |
| 187 |
|
| 188 |
assert(mol == i->second); |
| 189 |
|
| 190 |
nAtoms_ -= mol->getNAtoms(); |
| 191 |
nBonds_ -= mol->getNBonds(); |
| 192 |
nBends_ -= mol->getNBends(); |
| 193 |
nTorsions_ -= mol->getNTorsions(); |
| 194 |
nInversions_ -= mol->getNInversions(); |
| 195 |
nRigidBodies_ -= mol->getNRigidBodies(); |
| 196 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
| 197 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
| 198 |
nConstraints_ -= mol->getNConstraintPairs(); |
| 199 |
|
| 200 |
removeInteractionPairs(mol); |
| 201 |
molecules_.erase(mol->getGlobalIndex()); |
| 202 |
|
| 203 |
delete mol; |
| 204 |
|
| 205 |
return true; |
| 206 |
} else { |
| 207 |
return false; |
| 208 |
} |
| 209 |
} |
| 210 |
|
| 211 |
|
| 212 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
| 213 |
i = molecules_.begin(); |
| 214 |
return i == molecules_.end() ? NULL : i->second; |
| 215 |
} |
| 216 |
|
| 217 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
| 218 |
++i; |
| 219 |
return i == molecules_.end() ? NULL : i->second; |
| 220 |
} |
| 221 |
|
| 222 |
|
| 223 |
void SimInfo::calcNdf() { |
| 224 |
int ndf_local; |
| 225 |
MoleculeIterator i; |
| 226 |
vector<StuntDouble*>::iterator j; |
| 227 |
Molecule* mol; |
| 228 |
StuntDouble* integrableObject; |
| 229 |
|
| 230 |
ndf_local = 0; |
| 231 |
|
| 232 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 233 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 234 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 235 |
|
| 236 |
ndf_local += 3; |
| 237 |
|
| 238 |
if (integrableObject->isDirectional()) { |
| 239 |
if (integrableObject->isLinear()) { |
| 240 |
ndf_local += 2; |
| 241 |
} else { |
| 242 |
ndf_local += 3; |
| 243 |
} |
| 244 |
} |
| 245 |
|
| 246 |
} |
| 247 |
} |
| 248 |
|
| 249 |
// n_constraints is local, so subtract them on each processor |
| 250 |
ndf_local -= nConstraints_; |
| 251 |
|
| 252 |
#ifdef IS_MPI |
| 253 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 254 |
#else |
| 255 |
ndf_ = ndf_local; |
| 256 |
#endif |
| 257 |
|
| 258 |
// nZconstraints_ is global, as are the 3 COM translations for the |
| 259 |
// entire system: |
| 260 |
ndf_ = ndf_ - 3 - nZconstraint_; |
| 261 |
|
| 262 |
} |
| 263 |
|
| 264 |
int SimInfo::getFdf() { |
| 265 |
#ifdef IS_MPI |
| 266 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 267 |
#else |
| 268 |
fdf_ = fdf_local; |
| 269 |
#endif |
| 270 |
return fdf_; |
| 271 |
} |
| 272 |
|
| 273 |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
| 274 |
int nLocalCutoffAtoms = 0; |
| 275 |
Molecule* mol; |
| 276 |
MoleculeIterator mi; |
| 277 |
CutoffGroup* cg; |
| 278 |
Molecule::CutoffGroupIterator ci; |
| 279 |
|
| 280 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 281 |
|
| 282 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
| 283 |
cg = mol->nextCutoffGroup(ci)) { |
| 284 |
nLocalCutoffAtoms += cg->getNumAtom(); |
| 285 |
|
| 286 |
} |
| 287 |
} |
| 288 |
|
| 289 |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
| 290 |
} |
| 291 |
|
| 292 |
void SimInfo::calcNdfRaw() { |
| 293 |
int ndfRaw_local; |
| 294 |
|
| 295 |
MoleculeIterator i; |
| 296 |
vector<StuntDouble*>::iterator j; |
| 297 |
Molecule* mol; |
| 298 |
StuntDouble* integrableObject; |
| 299 |
|
| 300 |
// Raw degrees of freedom that we have to set |
| 301 |
ndfRaw_local = 0; |
| 302 |
|
| 303 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 304 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 305 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 306 |
|
| 307 |
ndfRaw_local += 3; |
| 308 |
|
| 309 |
if (integrableObject->isDirectional()) { |
| 310 |
if (integrableObject->isLinear()) { |
| 311 |
ndfRaw_local += 2; |
| 312 |
} else { |
| 313 |
ndfRaw_local += 3; |
| 314 |
} |
| 315 |
} |
| 316 |
|
| 317 |
} |
| 318 |
} |
| 319 |
|
| 320 |
#ifdef IS_MPI |
| 321 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 322 |
#else |
| 323 |
ndfRaw_ = ndfRaw_local; |
| 324 |
#endif |
| 325 |
} |
| 326 |
|
| 327 |
void SimInfo::calcNdfTrans() { |
| 328 |
int ndfTrans_local; |
| 329 |
|
| 330 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
| 331 |
|
| 332 |
|
| 333 |
#ifdef IS_MPI |
| 334 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 335 |
#else |
| 336 |
ndfTrans_ = ndfTrans_local; |
| 337 |
#endif |
| 338 |
|
| 339 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
| 340 |
|
| 341 |
} |
| 342 |
|
| 343 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
| 344 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
| 345 |
vector<Bond*>::iterator bondIter; |
| 346 |
vector<Bend*>::iterator bendIter; |
| 347 |
vector<Torsion*>::iterator torsionIter; |
| 348 |
vector<Inversion*>::iterator inversionIter; |
| 349 |
Bond* bond; |
| 350 |
Bend* bend; |
| 351 |
Torsion* torsion; |
| 352 |
Inversion* inversion; |
| 353 |
int a; |
| 354 |
int b; |
| 355 |
int c; |
| 356 |
int d; |
| 357 |
|
| 358 |
// atomGroups can be used to add special interaction maps between |
| 359 |
// groups of atoms that are in two separate rigid bodies. |
| 360 |
// However, most site-site interactions between two rigid bodies |
| 361 |
// are probably not special, just the ones between the physically |
| 362 |
// bonded atoms. Interactions *within* a single rigid body should |
| 363 |
// always be excluded. These are done at the bottom of this |
| 364 |
// function. |
| 365 |
|
| 366 |
map<int, set<int> > atomGroups; |
| 367 |
Molecule::RigidBodyIterator rbIter; |
| 368 |
RigidBody* rb; |
| 369 |
Molecule::IntegrableObjectIterator ii; |
| 370 |
StuntDouble* integrableObject; |
| 371 |
|
| 372 |
for (integrableObject = mol->beginIntegrableObject(ii); |
| 373 |
integrableObject != NULL; |
| 374 |
integrableObject = mol->nextIntegrableObject(ii)) { |
| 375 |
|
| 376 |
if (integrableObject->isRigidBody()) { |
| 377 |
rb = static_cast<RigidBody*>(integrableObject); |
| 378 |
vector<Atom*> atoms = rb->getAtoms(); |
| 379 |
set<int> rigidAtoms; |
| 380 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
| 381 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
| 382 |
} |
| 383 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
| 384 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
| 385 |
} |
| 386 |
} else { |
| 387 |
set<int> oneAtomSet; |
| 388 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
| 389 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
| 390 |
} |
| 391 |
} |
| 392 |
|
| 393 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
| 394 |
bond = mol->nextBond(bondIter)) { |
| 395 |
|
| 396 |
a = bond->getAtomA()->getGlobalIndex(); |
| 397 |
b = bond->getAtomB()->getGlobalIndex(); |
| 398 |
|
| 399 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
| 400 |
oneTwoInteractions_.addPair(a, b); |
| 401 |
} else { |
| 402 |
excludedInteractions_.addPair(a, b); |
| 403 |
} |
| 404 |
} |
| 405 |
|
| 406 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
| 407 |
bend = mol->nextBend(bendIter)) { |
| 408 |
|
| 409 |
a = bend->getAtomA()->getGlobalIndex(); |
| 410 |
b = bend->getAtomB()->getGlobalIndex(); |
| 411 |
c = bend->getAtomC()->getGlobalIndex(); |
| 412 |
|
| 413 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
| 414 |
oneTwoInteractions_.addPair(a, b); |
| 415 |
oneTwoInteractions_.addPair(b, c); |
| 416 |
} else { |
| 417 |
excludedInteractions_.addPair(a, b); |
| 418 |
excludedInteractions_.addPair(b, c); |
| 419 |
} |
| 420 |
|
| 421 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
| 422 |
oneThreeInteractions_.addPair(a, c); |
| 423 |
} else { |
| 424 |
excludedInteractions_.addPair(a, c); |
| 425 |
} |
| 426 |
} |
| 427 |
|
| 428 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
| 429 |
torsion = mol->nextTorsion(torsionIter)) { |
| 430 |
|
| 431 |
a = torsion->getAtomA()->getGlobalIndex(); |
| 432 |
b = torsion->getAtomB()->getGlobalIndex(); |
| 433 |
c = torsion->getAtomC()->getGlobalIndex(); |
| 434 |
d = torsion->getAtomD()->getGlobalIndex(); |
| 435 |
|
| 436 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
| 437 |
oneTwoInteractions_.addPair(a, b); |
| 438 |
oneTwoInteractions_.addPair(b, c); |
| 439 |
oneTwoInteractions_.addPair(c, d); |
| 440 |
} else { |
| 441 |
excludedInteractions_.addPair(a, b); |
| 442 |
excludedInteractions_.addPair(b, c); |
| 443 |
excludedInteractions_.addPair(c, d); |
| 444 |
} |
| 445 |
|
| 446 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
| 447 |
oneThreeInteractions_.addPair(a, c); |
| 448 |
oneThreeInteractions_.addPair(b, d); |
| 449 |
} else { |
| 450 |
excludedInteractions_.addPair(a, c); |
| 451 |
excludedInteractions_.addPair(b, d); |
| 452 |
} |
| 453 |
|
| 454 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
| 455 |
oneFourInteractions_.addPair(a, d); |
| 456 |
} else { |
| 457 |
excludedInteractions_.addPair(a, d); |
| 458 |
} |
| 459 |
} |
| 460 |
|
| 461 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
| 462 |
inversion = mol->nextInversion(inversionIter)) { |
| 463 |
|
| 464 |
a = inversion->getAtomA()->getGlobalIndex(); |
| 465 |
b = inversion->getAtomB()->getGlobalIndex(); |
| 466 |
c = inversion->getAtomC()->getGlobalIndex(); |
| 467 |
d = inversion->getAtomD()->getGlobalIndex(); |
| 468 |
|
| 469 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
| 470 |
oneTwoInteractions_.addPair(a, b); |
| 471 |
oneTwoInteractions_.addPair(a, c); |
| 472 |
oneTwoInteractions_.addPair(a, d); |
| 473 |
} else { |
| 474 |
excludedInteractions_.addPair(a, b); |
| 475 |
excludedInteractions_.addPair(a, c); |
| 476 |
excludedInteractions_.addPair(a, d); |
| 477 |
} |
| 478 |
|
| 479 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
| 480 |
oneThreeInteractions_.addPair(b, c); |
| 481 |
oneThreeInteractions_.addPair(b, d); |
| 482 |
oneThreeInteractions_.addPair(c, d); |
| 483 |
} else { |
| 484 |
excludedInteractions_.addPair(b, c); |
| 485 |
excludedInteractions_.addPair(b, d); |
| 486 |
excludedInteractions_.addPair(c, d); |
| 487 |
} |
| 488 |
} |
| 489 |
|
| 490 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 491 |
rb = mol->nextRigidBody(rbIter)) { |
| 492 |
vector<Atom*> atoms = rb->getAtoms(); |
| 493 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
| 494 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
| 495 |
a = atoms[i]->getGlobalIndex(); |
| 496 |
b = atoms[j]->getGlobalIndex(); |
| 497 |
excludedInteractions_.addPair(a, b); |
| 498 |
} |
| 499 |
} |
| 500 |
} |
| 501 |
|
| 502 |
} |
| 503 |
|
| 504 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
| 505 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
| 506 |
vector<Bond*>::iterator bondIter; |
| 507 |
vector<Bend*>::iterator bendIter; |
| 508 |
vector<Torsion*>::iterator torsionIter; |
| 509 |
vector<Inversion*>::iterator inversionIter; |
| 510 |
Bond* bond; |
| 511 |
Bend* bend; |
| 512 |
Torsion* torsion; |
| 513 |
Inversion* inversion; |
| 514 |
int a; |
| 515 |
int b; |
| 516 |
int c; |
| 517 |
int d; |
| 518 |
|
| 519 |
map<int, set<int> > atomGroups; |
| 520 |
Molecule::RigidBodyIterator rbIter; |
| 521 |
RigidBody* rb; |
| 522 |
Molecule::IntegrableObjectIterator ii; |
| 523 |
StuntDouble* integrableObject; |
| 524 |
|
| 525 |
for (integrableObject = mol->beginIntegrableObject(ii); |
| 526 |
integrableObject != NULL; |
| 527 |
integrableObject = mol->nextIntegrableObject(ii)) { |
| 528 |
|
| 529 |
if (integrableObject->isRigidBody()) { |
| 530 |
rb = static_cast<RigidBody*>(integrableObject); |
| 531 |
vector<Atom*> atoms = rb->getAtoms(); |
| 532 |
set<int> rigidAtoms; |
| 533 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
| 534 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
| 535 |
} |
| 536 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
| 537 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
| 538 |
} |
| 539 |
} else { |
| 540 |
set<int> oneAtomSet; |
| 541 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
| 542 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
| 543 |
} |
| 544 |
} |
| 545 |
|
| 546 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
| 547 |
bond = mol->nextBond(bondIter)) { |
| 548 |
|
| 549 |
a = bond->getAtomA()->getGlobalIndex(); |
| 550 |
b = bond->getAtomB()->getGlobalIndex(); |
| 551 |
|
| 552 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
| 553 |
oneTwoInteractions_.removePair(a, b); |
| 554 |
} else { |
| 555 |
excludedInteractions_.removePair(a, b); |
| 556 |
} |
| 557 |
} |
| 558 |
|
| 559 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
| 560 |
bend = mol->nextBend(bendIter)) { |
| 561 |
|
| 562 |
a = bend->getAtomA()->getGlobalIndex(); |
| 563 |
b = bend->getAtomB()->getGlobalIndex(); |
| 564 |
c = bend->getAtomC()->getGlobalIndex(); |
| 565 |
|
| 566 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
| 567 |
oneTwoInteractions_.removePair(a, b); |
| 568 |
oneTwoInteractions_.removePair(b, c); |
| 569 |
} else { |
| 570 |
excludedInteractions_.removePair(a, b); |
| 571 |
excludedInteractions_.removePair(b, c); |
| 572 |
} |
| 573 |
|
| 574 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
| 575 |
oneThreeInteractions_.removePair(a, c); |
| 576 |
} else { |
| 577 |
excludedInteractions_.removePair(a, c); |
| 578 |
} |
| 579 |
} |
| 580 |
|
| 581 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
| 582 |
torsion = mol->nextTorsion(torsionIter)) { |
| 583 |
|
| 584 |
a = torsion->getAtomA()->getGlobalIndex(); |
| 585 |
b = torsion->getAtomB()->getGlobalIndex(); |
| 586 |
c = torsion->getAtomC()->getGlobalIndex(); |
| 587 |
d = torsion->getAtomD()->getGlobalIndex(); |
| 588 |
|
| 589 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
| 590 |
oneTwoInteractions_.removePair(a, b); |
| 591 |
oneTwoInteractions_.removePair(b, c); |
| 592 |
oneTwoInteractions_.removePair(c, d); |
| 593 |
} else { |
| 594 |
excludedInteractions_.removePair(a, b); |
| 595 |
excludedInteractions_.removePair(b, c); |
| 596 |
excludedInteractions_.removePair(c, d); |
| 597 |
} |
| 598 |
|
| 599 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
| 600 |
oneThreeInteractions_.removePair(a, c); |
| 601 |
oneThreeInteractions_.removePair(b, d); |
| 602 |
} else { |
| 603 |
excludedInteractions_.removePair(a, c); |
| 604 |
excludedInteractions_.removePair(b, d); |
| 605 |
} |
| 606 |
|
| 607 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
| 608 |
oneFourInteractions_.removePair(a, d); |
| 609 |
} else { |
| 610 |
excludedInteractions_.removePair(a, d); |
| 611 |
} |
| 612 |
} |
| 613 |
|
| 614 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
| 615 |
inversion = mol->nextInversion(inversionIter)) { |
| 616 |
|
| 617 |
a = inversion->getAtomA()->getGlobalIndex(); |
| 618 |
b = inversion->getAtomB()->getGlobalIndex(); |
| 619 |
c = inversion->getAtomC()->getGlobalIndex(); |
| 620 |
d = inversion->getAtomD()->getGlobalIndex(); |
| 621 |
|
| 622 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
| 623 |
oneTwoInteractions_.removePair(a, b); |
| 624 |
oneTwoInteractions_.removePair(a, c); |
| 625 |
oneTwoInteractions_.removePair(a, d); |
| 626 |
} else { |
| 627 |
excludedInteractions_.removePair(a, b); |
| 628 |
excludedInteractions_.removePair(a, c); |
| 629 |
excludedInteractions_.removePair(a, d); |
| 630 |
} |
| 631 |
|
| 632 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
| 633 |
oneThreeInteractions_.removePair(b, c); |
| 634 |
oneThreeInteractions_.removePair(b, d); |
| 635 |
oneThreeInteractions_.removePair(c, d); |
| 636 |
} else { |
| 637 |
excludedInteractions_.removePair(b, c); |
| 638 |
excludedInteractions_.removePair(b, d); |
| 639 |
excludedInteractions_.removePair(c, d); |
| 640 |
} |
| 641 |
} |
| 642 |
|
| 643 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
| 644 |
rb = mol->nextRigidBody(rbIter)) { |
| 645 |
vector<Atom*> atoms = rb->getAtoms(); |
| 646 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
| 647 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
| 648 |
a = atoms[i]->getGlobalIndex(); |
| 649 |
b = atoms[j]->getGlobalIndex(); |
| 650 |
excludedInteractions_.removePair(a, b); |
| 651 |
} |
| 652 |
} |
| 653 |
} |
| 654 |
|
| 655 |
} |
| 656 |
|
| 657 |
|
| 658 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
| 659 |
int curStampId; |
| 660 |
|
| 661 |
//index from 0 |
| 662 |
curStampId = moleculeStamps_.size(); |
| 663 |
|
| 664 |
moleculeStamps_.push_back(molStamp); |
| 665 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
| 666 |
} |
| 667 |
|
| 668 |
|
| 669 |
/** |
| 670 |
* update |
| 671 |
* |
| 672 |
* Performs the global checks and variable settings after the |
| 673 |
* objects have been created. |
| 674 |
* |
| 675 |
*/ |
| 676 |
void SimInfo::update() { |
| 677 |
setupSimVariables(); |
| 678 |
calcNdf(); |
| 679 |
calcNdfRaw(); |
| 680 |
calcNdfTrans(); |
| 681 |
} |
| 682 |
|
| 683 |
/** |
| 684 |
* getSimulatedAtomTypes |
| 685 |
* |
| 686 |
* Returns an STL set of AtomType* that are actually present in this |
| 687 |
* simulation. Must query all processors to assemble this information. |
| 688 |
* |
| 689 |
*/ |
| 690 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
| 691 |
SimInfo::MoleculeIterator mi; |
| 692 |
Molecule* mol; |
| 693 |
Molecule::AtomIterator ai; |
| 694 |
Atom* atom; |
| 695 |
set<AtomType*> atomTypes; |
| 696 |
|
| 697 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 698 |
for(atom = mol->beginAtom(ai); atom != NULL; |
| 699 |
atom = mol->nextAtom(ai)) { |
| 700 |
atomTypes.insert(atom->getAtomType()); |
| 701 |
} |
| 702 |
} |
| 703 |
|
| 704 |
#ifdef IS_MPI |
| 705 |
|
| 706 |
// loop over the found atom types on this processor, and add their |
| 707 |
// numerical idents to a vector: |
| 708 |
|
| 709 |
vector<int> foundTypes; |
| 710 |
set<AtomType*>::iterator i; |
| 711 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
| 712 |
foundTypes.push_back( (*i)->getIdent() ); |
| 713 |
|
| 714 |
// count_local holds the number of found types on this processor |
| 715 |
int count_local = foundTypes.size(); |
| 716 |
|
| 717 |
int nproc = MPI::COMM_WORLD.Get_size(); |
| 718 |
|
| 719 |
// we need arrays to hold the counts and displacement vectors for |
| 720 |
// all processors |
| 721 |
vector<int> counts(nproc, 0); |
| 722 |
vector<int> disps(nproc, 0); |
| 723 |
|
| 724 |
// fill the counts array |
| 725 |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
| 726 |
1, MPI::INT); |
| 727 |
|
| 728 |
// use the processor counts to compute the displacement array |
| 729 |
disps[0] = 0; |
| 730 |
int totalCount = counts[0]; |
| 731 |
for (int iproc = 1; iproc < nproc; iproc++) { |
| 732 |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
| 733 |
totalCount += counts[iproc]; |
| 734 |
} |
| 735 |
|
| 736 |
// we need a (possibly redundant) set of all found types: |
| 737 |
vector<int> ftGlobal(totalCount); |
| 738 |
|
| 739 |
// now spray out the foundTypes to all the other processors: |
| 740 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
| 741 |
&ftGlobal[0], &counts[0], &disps[0], |
| 742 |
MPI::INT); |
| 743 |
|
| 744 |
vector<int>::iterator j; |
| 745 |
|
| 746 |
// foundIdents is a stl set, so inserting an already found ident |
| 747 |
// will have no effect. |
| 748 |
set<int> foundIdents; |
| 749 |
|
| 750 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
| 751 |
foundIdents.insert((*j)); |
| 752 |
|
| 753 |
// now iterate over the foundIdents and get the actual atom types |
| 754 |
// that correspond to these: |
| 755 |
set<int>::iterator it; |
| 756 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
| 757 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
| 758 |
|
| 759 |
#endif |
| 760 |
|
| 761 |
return atomTypes; |
| 762 |
} |
| 763 |
|
| 764 |
void SimInfo::setupSimVariables() { |
| 765 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
| 766 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
| 767 |
calcBoxDipole_ = false; |
| 768 |
if ( simParams_->haveAccumulateBoxDipole() ) |
| 769 |
if ( simParams_->getAccumulateBoxDipole() ) { |
| 770 |
calcBoxDipole_ = true; |
| 771 |
} |
| 772 |
|
| 773 |
set<AtomType*>::iterator i; |
| 774 |
set<AtomType*> atomTypes; |
| 775 |
atomTypes = getSimulatedAtomTypes(); |
| 776 |
int usesElectrostatic = 0; |
| 777 |
int usesMetallic = 0; |
| 778 |
int usesDirectional = 0; |
| 779 |
//loop over all of the atom types |
| 780 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
| 781 |
usesElectrostatic |= (*i)->isElectrostatic(); |
| 782 |
usesMetallic |= (*i)->isMetal(); |
| 783 |
usesDirectional |= (*i)->isDirectional(); |
| 784 |
} |
| 785 |
|
| 786 |
#ifdef IS_MPI |
| 787 |
int temp; |
| 788 |
temp = usesDirectional; |
| 789 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 790 |
|
| 791 |
temp = usesMetallic; |
| 792 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 793 |
|
| 794 |
temp = usesElectrostatic; |
| 795 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
| 796 |
#else |
| 797 |
|
| 798 |
usesDirectionalAtoms_ = usesDirectional; |
| 799 |
usesMetallicAtoms_ = usesMetallic; |
| 800 |
usesElectrostaticAtoms_ = usesElectrostatic; |
| 801 |
|
| 802 |
#endif |
| 803 |
|
| 804 |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
| 805 |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
| 806 |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
| 807 |
} |
| 808 |
|
| 809 |
|
| 810 |
vector<int> SimInfo::getGlobalAtomIndices() { |
| 811 |
SimInfo::MoleculeIterator mi; |
| 812 |
Molecule* mol; |
| 813 |
Molecule::AtomIterator ai; |
| 814 |
Atom* atom; |
| 815 |
|
| 816 |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
| 817 |
|
| 818 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 819 |
|
| 820 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 821 |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
| 822 |
} |
| 823 |
} |
| 824 |
return GlobalAtomIndices; |
| 825 |
} |
| 826 |
|
| 827 |
|
| 828 |
vector<int> SimInfo::getGlobalGroupIndices() { |
| 829 |
SimInfo::MoleculeIterator mi; |
| 830 |
Molecule* mol; |
| 831 |
Molecule::CutoffGroupIterator ci; |
| 832 |
CutoffGroup* cg; |
| 833 |
|
| 834 |
vector<int> GlobalGroupIndices; |
| 835 |
|
| 836 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 837 |
|
| 838 |
//local index of cutoff group is trivial, it only depends on the |
| 839 |
//order of travesing |
| 840 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
| 841 |
cg = mol->nextCutoffGroup(ci)) { |
| 842 |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
| 843 |
} |
| 844 |
} |
| 845 |
return GlobalGroupIndices; |
| 846 |
} |
| 847 |
|
| 848 |
|
| 849 |
void SimInfo::prepareTopology() { |
| 850 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
| 851 |
|
| 852 |
//calculate mass ratio of cutoff group |
| 853 |
SimInfo::MoleculeIterator mi; |
| 854 |
Molecule* mol; |
| 855 |
Molecule::CutoffGroupIterator ci; |
| 856 |
CutoffGroup* cg; |
| 857 |
Molecule::AtomIterator ai; |
| 858 |
Atom* atom; |
| 859 |
RealType totalMass; |
| 860 |
|
| 861 |
/** |
| 862 |
* The mass factor is the relative mass of an atom to the total |
| 863 |
* mass of the cutoff group it belongs to. By default, all atoms |
| 864 |
* are their own cutoff groups, and therefore have mass factors of |
| 865 |
* 1. We need some special handling for massless atoms, which |
| 866 |
* will be treated as carrying the entire mass of the cutoff |
| 867 |
* group. |
| 868 |
*/ |
| 869 |
massFactors_.clear(); |
| 870 |
massFactors_.resize(getNAtoms(), 1.0); |
| 871 |
|
| 872 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 873 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
| 874 |
cg = mol->nextCutoffGroup(ci)) { |
| 875 |
|
| 876 |
totalMass = cg->getMass(); |
| 877 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
| 878 |
// Check for massless groups - set mfact to 1 if true |
| 879 |
if (totalMass != 0) |
| 880 |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
| 881 |
else |
| 882 |
massFactors_[atom->getLocalIndex()] = 1.0; |
| 883 |
} |
| 884 |
} |
| 885 |
} |
| 886 |
|
| 887 |
// Build the identArray_ |
| 888 |
|
| 889 |
identArray_.clear(); |
| 890 |
identArray_.reserve(getNAtoms()); |
| 891 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 892 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
| 893 |
identArray_.push_back(atom->getIdent()); |
| 894 |
} |
| 895 |
} |
| 896 |
|
| 897 |
//scan topology |
| 898 |
|
| 899 |
nExclude = excludedInteractions_.getSize(); |
| 900 |
nOneTwo = oneTwoInteractions_.getSize(); |
| 901 |
nOneThree = oneThreeInteractions_.getSize(); |
| 902 |
nOneFour = oneFourInteractions_.getSize(); |
| 903 |
|
| 904 |
int* excludeList = excludedInteractions_.getPairList(); |
| 905 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
| 906 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
| 907 |
int* oneFourList = oneFourInteractions_.getPairList(); |
| 908 |
|
| 909 |
topologyDone_ = true; |
| 910 |
} |
| 911 |
|
| 912 |
void SimInfo::addProperty(GenericData* genData) { |
| 913 |
properties_.addProperty(genData); |
| 914 |
} |
| 915 |
|
| 916 |
void SimInfo::removeProperty(const string& propName) { |
| 917 |
properties_.removeProperty(propName); |
| 918 |
} |
| 919 |
|
| 920 |
void SimInfo::clearProperties() { |
| 921 |
properties_.clearProperties(); |
| 922 |
} |
| 923 |
|
| 924 |
vector<string> SimInfo::getPropertyNames() { |
| 925 |
return properties_.getPropertyNames(); |
| 926 |
} |
| 927 |
|
| 928 |
vector<GenericData*> SimInfo::getProperties() { |
| 929 |
return properties_.getProperties(); |
| 930 |
} |
| 931 |
|
| 932 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
| 933 |
return properties_.getPropertyByName(propName); |
| 934 |
} |
| 935 |
|
| 936 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
| 937 |
if (sman_ == sman) { |
| 938 |
return; |
| 939 |
} |
| 940 |
delete sman_; |
| 941 |
sman_ = sman; |
| 942 |
|
| 943 |
Molecule* mol; |
| 944 |
RigidBody* rb; |
| 945 |
Atom* atom; |
| 946 |
CutoffGroup* cg; |
| 947 |
SimInfo::MoleculeIterator mi; |
| 948 |
Molecule::RigidBodyIterator rbIter; |
| 949 |
Molecule::AtomIterator atomIter; |
| 950 |
Molecule::CutoffGroupIterator cgIter; |
| 951 |
|
| 952 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
| 953 |
|
| 954 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
| 955 |
atom->setSnapshotManager(sman_); |
| 956 |
} |
| 957 |
|
| 958 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
| 959 |
rb->setSnapshotManager(sman_); |
| 960 |
} |
| 961 |
|
| 962 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
| 963 |
cg->setSnapshotManager(sman_); |
| 964 |
} |
| 965 |
} |
| 966 |
|
| 967 |
} |
| 968 |
|
| 969 |
Vector3d SimInfo::getComVel(){ |
| 970 |
SimInfo::MoleculeIterator i; |
| 971 |
Molecule* mol; |
| 972 |
|
| 973 |
Vector3d comVel(0.0); |
| 974 |
RealType totalMass = 0.0; |
| 975 |
|
| 976 |
|
| 977 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 978 |
RealType mass = mol->getMass(); |
| 979 |
totalMass += mass; |
| 980 |
comVel += mass * mol->getComVel(); |
| 981 |
} |
| 982 |
|
| 983 |
#ifdef IS_MPI |
| 984 |
RealType tmpMass = totalMass; |
| 985 |
Vector3d tmpComVel(comVel); |
| 986 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 987 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 988 |
#endif |
| 989 |
|
| 990 |
comVel /= totalMass; |
| 991 |
|
| 992 |
return comVel; |
| 993 |
} |
| 994 |
|
| 995 |
Vector3d SimInfo::getCom(){ |
| 996 |
SimInfo::MoleculeIterator i; |
| 997 |
Molecule* mol; |
| 998 |
|
| 999 |
Vector3d com(0.0); |
| 1000 |
RealType totalMass = 0.0; |
| 1001 |
|
| 1002 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 1003 |
RealType mass = mol->getMass(); |
| 1004 |
totalMass += mass; |
| 1005 |
com += mass * mol->getCom(); |
| 1006 |
} |
| 1007 |
|
| 1008 |
#ifdef IS_MPI |
| 1009 |
RealType tmpMass = totalMass; |
| 1010 |
Vector3d tmpCom(com); |
| 1011 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 1012 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 1013 |
#endif |
| 1014 |
|
| 1015 |
com /= totalMass; |
| 1016 |
|
| 1017 |
return com; |
| 1018 |
|
| 1019 |
} |
| 1020 |
|
| 1021 |
ostream& operator <<(ostream& o, SimInfo& info) { |
| 1022 |
|
| 1023 |
return o; |
| 1024 |
} |
| 1025 |
|
| 1026 |
|
| 1027 |
/* |
| 1028 |
Returns center of mass and center of mass velocity in one function call. |
| 1029 |
*/ |
| 1030 |
|
| 1031 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
| 1032 |
SimInfo::MoleculeIterator i; |
| 1033 |
Molecule* mol; |
| 1034 |
|
| 1035 |
|
| 1036 |
RealType totalMass = 0.0; |
| 1037 |
|
| 1038 |
|
| 1039 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 1040 |
RealType mass = mol->getMass(); |
| 1041 |
totalMass += mass; |
| 1042 |
com += mass * mol->getCom(); |
| 1043 |
comVel += mass * mol->getComVel(); |
| 1044 |
} |
| 1045 |
|
| 1046 |
#ifdef IS_MPI |
| 1047 |
RealType tmpMass = totalMass; |
| 1048 |
Vector3d tmpCom(com); |
| 1049 |
Vector3d tmpComVel(comVel); |
| 1050 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 1051 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 1052 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 1053 |
#endif |
| 1054 |
|
| 1055 |
com /= totalMass; |
| 1056 |
comVel /= totalMass; |
| 1057 |
} |
| 1058 |
|
| 1059 |
/* |
| 1060 |
Return intertia tensor for entire system and angular momentum Vector. |
| 1061 |
|
| 1062 |
|
| 1063 |
[ Ixx -Ixy -Ixz ] |
| 1064 |
J =| -Iyx Iyy -Iyz | |
| 1065 |
[ -Izx -Iyz Izz ] |
| 1066 |
*/ |
| 1067 |
|
| 1068 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
| 1069 |
|
| 1070 |
|
| 1071 |
RealType xx = 0.0; |
| 1072 |
RealType yy = 0.0; |
| 1073 |
RealType zz = 0.0; |
| 1074 |
RealType xy = 0.0; |
| 1075 |
RealType xz = 0.0; |
| 1076 |
RealType yz = 0.0; |
| 1077 |
Vector3d com(0.0); |
| 1078 |
Vector3d comVel(0.0); |
| 1079 |
|
| 1080 |
getComAll(com, comVel); |
| 1081 |
|
| 1082 |
SimInfo::MoleculeIterator i; |
| 1083 |
Molecule* mol; |
| 1084 |
|
| 1085 |
Vector3d thisq(0.0); |
| 1086 |
Vector3d thisv(0.0); |
| 1087 |
|
| 1088 |
RealType thisMass = 0.0; |
| 1089 |
|
| 1090 |
|
| 1091 |
|
| 1092 |
|
| 1093 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 1094 |
|
| 1095 |
thisq = mol->getCom()-com; |
| 1096 |
thisv = mol->getComVel()-comVel; |
| 1097 |
thisMass = mol->getMass(); |
| 1098 |
// Compute moment of intertia coefficients. |
| 1099 |
xx += thisq[0]*thisq[0]*thisMass; |
| 1100 |
yy += thisq[1]*thisq[1]*thisMass; |
| 1101 |
zz += thisq[2]*thisq[2]*thisMass; |
| 1102 |
|
| 1103 |
// compute products of intertia |
| 1104 |
xy += thisq[0]*thisq[1]*thisMass; |
| 1105 |
xz += thisq[0]*thisq[2]*thisMass; |
| 1106 |
yz += thisq[1]*thisq[2]*thisMass; |
| 1107 |
|
| 1108 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
| 1109 |
|
| 1110 |
} |
| 1111 |
|
| 1112 |
|
| 1113 |
inertiaTensor(0,0) = yy + zz; |
| 1114 |
inertiaTensor(0,1) = -xy; |
| 1115 |
inertiaTensor(0,2) = -xz; |
| 1116 |
inertiaTensor(1,0) = -xy; |
| 1117 |
inertiaTensor(1,1) = xx + zz; |
| 1118 |
inertiaTensor(1,2) = -yz; |
| 1119 |
inertiaTensor(2,0) = -xz; |
| 1120 |
inertiaTensor(2,1) = -yz; |
| 1121 |
inertiaTensor(2,2) = xx + yy; |
| 1122 |
|
| 1123 |
#ifdef IS_MPI |
| 1124 |
Mat3x3d tmpI(inertiaTensor); |
| 1125 |
Vector3d tmpAngMom; |
| 1126 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 1127 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 1128 |
#endif |
| 1129 |
|
| 1130 |
return; |
| 1131 |
} |
| 1132 |
|
| 1133 |
//Returns the angular momentum of the system |
| 1134 |
Vector3d SimInfo::getAngularMomentum(){ |
| 1135 |
|
| 1136 |
Vector3d com(0.0); |
| 1137 |
Vector3d comVel(0.0); |
| 1138 |
Vector3d angularMomentum(0.0); |
| 1139 |
|
| 1140 |
getComAll(com,comVel); |
| 1141 |
|
| 1142 |
SimInfo::MoleculeIterator i; |
| 1143 |
Molecule* mol; |
| 1144 |
|
| 1145 |
Vector3d thisr(0.0); |
| 1146 |
Vector3d thisp(0.0); |
| 1147 |
|
| 1148 |
RealType thisMass; |
| 1149 |
|
| 1150 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
| 1151 |
thisMass = mol->getMass(); |
| 1152 |
thisr = mol->getCom()-com; |
| 1153 |
thisp = (mol->getComVel()-comVel)*thisMass; |
| 1154 |
|
| 1155 |
angularMomentum += cross( thisr, thisp ); |
| 1156 |
|
| 1157 |
} |
| 1158 |
|
| 1159 |
#ifdef IS_MPI |
| 1160 |
Vector3d tmpAngMom; |
| 1161 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
| 1162 |
#endif |
| 1163 |
|
| 1164 |
return angularMomentum; |
| 1165 |
} |
| 1166 |
|
| 1167 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
| 1168 |
return IOIndexToIntegrableObject.at(index); |
| 1169 |
} |
| 1170 |
|
| 1171 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
| 1172 |
IOIndexToIntegrableObject= v; |
| 1173 |
} |
| 1174 |
|
| 1175 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
| 1176 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
| 1177 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
| 1178 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
| 1179 |
*/ |
| 1180 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
| 1181 |
Mat3x3d intTensor; |
| 1182 |
RealType det; |
| 1183 |
Vector3d dummyAngMom; |
| 1184 |
RealType sysconstants; |
| 1185 |
RealType geomCnst; |
| 1186 |
|
| 1187 |
geomCnst = 3.0/2.0; |
| 1188 |
/* Get the inertial tensor and angular momentum for free*/ |
| 1189 |
getInertiaTensor(intTensor,dummyAngMom); |
| 1190 |
|
| 1191 |
det = intTensor.determinant(); |
| 1192 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
| 1193 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
| 1194 |
return; |
| 1195 |
} |
| 1196 |
|
| 1197 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
| 1198 |
Mat3x3d intTensor; |
| 1199 |
Vector3d dummyAngMom; |
| 1200 |
RealType sysconstants; |
| 1201 |
RealType geomCnst; |
| 1202 |
|
| 1203 |
geomCnst = 3.0/2.0; |
| 1204 |
/* Get the inertial tensor and angular momentum for free*/ |
| 1205 |
getInertiaTensor(intTensor,dummyAngMom); |
| 1206 |
|
| 1207 |
detI = intTensor.determinant(); |
| 1208 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
| 1209 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
| 1210 |
return; |
| 1211 |
} |
| 1212 |
/* |
| 1213 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
| 1214 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
| 1215 |
sdByGlobalIndex_ = v; |
| 1216 |
} |
| 1217 |
|
| 1218 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
| 1219 |
//assert(index < nAtoms_ + nRigidBodies_); |
| 1220 |
return sdByGlobalIndex_.at(index); |
| 1221 |
} |
| 1222 |
*/ |
| 1223 |
int SimInfo::getNGlobalConstraints() { |
| 1224 |
int nGlobalConstraints; |
| 1225 |
#ifdef IS_MPI |
| 1226 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
| 1227 |
MPI_COMM_WORLD); |
| 1228 |
#else |
| 1229 |
nGlobalConstraints = nConstraints_; |
| 1230 |
#endif |
| 1231 |
return nGlobalConstraints; |
| 1232 |
} |
| 1233 |
|
| 1234 |
}//end namespace OpenMD |
| 1235 |
|