# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | ||
43 | /** | |
# | Line 58 | Line 59 | |
59 | #include "utils/simError.h" | |
60 | #include "selection/SelectionManager.hpp" | |
61 | #include "io/ForceFieldOptions.hpp" | |
62 | < | #include "UseTheForce/ForceField.hpp" |
62 | > | #include "brains/ForceField.hpp" |
63 | #include "nonbonded/SwitchingFunction.hpp" | |
64 | + | #ifdef IS_MPI |
65 | + | #include <mpi.h> |
66 | + | #endif |
67 | ||
68 | using namespace std; | |
69 | namespace OpenMD { | |
# | Line 68 | Line 72 | namespace OpenMD { | |
72 | forceField_(ff), simParams_(simParams), | |
73 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | |
74 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | |
75 | < | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), | |
77 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | |
78 | < | nConstraints_(0), sman_(NULL), topologyDone_(false), |
78 | > | nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 | calcBoxDipole_(false), useAtomicVirial_(true) { | |
80 | ||
81 | MoleculeStamp* molStamp; | |
# | Line 125 | Line 129 | namespace OpenMD { | |
129 | //equal to the total number of atoms minus number of atoms belong to | |
130 | //cutoff group defined in meta-data file plus the number of cutoff | |
131 | //groups defined in meta-data file | |
128 | – | std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 | – | std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 | – | std::cerr << "nG = " << nGroups << "\n"; |
132 | ||
133 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | |
133 | – | |
134 | – | std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
134 | ||
135 | //every free atom (atom does not belong to rigid bodies) is an | |
136 | //integrable object therefore the total number of integrable objects | |
# | Line 226 | Line 225 | namespace OpenMD { | |
225 | ||
226 | ||
227 | void SimInfo::calcNdf() { | |
228 | < | int ndf_local; |
228 | > | int ndf_local, nfq_local; |
229 | MoleculeIterator i; | |
230 | vector<StuntDouble*>::iterator j; | |
231 | + | vector<Atom*>::iterator k; |
232 | + | |
233 | Molecule* mol; | |
234 | StuntDouble* integrableObject; | |
235 | + | Atom* atom; |
236 | ||
237 | ndf_local = 0; | |
238 | + | nfq_local = 0; |
239 | ||
240 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | |
241 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | |
# | Line 247 | Line 250 | namespace OpenMD { | |
250 | ndf_local += 3; | |
251 | } | |
252 | } | |
250 | – | |
253 | } | |
254 | + | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 | + | atom = mol->nextFluctuatingCharge(k)) { |
256 | + | if (atom->isFluctuatingCharge()) { |
257 | + | nfq_local++; |
258 | + | } |
259 | + | } |
260 | } | |
261 | ||
262 | + | ndfLocal_ = ndf_local; |
263 | + | |
264 | // n_constraints is local, so subtract them on each processor | |
265 | ndf_local -= nConstraints_; | |
266 | ||
267 | #ifdef IS_MPI | |
268 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
269 | + | MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
270 | #else | |
271 | ndf_ = ndf_local; | |
272 | + | nGlobalFluctuatingCharges_ = nfq_local; |
273 | #endif | |
274 | ||
275 | // nZconstraints_ is global, as are the 3 COM translations for the | |
# | Line 273 | Line 285 | namespace OpenMD { | |
285 | fdf_ = fdf_local; | |
286 | #endif | |
287 | return fdf_; | |
288 | + | } |
289 | + | |
290 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ |
291 | + | int nLocalCutoffAtoms = 0; |
292 | + | Molecule* mol; |
293 | + | MoleculeIterator mi; |
294 | + | CutoffGroup* cg; |
295 | + | Molecule::CutoffGroupIterator ci; |
296 | + | |
297 | + | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
298 | + | |
299 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
300 | + | cg = mol->nextCutoffGroup(ci)) { |
301 | + | nLocalCutoffAtoms += cg->getNumAtom(); |
302 | + | |
303 | + | } |
304 | + | } |
305 | + | |
306 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
307 | } | |
308 | ||
309 | void SimInfo::calcNdfRaw() { | |
# | Line 680 | Line 711 | namespace OpenMD { | |
711 | Atom* atom; | |
712 | set<AtomType*> atomTypes; | |
713 | ||
714 | < | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
715 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
714 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
715 | > | for(atom = mol->beginAtom(ai); atom != NULL; |
716 | > | atom = mol->nextAtom(ai)) { |
717 | atomTypes.insert(atom->getAtomType()); | |
718 | } | |
719 | } | |
720 | < | |
720 | > | |
721 | #ifdef IS_MPI | |
722 | ||
723 | // loop over the found atom types on this processor, and add their | |
724 | // numerical idents to a vector: | |
725 | < | |
725 | > | |
726 | vector<int> foundTypes; | |
727 | set<AtomType*>::iterator i; | |
728 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | |
# | Line 699 | Line 731 | namespace OpenMD { | |
731 | // count_local holds the number of found types on this processor | |
732 | int count_local = foundTypes.size(); | |
733 | ||
734 | < | // count holds the total number of found types on all processors |
703 | < | // (some will be redundant with the ones found locally): |
704 | < | int count; |
705 | < | MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
734 | > | int nproc = MPI::COMM_WORLD.Get_size(); |
735 | ||
736 | < | // create a vector to hold the globally found types, and resize it: |
737 | < | vector<int> ftGlobal; |
738 | < | ftGlobal.resize(count); |
739 | < | vector<int> counts; |
736 | > | // we need arrays to hold the counts and displacement vectors for |
737 | > | // all processors |
738 | > | vector<int> counts(nproc, 0); |
739 | > | vector<int> disps(nproc, 0); |
740 | ||
741 | < | int nproc = MPI::COMM_WORLD.Get_size(); |
742 | < | counts.resize(nproc); |
743 | < | vector<int> disps; |
744 | < | disps.resize(nproc); |
741 | > | // fill the counts array |
742 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
743 | > | 1, MPI::INT); |
744 | > | |
745 | > | // use the processor counts to compute the displacement array |
746 | > | disps[0] = 0; |
747 | > | int totalCount = counts[0]; |
748 | > | for (int iproc = 1; iproc < nproc; iproc++) { |
749 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
750 | > | totalCount += counts[iproc]; |
751 | > | } |
752 | ||
753 | < | // now spray out the foundTypes to all the other processors: |
753 | > | // we need a (possibly redundant) set of all found types: |
754 | > | vector<int> ftGlobal(totalCount); |
755 | ||
756 | + | // now spray out the foundTypes to all the other processors: |
757 | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | |
758 | < | &ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
758 | > | &ftGlobal[0], &counts[0], &disps[0], |
759 | > | MPI::INT); |
760 | ||
761 | + | vector<int>::iterator j; |
762 | + | |
763 | // foundIdents is a stl set, so inserting an already found ident | |
764 | // will have no effect. | |
765 | set<int> foundIdents; | |
766 | < | vector<int>::iterator j; |
766 | > | |
767 | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | |
768 | foundIdents.insert((*j)); | |
769 | ||
770 | // now iterate over the foundIdents and get the actual atom types | |
771 | // that correspond to these: | |
772 | set<int>::iterator it; | |
773 | < | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
773 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
774 | atomTypes.insert( forceField_->getAtomType((*it)) ); | |
775 | ||
776 | #endif | |
777 | < | |
777 | > | |
778 | return atomTypes; | |
779 | } | |
780 | ||
# | Line 745 | Line 786 | namespace OpenMD { | |
786 | if ( simParams_->getAccumulateBoxDipole() ) { | |
787 | calcBoxDipole_ = true; | |
788 | } | |
789 | < | |
789 | > | |
790 | set<AtomType*>::iterator i; | |
791 | set<AtomType*> atomTypes; | |
792 | atomTypes = getSimulatedAtomTypes(); | |
793 | int usesElectrostatic = 0; | |
794 | int usesMetallic = 0; | |
795 | int usesDirectional = 0; | |
796 | + | int usesFluctuatingCharges = 0; |
797 | //loop over all of the atom types | |
798 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | |
799 | usesElectrostatic |= (*i)->isElectrostatic(); | |
800 | usesMetallic |= (*i)->isMetal(); | |
801 | usesDirectional |= (*i)->isDirectional(); | |
802 | + | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
803 | } | |
804 | ||
805 | #ifdef IS_MPI | |
806 | int temp; | |
807 | temp = usesDirectional; | |
808 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
809 | < | |
809 | > | |
810 | temp = usesMetallic; | |
811 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
812 | < | |
812 | > | |
813 | temp = usesElectrostatic; | |
814 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
815 | + | |
816 | + | temp = usesFluctuatingCharges; |
817 | + | MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 | + | #else |
819 | + | |
820 | + | usesDirectionalAtoms_ = usesDirectional; |
821 | + | usesMetallicAtoms_ = usesMetallic; |
822 | + | usesElectrostaticAtoms_ = usesElectrostatic; |
823 | + | usesFluctuatingCharges_ = usesFluctuatingCharges; |
824 | + | |
825 | #endif | |
826 | + | |
827 | + | requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
828 | + | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
829 | + | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
830 | } | |
831 | ||
832 | ||
# | Line 824 | Line 881 | namespace OpenMD { | |
881 | Atom* atom; | |
882 | RealType totalMass; | |
883 | ||
884 | < | //to avoid memory reallocation, reserve enough space for massFactors_ |
884 | > | /** |
885 | > | * The mass factor is the relative mass of an atom to the total |
886 | > | * mass of the cutoff group it belongs to. By default, all atoms |
887 | > | * are their own cutoff groups, and therefore have mass factors of |
888 | > | * 1. We need some special handling for massless atoms, which |
889 | > | * will be treated as carrying the entire mass of the cutoff |
890 | > | * group. |
891 | > | */ |
892 | massFactors_.clear(); | |
893 | < | massFactors_.reserve(getNCutoffGroups()); |
893 | > | massFactors_.resize(getNAtoms(), 1.0); |
894 | ||
895 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
896 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | |
# | Line 835 | Line 899 | namespace OpenMD { | |
899 | totalMass = cg->getMass(); | |
900 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
901 | // Check for massless groups - set mfact to 1 if true | |
902 | < | if (totalMass != 0) |
903 | < | massFactors_.push_back(atom->getMass()/totalMass); |
902 | > | if (totalMass != 0) |
903 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
904 | else | |
905 | < | massFactors_.push_back( 1.0 ); |
905 | > | massFactors_[atom->getLocalIndex()] = 1.0; |
906 | } | |
907 | } | |
908 | } | |
# | Line 865 | Line 929 | namespace OpenMD { | |
929 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
930 | int* oneFourList = oneFourInteractions_.getPairList(); | |
931 | ||
868 | – | //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 | – | // &nExclude, excludeList, |
870 | – | // &nOneTwo, oneTwoList, |
871 | – | // &nOneThree, oneThreeList, |
872 | – | // &nOneFour, oneFourList, |
873 | – | // &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 | – | // &fortranGlobalGroupMembership[0], &isError); |
875 | – | |
932 | topologyDone_ = true; | |
933 | } | |
934 | ||
# | Line 1157 | Line 1213 | namespace OpenMD { | |
1213 | ||
1214 | det = intTensor.determinant(); | |
1215 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1216 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1216 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1217 | return; | |
1218 | } | |
1219 | ||
# | Line 1173 | Line 1229 | namespace OpenMD { | |
1229 | ||
1230 | detI = intTensor.determinant(); | |
1231 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1232 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1232 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1233 | return; | |
1234 | } | |
1235 | /* |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |