# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <stdlib.h> |
2 | < | #include <string.h> |
3 | < | #include <math.h> |
1 | > | /* |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | > | * |
4 | > | * The University of Notre Dame grants you ("Licensee") a |
5 | > | * non-exclusive, royalty free, license to use, modify and |
6 | > | * redistribute this software in source and binary code form, provided |
7 | > | * that the following conditions are met: |
8 | > | * |
9 | > | * 1. Redistributions of source code must retain the above copyright |
10 | > | * notice, this list of conditions and the following disclaimer. |
11 | > | * |
12 | > | * 2. Redistributions in binary form must reproduce the above copyright |
13 | > | * notice, this list of conditions and the following disclaimer in the |
14 | > | * documentation and/or other materials provided with the |
15 | > | * distribution. |
16 | > | * |
17 | > | * This software is provided "AS IS," without a warranty of any |
18 | > | * kind. All express or implied conditions, representations and |
19 | > | * warranties, including any implied warranty of merchantability, |
20 | > | * fitness for a particular purpose or non-infringement, are hereby |
21 | > | * excluded. The University of Notre Dame and its licensors shall not |
22 | > | * be liable for any damages suffered by licensee as a result of |
23 | > | * using, modifying or distributing the software or its |
24 | > | * derivatives. In no event will the University of Notre Dame or its |
25 | > | * licensors be liable for any lost revenue, profit or data, or for |
26 | > | * direct, indirect, special, consequential, incidental or punitive |
27 | > | * damages, however caused and regardless of the theory of liability, |
28 | > | * arising out of the use of or inability to use software, even if the |
29 | > | * University of Notre Dame has been advised of the possibility of |
30 | > | * such damages. |
31 | > | * |
32 | > | * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 | > | * research, please cite the appropriate papers when you publish your |
34 | > | * work. Good starting points are: |
35 | > | * |
36 | > | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 | > | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | > | * [4] Vardeman & Gezelter, in progress (2009). |
40 | > | */ |
41 | > | |
42 | > | /** |
43 | > | * @file SimInfo.cpp |
44 | > | * @author tlin |
45 | > | * @date 11/02/2004 |
46 | > | * @version 1.0 |
47 | > | */ |
48 | ||
49 | < | #include <iostream> |
50 | < | using namespace std; |
49 | > | #include <algorithm> |
50 | > | #include <set> |
51 | > | #include <map> |
52 | ||
53 | < | #include "SimInfo.hpp" |
54 | < | #define __C |
55 | < | #include "fSimulation.h" |
56 | < | #include "simError.h" |
53 | > | #include "brains/SimInfo.hpp" |
54 | > | #include "math/Vector3.hpp" |
55 | > | #include "primitives/Molecule.hpp" |
56 | > | #include "primitives/StuntDouble.hpp" |
57 | > | #include "UseTheForce/fCutoffPolicy.h" |
58 | > | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 | > | #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 | > | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 | > | #include "UseTheForce/doForces_interface.h" |
62 | > | #include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 | > | #include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 | > | #include "UseTheForce/DarkSide/switcheroo_interface.h" |
65 | > | #include "utils/MemoryUtils.hpp" |
66 | > | #include "utils/simError.h" |
67 | > | #include "selection/SelectionManager.hpp" |
68 | > | #include "io/ForceFieldOptions.hpp" |
69 | > | #include "UseTheForce/ForceField.hpp" |
70 | ||
13 | – | #include "fortranWrappers.hpp" |
71 | ||
15 | – | #include "MatVec3.h" |
16 | – | |
72 | #ifdef IS_MPI | |
73 | < | #include "mpiSimulation.hpp" |
74 | < | #endif |
73 | > | #include "UseTheForce/mpiComponentPlan.h" |
74 | > | #include "UseTheForce/DarkSide/simParallel_interface.h" |
75 | > | #endif |
76 | ||
77 | < | inline double roundMe( double x ){ |
78 | < | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
79 | < | } |
80 | < | |
81 | < | inline double min( double a, double b ){ |
82 | < | return (a < b ) ? a : b; |
83 | < | } |
77 | > | namespace OpenMD { |
78 | > | std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 | > | std::map<int, std::set<int> >::iterator i = container.find(index); |
80 | > | std::set<int> result; |
81 | > | if (i != container.end()) { |
82 | > | result = i->second; |
83 | > | } |
84 | ||
85 | < | SimInfo* currentInfo; |
86 | < | |
31 | < | SimInfo::SimInfo(){ |
32 | < | |
33 | < | n_constraints = 0; |
34 | < | nZconstraints = 0; |
35 | < | n_oriented = 0; |
36 | < | n_dipoles = 0; |
37 | < | ndf = 0; |
38 | < | ndfRaw = 0; |
39 | < | nZconstraints = 0; |
40 | < | the_integrator = NULL; |
41 | < | setTemp = 0; |
42 | < | thermalTime = 0.0; |
43 | < | currentTime = 0.0; |
44 | < | rCut = 0.0; |
45 | < | rSw = 0.0; |
46 | < | |
47 | < | haveRcut = 0; |
48 | < | haveRsw = 0; |
49 | < | boxIsInit = 0; |
85 | > | return result; |
86 | > | } |
87 | ||
88 | < | resetTime = 1e99; |
88 | > | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
89 | > | forceField_(ff), simParams_(simParams), |
90 | > | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
91 | > | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
92 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
93 | > | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
94 | > | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
95 | > | nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
96 | > | calcBoxDipole_(false), useAtomicVirial_(true) { |
97 | ||
53 | – | orthoRhombic = 0; |
54 | – | orthoTolerance = 1E-6; |
55 | – | useInitXSstate = true; |
98 | ||
99 | < | usePBC = 0; |
100 | < | useLJ = 0; |
101 | < | useSticky = 0; |
102 | < | useCharges = 0; |
103 | < | useDipoles = 0; |
104 | < | useReactionField = 0; |
105 | < | useGB = 0; |
64 | < | useEAM = 0; |
65 | < | useSolidThermInt = 0; |
66 | < | useLiquidThermInt = 0; |
99 | > | MoleculeStamp* molStamp; |
100 | > | int nMolWithSameStamp; |
101 | > | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
102 | > | int nGroups = 0; //total cutoff groups defined in meta-data file |
103 | > | CutoffGroupStamp* cgStamp; |
104 | > | RigidBodyStamp* rbStamp; |
105 | > | int nRigidAtoms = 0; |
106 | ||
107 | < | haveCutoffGroups = false; |
107 | > | std::vector<Component*> components = simParams->getComponents(); |
108 | > | |
109 | > | for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
110 | > | molStamp = (*i)->getMoleculeStamp(); |
111 | > | nMolWithSameStamp = (*i)->getNMol(); |
112 | > | |
113 | > | addMoleculeStamp(molStamp, nMolWithSameStamp); |
114 | ||
115 | < | excludes = Exclude::Instance(); |
115 | > | //calculate atoms in molecules |
116 | > | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
117 | ||
118 | < | myConfiguration = new SimState(); |
118 | > | //calculate atoms in cutoff groups |
119 | > | int nAtomsInGroups = 0; |
120 | > | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
121 | > | |
122 | > | for (int j=0; j < nCutoffGroupsInStamp; j++) { |
123 | > | cgStamp = molStamp->getCutoffGroupStamp(j); |
124 | > | nAtomsInGroups += cgStamp->getNMembers(); |
125 | > | } |
126 | ||
127 | < | has_minimizer = false; |
75 | < | the_minimizer =NULL; |
127 | > | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
128 | ||
129 | < | ngroup = 0; |
129 | > | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
130 | ||
131 | < | wrapMeSimInfo( this ); |
132 | < | } |
131 | > | //calculate atoms in rigid bodies |
132 | > | int nAtomsInRigidBodies = 0; |
133 | > | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
134 | > | |
135 | > | for (int j=0; j < nRigidBodiesInStamp; j++) { |
136 | > | rbStamp = molStamp->getRigidBodyStamp(j); |
137 | > | nAtomsInRigidBodies += rbStamp->getNMembers(); |
138 | > | } |
139 | ||
140 | + | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
141 | + | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
142 | + | |
143 | + | } |
144 | ||
145 | < | SimInfo::~SimInfo(){ |
145 | > | //every free atom (atom does not belong to cutoff groups) is a cutoff |
146 | > | //group therefore the total number of cutoff groups in the system is |
147 | > | //equal to the total number of atoms minus number of atoms belong to |
148 | > | //cutoff group defined in meta-data file plus the number of cutoff |
149 | > | //groups defined in meta-data file |
150 | > | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
151 | ||
152 | < | delete myConfiguration; |
153 | < | |
154 | < | map<string, GenericData*>::iterator i; |
152 | > | //every free atom (atom does not belong to rigid bodies) is an |
153 | > | //integrable object therefore the total number of integrable objects |
154 | > | //in the system is equal to the total number of atoms minus number of |
155 | > | //atoms belong to rigid body defined in meta-data file plus the number |
156 | > | //of rigid bodies defined in meta-data file |
157 | > | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
158 | > | + nGlobalRigidBodies_; |
159 | ||
160 | < | for(i = properties.begin(); i != properties.end(); i++) |
161 | < | delete (*i).second; |
160 | > | nGlobalMols_ = molStampIds_.size(); |
161 | > | molToProcMap_.resize(nGlobalMols_); |
162 | > | } |
163 | ||
164 | < | } |
164 | > | SimInfo::~SimInfo() { |
165 | > | std::map<int, Molecule*>::iterator i; |
166 | > | for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
167 | > | delete i->second; |
168 | > | } |
169 | > | molecules_.clear(); |
170 | > | |
171 | > | delete sman_; |
172 | > | delete simParams_; |
173 | > | delete forceField_; |
174 | > | } |
175 | ||
176 | < | void SimInfo::setBox(double newBox[3]) { |
177 | < | |
178 | < | int i, j; |
179 | < | double tempMat[3][3]; |
176 | > | int SimInfo::getNGlobalConstraints() { |
177 | > | int nGlobalConstraints; |
178 | > | #ifdef IS_MPI |
179 | > | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
180 | > | MPI_COMM_WORLD); |
181 | > | #else |
182 | > | nGlobalConstraints = nConstraints_; |
183 | > | #endif |
184 | > | return nGlobalConstraints; |
185 | > | } |
186 | ||
187 | < | for(i=0; i<3; i++) |
188 | < | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
187 | > | bool SimInfo::addMolecule(Molecule* mol) { |
188 | > | MoleculeIterator i; |
189 | ||
190 | < | tempMat[0][0] = newBox[0]; |
191 | < | tempMat[1][1] = newBox[1]; |
104 | < | tempMat[2][2] = newBox[2]; |
190 | > | i = molecules_.find(mol->getGlobalIndex()); |
191 | > | if (i == molecules_.end() ) { |
192 | ||
193 | < | setBoxM( tempMat ); |
193 | > | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
194 | > | |
195 | > | nAtoms_ += mol->getNAtoms(); |
196 | > | nBonds_ += mol->getNBonds(); |
197 | > | nBends_ += mol->getNBends(); |
198 | > | nTorsions_ += mol->getNTorsions(); |
199 | > | nInversions_ += mol->getNInversions(); |
200 | > | nRigidBodies_ += mol->getNRigidBodies(); |
201 | > | nIntegrableObjects_ += mol->getNIntegrableObjects(); |
202 | > | nCutoffGroups_ += mol->getNCutoffGroups(); |
203 | > | nConstraints_ += mol->getNConstraintPairs(); |
204 | ||
205 | < | } |
109 | < | |
110 | < | void SimInfo::setBoxM( double theBox[3][3] ){ |
205 | > | addInteractionPairs(mol); |
206 | ||
207 | < | int i, j; |
208 | < | double FortranHmat[9]; // to preserve compatibility with Fortran the |
209 | < | // ordering in the array is as follows: |
210 | < | // [ 0 3 6 ] |
211 | < | // [ 1 4 7 ] |
117 | < | // [ 2 5 8 ] |
118 | < | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
207 | > | return true; |
208 | > | } else { |
209 | > | return false; |
210 | > | } |
211 | > | } |
212 | ||
213 | < | if( !boxIsInit ) boxIsInit = 1; |
213 | > | bool SimInfo::removeMolecule(Molecule* mol) { |
214 | > | MoleculeIterator i; |
215 | > | i = molecules_.find(mol->getGlobalIndex()); |
216 | ||
217 | < | for(i=0; i < 3; i++) |
123 | < | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
124 | < | |
125 | < | calcBoxL(); |
126 | < | calcHmatInv(); |
217 | > | if (i != molecules_.end() ) { |
218 | ||
219 | < | for(i=0; i < 3; i++) { |
220 | < | for (j=0; j < 3; j++) { |
221 | < | FortranHmat[3*j + i] = Hmat[i][j]; |
222 | < | FortranHmatInv[3*j + i] = HmatInv[i][j]; |
223 | < | } |
224 | < | } |
219 | > | assert(mol == i->second); |
220 | > | |
221 | > | nAtoms_ -= mol->getNAtoms(); |
222 | > | nBonds_ -= mol->getNBonds(); |
223 | > | nBends_ -= mol->getNBends(); |
224 | > | nTorsions_ -= mol->getNTorsions(); |
225 | > | nInversions_ -= mol->getNInversions(); |
226 | > | nRigidBodies_ -= mol->getNRigidBodies(); |
227 | > | nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
228 | > | nCutoffGroups_ -= mol->getNCutoffGroups(); |
229 | > | nConstraints_ -= mol->getNConstraintPairs(); |
230 | ||
231 | < | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
232 | < | |
137 | < | } |
138 | < | |
231 | > | removeInteractionPairs(mol); |
232 | > | molecules_.erase(mol->getGlobalIndex()); |
233 | ||
234 | < | void SimInfo::getBoxM (double theBox[3][3]) { |
234 | > | delete mol; |
235 | > | |
236 | > | return true; |
237 | > | } else { |
238 | > | return false; |
239 | > | } |
240 | ||
142 | – | int i, j; |
143 | – | for(i=0; i<3; i++) |
144 | – | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
145 | – | } |
241 | ||
242 | + | } |
243 | ||
244 | < | void SimInfo::scaleBox(double scale) { |
245 | < | double theBox[3][3]; |
246 | < | int i, j; |
244 | > | |
245 | > | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
246 | > | i = molecules_.begin(); |
247 | > | return i == molecules_.end() ? NULL : i->second; |
248 | > | } |
249 | ||
250 | < | // cerr << "Scaling box by " << scale << "\n"; |
250 | > | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
251 | > | ++i; |
252 | > | return i == molecules_.end() ? NULL : i->second; |
253 | > | } |
254 | ||
154 | – | for(i=0; i<3; i++) |
155 | – | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
255 | ||
256 | < | setBoxM(theBox); |
256 | > | void SimInfo::calcNdf() { |
257 | > | int ndf_local; |
258 | > | MoleculeIterator i; |
259 | > | std::vector<StuntDouble*>::iterator j; |
260 | > | Molecule* mol; |
261 | > | StuntDouble* integrableObject; |
262 | ||
263 | < | } |
263 | > | ndf_local = 0; |
264 | > | |
265 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
266 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
267 | > | integrableObject = mol->nextIntegrableObject(j)) { |
268 | ||
269 | < | void SimInfo::calcHmatInv( void ) { |
162 | < | |
163 | < | int oldOrtho; |
164 | < | int i,j; |
165 | < | double smallDiag; |
166 | < | double tol; |
167 | < | double sanity[3][3]; |
269 | > | ndf_local += 3; |
270 | ||
271 | < | invertMat3( Hmat, HmatInv ); |
272 | < | |
273 | < | // check to see if Hmat is orthorhombic |
274 | < | |
275 | < | oldOrtho = orthoRhombic; |
276 | < | |
277 | < | smallDiag = fabs(Hmat[0][0]); |
278 | < | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
177 | < | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
178 | < | tol = smallDiag * orthoTolerance; |
179 | < | |
180 | < | orthoRhombic = 1; |
181 | < | |
182 | < | for (i = 0; i < 3; i++ ) { |
183 | < | for (j = 0 ; j < 3; j++) { |
184 | < | if (i != j) { |
185 | < | if (orthoRhombic) { |
186 | < | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
187 | < | } |
271 | > | if (integrableObject->isDirectional()) { |
272 | > | if (integrableObject->isLinear()) { |
273 | > | ndf_local += 2; |
274 | > | } else { |
275 | > | ndf_local += 3; |
276 | > | } |
277 | > | } |
278 | > | |
279 | } | |
280 | } | |
190 | – | } |
191 | – | |
192 | – | if( oldOrtho != orthoRhombic ){ |
281 | ||
282 | < | if( orthoRhombic ) { |
283 | < | sprintf( painCave.errMsg, |
196 | < | "OOPSE is switching from the default Non-Orthorhombic\n" |
197 | < | "\tto the faster Orthorhombic periodic boundary computations.\n" |
198 | < | "\tThis is usually a good thing, but if you wan't the\n" |
199 | < | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
200 | < | "\tvariable ( currently set to %G ) smaller.\n", |
201 | < | orthoTolerance); |
202 | < | painCave.severity = OOPSE_INFO; |
203 | < | simError(); |
204 | < | } |
205 | < | else { |
206 | < | sprintf( painCave.errMsg, |
207 | < | "OOPSE is switching from the faster Orthorhombic to the more\n" |
208 | < | "\tflexible Non-Orthorhombic periodic boundary computations.\n" |
209 | < | "\tThis is usually because the box has deformed under\n" |
210 | < | "\tNPTf integration. If you wan't to live on the edge with\n" |
211 | < | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
212 | < | "\tvariable ( currently set to %G ) larger.\n", |
213 | < | orthoTolerance); |
214 | < | painCave.severity = OOPSE_WARNING; |
215 | < | simError(); |
216 | < | } |
217 | < | } |
218 | < | } |
282 | > | // n_constraints is local, so subtract them on each processor |
283 | > | ndf_local -= nConstraints_; |
284 | ||
285 | < | void SimInfo::calcBoxL( void ){ |
285 | > | #ifdef IS_MPI |
286 | > | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
287 | > | #else |
288 | > | ndf_ = ndf_local; |
289 | > | #endif |
290 | ||
291 | < | double dx, dy, dz, dsq; |
291 | > | // nZconstraints_ is global, as are the 3 COM translations for the |
292 | > | // entire system: |
293 | > | ndf_ = ndf_ - 3 - nZconstraint_; |
294 | ||
224 | – | // boxVol = Determinant of Hmat |
225 | – | |
226 | – | boxVol = matDet3( Hmat ); |
227 | – | |
228 | – | // boxLx |
229 | – | |
230 | – | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
231 | – | dsq = dx*dx + dy*dy + dz*dz; |
232 | – | boxL[0] = sqrt( dsq ); |
233 | – | //maxCutoff = 0.5 * boxL[0]; |
234 | – | |
235 | – | // boxLy |
236 | – | |
237 | – | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
238 | – | dsq = dx*dx + dy*dy + dz*dz; |
239 | – | boxL[1] = sqrt( dsq ); |
240 | – | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
241 | – | |
242 | – | |
243 | – | // boxLz |
244 | – | |
245 | – | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
246 | – | dsq = dx*dx + dy*dy + dz*dz; |
247 | – | boxL[2] = sqrt( dsq ); |
248 | – | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
249 | – | |
250 | – | //calculate the max cutoff |
251 | – | maxCutoff = calcMaxCutOff(); |
252 | – | |
253 | – | checkCutOffs(); |
254 | – | |
255 | – | } |
256 | – | |
257 | – | |
258 | – | double SimInfo::calcMaxCutOff(){ |
259 | – | |
260 | – | double ri[3], rj[3], rk[3]; |
261 | – | double rij[3], rjk[3], rki[3]; |
262 | – | double minDist; |
263 | – | |
264 | – | ri[0] = Hmat[0][0]; |
265 | – | ri[1] = Hmat[1][0]; |
266 | – | ri[2] = Hmat[2][0]; |
267 | – | |
268 | – | rj[0] = Hmat[0][1]; |
269 | – | rj[1] = Hmat[1][1]; |
270 | – | rj[2] = Hmat[2][1]; |
271 | – | |
272 | – | rk[0] = Hmat[0][2]; |
273 | – | rk[1] = Hmat[1][2]; |
274 | – | rk[2] = Hmat[2][2]; |
275 | – | |
276 | – | crossProduct3(ri, rj, rij); |
277 | – | distXY = dotProduct3(rk,rij) / norm3(rij); |
278 | – | |
279 | – | crossProduct3(rj,rk, rjk); |
280 | – | distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
281 | – | |
282 | – | crossProduct3(rk,ri, rki); |
283 | – | distZX = dotProduct3(rj,rki) / norm3(rki); |
284 | – | |
285 | – | minDist = min(min(distXY, distYZ), distZX); |
286 | – | return minDist/2; |
287 | – | |
288 | – | } |
289 | – | |
290 | – | void SimInfo::wrapVector( double thePos[3] ){ |
291 | – | |
292 | – | int i; |
293 | – | double scaled[3]; |
294 | – | |
295 | – | if( !orthoRhombic ){ |
296 | – | // calc the scaled coordinates. |
297 | – | |
298 | – | |
299 | – | matVecMul3(HmatInv, thePos, scaled); |
300 | – | |
301 | – | for(i=0; i<3; i++) |
302 | – | scaled[i] -= roundMe(scaled[i]); |
303 | – | |
304 | – | // calc the wrapped real coordinates from the wrapped scaled coordinates |
305 | – | |
306 | – | matVecMul3(Hmat, scaled, thePos); |
307 | – | |
295 | } | |
309 | – | else{ |
310 | – | // calc the scaled coordinates. |
311 | – | |
312 | – | for(i=0; i<3; i++) |
313 | – | scaled[i] = thePos[i]*HmatInv[i][i]; |
314 | – | |
315 | – | // wrap the scaled coordinates |
316 | – | |
317 | – | for(i=0; i<3; i++) |
318 | – | scaled[i] -= roundMe(scaled[i]); |
319 | – | |
320 | – | // calc the wrapped real coordinates from the wrapped scaled coordinates |
321 | – | |
322 | – | for(i=0; i<3; i++) |
323 | – | thePos[i] = scaled[i]*Hmat[i][i]; |
324 | – | } |
325 | – | |
326 | – | } |
296 | ||
297 | < | |
329 | < | int SimInfo::getNDF(){ |
330 | < | int ndf_local; |
331 | < | |
332 | < | ndf_local = 0; |
333 | < | |
334 | < | for(int i = 0; i < integrableObjects.size(); i++){ |
335 | < | ndf_local += 3; |
336 | < | if (integrableObjects[i]->isDirectional()) { |
337 | < | if (integrableObjects[i]->isLinear()) |
338 | < | ndf_local += 2; |
339 | < | else |
340 | < | ndf_local += 3; |
341 | < | } |
342 | < | } |
343 | < | |
344 | < | // n_constraints is local, so subtract them on each processor: |
345 | < | |
346 | < | ndf_local -= n_constraints; |
347 | < | |
297 | > | int SimInfo::getFdf() { |
298 | #ifdef IS_MPI | |
299 | < | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
299 | > | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
300 | #else | |
301 | < | ndf = ndf_local; |
301 | > | fdf_ = fdf_local; |
302 | #endif | |
303 | < | |
304 | < | // nZconstraints is global, as are the 3 COM translations for the |
305 | < | // entire system: |
306 | < | |
307 | < | ndf = ndf - 3 - nZconstraints; |
303 | > | return fdf_; |
304 | > | } |
305 | > | |
306 | > | void SimInfo::calcNdfRaw() { |
307 | > | int ndfRaw_local; |
308 | ||
309 | < | return ndf; |
310 | < | } |
309 | > | MoleculeIterator i; |
310 | > | std::vector<StuntDouble*>::iterator j; |
311 | > | Molecule* mol; |
312 | > | StuntDouble* integrableObject; |
313 | ||
314 | < | int SimInfo::getNDFraw() { |
315 | < | int ndfRaw_local; |
314 | > | // Raw degrees of freedom that we have to set |
315 | > | ndfRaw_local = 0; |
316 | > | |
317 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
318 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
319 | > | integrableObject = mol->nextIntegrableObject(j)) { |
320 | ||
321 | < | // Raw degrees of freedom that we have to set |
366 | < | ndfRaw_local = 0; |
321 | > | ndfRaw_local += 3; |
322 | ||
323 | < | for(int i = 0; i < integrableObjects.size(); i++){ |
324 | < | ndfRaw_local += 3; |
325 | < | if (integrableObjects[i]->isDirectional()) { |
326 | < | if (integrableObjects[i]->isLinear()) |
327 | < | ndfRaw_local += 2; |
328 | < | else |
329 | < | ndfRaw_local += 3; |
323 | > | if (integrableObject->isDirectional()) { |
324 | > | if (integrableObject->isLinear()) { |
325 | > | ndfRaw_local += 2; |
326 | > | } else { |
327 | > | ndfRaw_local += 3; |
328 | > | } |
329 | > | } |
330 | > | |
331 | > | } |
332 | } | |
376 | – | } |
333 | ||
334 | #ifdef IS_MPI | |
335 | < | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
335 | > | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
336 | #else | |
337 | < | ndfRaw = ndfRaw_local; |
337 | > | ndfRaw_ = ndfRaw_local; |
338 | #endif | |
339 | + | } |
340 | ||
341 | < | return ndfRaw; |
342 | < | } |
341 | > | void SimInfo::calcNdfTrans() { |
342 | > | int ndfTrans_local; |
343 | ||
344 | < | int SimInfo::getNDFtranslational() { |
388 | < | int ndfTrans_local; |
344 | > | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
345 | ||
390 | – | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
346 | ||
392 | – | |
347 | #ifdef IS_MPI | |
348 | < | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
348 | > | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
349 | #else | |
350 | < | ndfTrans = ndfTrans_local; |
350 | > | ndfTrans_ = ndfTrans_local; |
351 | #endif | |
352 | ||
353 | < | ndfTrans = ndfTrans - 3 - nZconstraints; |
353 | > | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
354 | > | |
355 | > | } |
356 | ||
357 | < | return ndfTrans; |
358 | < | } |
357 | > | void SimInfo::addInteractionPairs(Molecule* mol) { |
358 | > | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
359 | > | std::vector<Bond*>::iterator bondIter; |
360 | > | std::vector<Bend*>::iterator bendIter; |
361 | > | std::vector<Torsion*>::iterator torsionIter; |
362 | > | std::vector<Inversion*>::iterator inversionIter; |
363 | > | Bond* bond; |
364 | > | Bend* bend; |
365 | > | Torsion* torsion; |
366 | > | Inversion* inversion; |
367 | > | int a; |
368 | > | int b; |
369 | > | int c; |
370 | > | int d; |
371 | ||
372 | < | int SimInfo::getTotIntegrableObjects() { |
373 | < | int nObjs_local; |
374 | < | int nObjs; |
372 | > | // atomGroups can be used to add special interaction maps between |
373 | > | // groups of atoms that are in two separate rigid bodies. |
374 | > | // However, most site-site interactions between two rigid bodies |
375 | > | // are probably not special, just the ones between the physically |
376 | > | // bonded atoms. Interactions *within* a single rigid body should |
377 | > | // always be excluded. These are done at the bottom of this |
378 | > | // function. |
379 | ||
380 | < | nObjs_local = integrableObjects.size(); |
380 | > | std::map<int, std::set<int> > atomGroups; |
381 | > | Molecule::RigidBodyIterator rbIter; |
382 | > | RigidBody* rb; |
383 | > | Molecule::IntegrableObjectIterator ii; |
384 | > | StuntDouble* integrableObject; |
385 | > | |
386 | > | for (integrableObject = mol->beginIntegrableObject(ii); |
387 | > | integrableObject != NULL; |
388 | > | integrableObject = mol->nextIntegrableObject(ii)) { |
389 | > | |
390 | > | if (integrableObject->isRigidBody()) { |
391 | > | rb = static_cast<RigidBody*>(integrableObject); |
392 | > | std::vector<Atom*> atoms = rb->getAtoms(); |
393 | > | std::set<int> rigidAtoms; |
394 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
395 | > | rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
396 | > | } |
397 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
398 | > | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
399 | > | } |
400 | > | } else { |
401 | > | std::set<int> oneAtomSet; |
402 | > | oneAtomSet.insert(integrableObject->getGlobalIndex()); |
403 | > | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
404 | > | } |
405 | > | } |
406 | > | |
407 | > | for (bond= mol->beginBond(bondIter); bond != NULL; |
408 | > | bond = mol->nextBond(bondIter)) { |
409 | ||
410 | + | a = bond->getAtomA()->getGlobalIndex(); |
411 | + | b = bond->getAtomB()->getGlobalIndex(); |
412 | + | |
413 | + | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
414 | + | oneTwoInteractions_.addPair(a, b); |
415 | + | } else { |
416 | + | excludedInteractions_.addPair(a, b); |
417 | + | } |
418 | + | } |
419 | ||
420 | < | #ifdef IS_MPI |
421 | < | MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
413 | < | #else |
414 | < | nObjs = nObjs_local; |
415 | < | #endif |
420 | > | for (bend= mol->beginBend(bendIter); bend != NULL; |
421 | > | bend = mol->nextBend(bendIter)) { |
422 | ||
423 | + | a = bend->getAtomA()->getGlobalIndex(); |
424 | + | b = bend->getAtomB()->getGlobalIndex(); |
425 | + | c = bend->getAtomC()->getGlobalIndex(); |
426 | + | |
427 | + | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
428 | + | oneTwoInteractions_.addPair(a, b); |
429 | + | oneTwoInteractions_.addPair(b, c); |
430 | + | } else { |
431 | + | excludedInteractions_.addPair(a, b); |
432 | + | excludedInteractions_.addPair(b, c); |
433 | + | } |
434 | ||
435 | < | return nObjs; |
436 | < | } |
435 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
436 | > | oneThreeInteractions_.addPair(a, c); |
437 | > | } else { |
438 | > | excludedInteractions_.addPair(a, c); |
439 | > | } |
440 | > | } |
441 | ||
442 | < | void SimInfo::refreshSim(){ |
442 | > | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
443 | > | torsion = mol->nextTorsion(torsionIter)) { |
444 | ||
445 | < | simtype fInfo; |
446 | < | int isError; |
447 | < | int n_global; |
448 | < | int* excl; |
445 | > | a = torsion->getAtomA()->getGlobalIndex(); |
446 | > | b = torsion->getAtomB()->getGlobalIndex(); |
447 | > | c = torsion->getAtomC()->getGlobalIndex(); |
448 | > | d = torsion->getAtomD()->getGlobalIndex(); |
449 | ||
450 | < | fInfo.dielect = 0.0; |
450 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
451 | > | oneTwoInteractions_.addPair(a, b); |
452 | > | oneTwoInteractions_.addPair(b, c); |
453 | > | oneTwoInteractions_.addPair(c, d); |
454 | > | } else { |
455 | > | excludedInteractions_.addPair(a, b); |
456 | > | excludedInteractions_.addPair(b, c); |
457 | > | excludedInteractions_.addPair(c, d); |
458 | > | } |
459 | ||
460 | < | if( useDipoles ){ |
461 | < | if( useReactionField )fInfo.dielect = dielectric; |
462 | < | } |
460 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
461 | > | oneThreeInteractions_.addPair(a, c); |
462 | > | oneThreeInteractions_.addPair(b, d); |
463 | > | } else { |
464 | > | excludedInteractions_.addPair(a, c); |
465 | > | excludedInteractions_.addPair(b, d); |
466 | > | } |
467 | ||
468 | < | fInfo.SIM_uses_PBC = usePBC; |
469 | < | //fInfo.SIM_uses_LJ = 0; |
470 | < | fInfo.SIM_uses_LJ = useLJ; |
471 | < | fInfo.SIM_uses_sticky = useSticky; |
472 | < | //fInfo.SIM_uses_sticky = 0; |
473 | < | fInfo.SIM_uses_charges = useCharges; |
440 | < | fInfo.SIM_uses_dipoles = useDipoles; |
441 | < | //fInfo.SIM_uses_dipoles = 0; |
442 | < | fInfo.SIM_uses_RF = useReactionField; |
443 | < | //fInfo.SIM_uses_RF = 0; |
444 | < | fInfo.SIM_uses_GB = useGB; |
445 | < | fInfo.SIM_uses_EAM = useEAM; |
468 | > | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
469 | > | oneFourInteractions_.addPair(a, d); |
470 | > | } else { |
471 | > | excludedInteractions_.addPair(a, d); |
472 | > | } |
473 | > | } |
474 | ||
475 | < | n_exclude = excludes->getSize(); |
476 | < | excl = excludes->getFortranArray(); |
475 | > | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
476 | > | inversion = mol->nextInversion(inversionIter)) { |
477 | > | |
478 | > | a = inversion->getAtomA()->getGlobalIndex(); |
479 | > | b = inversion->getAtomB()->getGlobalIndex(); |
480 | > | c = inversion->getAtomC()->getGlobalIndex(); |
481 | > | d = inversion->getAtomD()->getGlobalIndex(); |
482 | > | |
483 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
484 | > | oneTwoInteractions_.addPair(a, b); |
485 | > | oneTwoInteractions_.addPair(a, c); |
486 | > | oneTwoInteractions_.addPair(a, d); |
487 | > | } else { |
488 | > | excludedInteractions_.addPair(a, b); |
489 | > | excludedInteractions_.addPair(a, c); |
490 | > | excludedInteractions_.addPair(a, d); |
491 | > | } |
492 | > | |
493 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
494 | > | oneThreeInteractions_.addPair(b, c); |
495 | > | oneThreeInteractions_.addPair(b, d); |
496 | > | oneThreeInteractions_.addPair(c, d); |
497 | > | } else { |
498 | > | excludedInteractions_.addPair(b, c); |
499 | > | excludedInteractions_.addPair(b, d); |
500 | > | excludedInteractions_.addPair(c, d); |
501 | > | } |
502 | > | } |
503 | > | |
504 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
505 | > | rb = mol->nextRigidBody(rbIter)) { |
506 | > | std::vector<Atom*> atoms = rb->getAtoms(); |
507 | > | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
508 | > | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
509 | > | a = atoms[i]->getGlobalIndex(); |
510 | > | b = atoms[j]->getGlobalIndex(); |
511 | > | excludedInteractions_.addPair(a, b); |
512 | > | } |
513 | > | } |
514 | > | } |
515 | > | |
516 | > | } |
517 | > | |
518 | > | void SimInfo::removeInteractionPairs(Molecule* mol) { |
519 | > | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
520 | > | std::vector<Bond*>::iterator bondIter; |
521 | > | std::vector<Bend*>::iterator bendIter; |
522 | > | std::vector<Torsion*>::iterator torsionIter; |
523 | > | std::vector<Inversion*>::iterator inversionIter; |
524 | > | Bond* bond; |
525 | > | Bend* bend; |
526 | > | Torsion* torsion; |
527 | > | Inversion* inversion; |
528 | > | int a; |
529 | > | int b; |
530 | > | int c; |
531 | > | int d; |
532 | > | |
533 | > | std::map<int, std::set<int> > atomGroups; |
534 | > | Molecule::RigidBodyIterator rbIter; |
535 | > | RigidBody* rb; |
536 | > | Molecule::IntegrableObjectIterator ii; |
537 | > | StuntDouble* integrableObject; |
538 | > | |
539 | > | for (integrableObject = mol->beginIntegrableObject(ii); |
540 | > | integrableObject != NULL; |
541 | > | integrableObject = mol->nextIntegrableObject(ii)) { |
542 | > | |
543 | > | if (integrableObject->isRigidBody()) { |
544 | > | rb = static_cast<RigidBody*>(integrableObject); |
545 | > | std::vector<Atom*> atoms = rb->getAtoms(); |
546 | > | std::set<int> rigidAtoms; |
547 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
548 | > | rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
549 | > | } |
550 | > | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
551 | > | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
552 | > | } |
553 | > | } else { |
554 | > | std::set<int> oneAtomSet; |
555 | > | oneAtomSet.insert(integrableObject->getGlobalIndex()); |
556 | > | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
557 | > | } |
558 | > | } |
559 | > | |
560 | > | for (bond= mol->beginBond(bondIter); bond != NULL; |
561 | > | bond = mol->nextBond(bondIter)) { |
562 | > | |
563 | > | a = bond->getAtomA()->getGlobalIndex(); |
564 | > | b = bond->getAtomB()->getGlobalIndex(); |
565 | > | |
566 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
567 | > | oneTwoInteractions_.removePair(a, b); |
568 | > | } else { |
569 | > | excludedInteractions_.removePair(a, b); |
570 | > | } |
571 | > | } |
572 | > | |
573 | > | for (bend= mol->beginBend(bendIter); bend != NULL; |
574 | > | bend = mol->nextBend(bendIter)) { |
575 | > | |
576 | > | a = bend->getAtomA()->getGlobalIndex(); |
577 | > | b = bend->getAtomB()->getGlobalIndex(); |
578 | > | c = bend->getAtomC()->getGlobalIndex(); |
579 | > | |
580 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
581 | > | oneTwoInteractions_.removePair(a, b); |
582 | > | oneTwoInteractions_.removePair(b, c); |
583 | > | } else { |
584 | > | excludedInteractions_.removePair(a, b); |
585 | > | excludedInteractions_.removePair(b, c); |
586 | > | } |
587 | > | |
588 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
589 | > | oneThreeInteractions_.removePair(a, c); |
590 | > | } else { |
591 | > | excludedInteractions_.removePair(a, c); |
592 | > | } |
593 | > | } |
594 | > | |
595 | > | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
596 | > | torsion = mol->nextTorsion(torsionIter)) { |
597 | > | |
598 | > | a = torsion->getAtomA()->getGlobalIndex(); |
599 | > | b = torsion->getAtomB()->getGlobalIndex(); |
600 | > | c = torsion->getAtomC()->getGlobalIndex(); |
601 | > | d = torsion->getAtomD()->getGlobalIndex(); |
602 | ||
603 | < | #ifdef IS_MPI |
604 | < | n_global = mpiSim->getNAtomsGlobal(); |
605 | < | #else |
606 | < | n_global = n_atoms; |
607 | < | #endif |
608 | < | |
609 | < | isError = 0; |
610 | < | |
611 | < | getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
612 | < | //it may not be a good idea to pass the address of first element in vector |
613 | < | //since c++ standard does not require vector to be stored continuously in meomory |
614 | < | //Most of the compilers will organize the memory of vector continuously |
615 | < | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
616 | < | &nGlobalExcludes, globalExcludes, molMembershipArray, |
617 | < | &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
603 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
604 | > | oneTwoInteractions_.removePair(a, b); |
605 | > | oneTwoInteractions_.removePair(b, c); |
606 | > | oneTwoInteractions_.removePair(c, d); |
607 | > | } else { |
608 | > | excludedInteractions_.removePair(a, b); |
609 | > | excludedInteractions_.removePair(b, c); |
610 | > | excludedInteractions_.removePair(c, d); |
611 | > | } |
612 | > | |
613 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
614 | > | oneThreeInteractions_.removePair(a, c); |
615 | > | oneThreeInteractions_.removePair(b, d); |
616 | > | } else { |
617 | > | excludedInteractions_.removePair(a, c); |
618 | > | excludedInteractions_.removePair(b, d); |
619 | > | } |
620 | > | |
621 | > | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
622 | > | oneFourInteractions_.removePair(a, d); |
623 | > | } else { |
624 | > | excludedInteractions_.removePair(a, d); |
625 | > | } |
626 | > | } |
627 | > | |
628 | > | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
629 | > | inversion = mol->nextInversion(inversionIter)) { |
630 | > | |
631 | > | a = inversion->getAtomA()->getGlobalIndex(); |
632 | > | b = inversion->getAtomB()->getGlobalIndex(); |
633 | > | c = inversion->getAtomC()->getGlobalIndex(); |
634 | > | d = inversion->getAtomD()->getGlobalIndex(); |
635 | > | |
636 | > | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
637 | > | oneTwoInteractions_.removePair(a, b); |
638 | > | oneTwoInteractions_.removePair(a, c); |
639 | > | oneTwoInteractions_.removePair(a, d); |
640 | > | } else { |
641 | > | excludedInteractions_.removePair(a, b); |
642 | > | excludedInteractions_.removePair(a, c); |
643 | > | excludedInteractions_.removePair(a, d); |
644 | > | } |
645 | > | |
646 | > | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
647 | > | oneThreeInteractions_.removePair(b, c); |
648 | > | oneThreeInteractions_.removePair(b, d); |
649 | > | oneThreeInteractions_.removePair(c, d); |
650 | > | } else { |
651 | > | excludedInteractions_.removePair(b, c); |
652 | > | excludedInteractions_.removePair(b, d); |
653 | > | excludedInteractions_.removePair(c, d); |
654 | > | } |
655 | > | } |
656 | > | |
657 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
658 | > | rb = mol->nextRigidBody(rbIter)) { |
659 | > | std::vector<Atom*> atoms = rb->getAtoms(); |
660 | > | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
661 | > | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
662 | > | a = atoms[i]->getGlobalIndex(); |
663 | > | b = atoms[j]->getGlobalIndex(); |
664 | > | excludedInteractions_.removePair(a, b); |
665 | > | } |
666 | > | } |
667 | > | } |
668 | > | |
669 | > | } |
670 | > | |
671 | > | |
672 | > | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
673 | > | int curStampId; |
674 | > | |
675 | > | //index from 0 |
676 | > | curStampId = moleculeStamps_.size(); |
677 | > | |
678 | > | moleculeStamps_.push_back(molStamp); |
679 | > | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
680 | > | } |
681 | > | |
682 | > | void SimInfo::update() { |
683 | > | |
684 | > | setupSimType(); |
685 | > | |
686 | > | #ifdef IS_MPI |
687 | > | setupFortranParallel(); |
688 | > | #endif |
689 | > | |
690 | > | setupFortranSim(); |
691 | > | |
692 | > | //setup fortran force field |
693 | > | /** @deprecate */ |
694 | > | int isError = 0; |
695 | > | |
696 | > | setupCutoff(); |
697 | > | |
698 | > | setupElectrostaticSummationMethod( isError ); |
699 | > | setupSwitchingFunction(); |
700 | > | setupAccumulateBoxDipole(); |
701 | > | |
702 | > | if(isError){ |
703 | > | sprintf( painCave.errMsg, |
704 | > | "ForceField error: There was an error initializing the forceField in fortran.\n" ); |
705 | > | painCave.isFatal = 1; |
706 | > | simError(); |
707 | > | } |
708 | > | |
709 | > | calcNdf(); |
710 | > | calcNdfRaw(); |
711 | > | calcNdfTrans(); |
712 | > | |
713 | > | fortranInitialized_ = true; |
714 | > | } |
715 | > | |
716 | > | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
717 | > | SimInfo::MoleculeIterator mi; |
718 | > | Molecule* mol; |
719 | > | Molecule::AtomIterator ai; |
720 | > | Atom* atom; |
721 | > | std::set<AtomType*> atomTypes; |
722 | > | |
723 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
724 | > | |
725 | > | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
726 | > | atomTypes.insert(atom->getAtomType()); |
727 | > | } |
728 | > | |
729 | > | } |
730 | > | |
731 | > | return atomTypes; |
732 | > | } |
733 | > | |
734 | > | void SimInfo::setupSimType() { |
735 | > | std::set<AtomType*>::iterator i; |
736 | > | std::set<AtomType*> atomTypes; |
737 | > | atomTypes = getUniqueAtomTypes(); |
738 | > | |
739 | > | int useLennardJones = 0; |
740 | > | int useElectrostatic = 0; |
741 | > | int useEAM = 0; |
742 | > | int useSC = 0; |
743 | > | int useCharge = 0; |
744 | > | int useDirectional = 0; |
745 | > | int useDipole = 0; |
746 | > | int useGayBerne = 0; |
747 | > | int useSticky = 0; |
748 | > | int useStickyPower = 0; |
749 | > | int useShape = 0; |
750 | > | int useFLARB = 0; //it is not in AtomType yet |
751 | > | int useDirectionalAtom = 0; |
752 | > | int useElectrostatics = 0; |
753 | > | //usePBC and useRF are from simParams |
754 | > | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
755 | > | int useRF; |
756 | > | int useSF; |
757 | > | int useSP; |
758 | > | int useBoxDipole; |
759 | > | |
760 | > | std::string myMethod; |
761 | > | |
762 | > | // set the useRF logical |
763 | > | useRF = 0; |
764 | > | useSF = 0; |
765 | > | useSP = 0; |
766 | > | useBoxDipole = 0; |
767 | > | |
768 | > | |
769 | > | if (simParams_->haveElectrostaticSummationMethod()) { |
770 | > | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
771 | > | toUpper(myMethod); |
772 | > | if (myMethod == "REACTION_FIELD"){ |
773 | > | useRF = 1; |
774 | > | } else if (myMethod == "SHIFTED_FORCE"){ |
775 | > | useSF = 1; |
776 | > | } else if (myMethod == "SHIFTED_POTENTIAL"){ |
777 | > | useSP = 1; |
778 | > | } |
779 | > | } |
780 | > | |
781 | > | if (simParams_->haveAccumulateBoxDipole()) |
782 | > | if (simParams_->getAccumulateBoxDipole()) |
783 | > | useBoxDipole = 1; |
784 | > | |
785 | > | useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
786 | > | |
787 | > | //loop over all of the atom types |
788 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
789 | > | useLennardJones |= (*i)->isLennardJones(); |
790 | > | useElectrostatic |= (*i)->isElectrostatic(); |
791 | > | useEAM |= (*i)->isEAM(); |
792 | > | useSC |= (*i)->isSC(); |
793 | > | useCharge |= (*i)->isCharge(); |
794 | > | useDirectional |= (*i)->isDirectional(); |
795 | > | useDipole |= (*i)->isDipole(); |
796 | > | useGayBerne |= (*i)->isGayBerne(); |
797 | > | useSticky |= (*i)->isSticky(); |
798 | > | useStickyPower |= (*i)->isStickyPower(); |
799 | > | useShape |= (*i)->isShape(); |
800 | > | } |
801 | ||
802 | < | if( isError ){ |
803 | < | |
804 | < | sprintf( painCave.errMsg, |
469 | < | "There was an error setting the simulation information in fortran.\n" ); |
470 | < | painCave.isFatal = 1; |
471 | < | painCave.severity = OOPSE_ERROR; |
472 | < | simError(); |
473 | < | } |
474 | < | |
475 | < | #ifdef IS_MPI |
476 | < | sprintf( checkPointMsg, |
477 | < | "succesfully sent the simulation information to fortran.\n"); |
478 | < | MPIcheckPoint(); |
479 | < | #endif // is_mpi |
480 | < | |
481 | < | this->ndf = this->getNDF(); |
482 | < | this->ndfRaw = this->getNDFraw(); |
483 | < | this->ndfTrans = this->getNDFtranslational(); |
484 | < | } |
802 | > | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
803 | > | useDirectionalAtom = 1; |
804 | > | } |
805 | ||
806 | < | void SimInfo::setDefaultRcut( double theRcut ){ |
807 | < | |
808 | < | haveRcut = 1; |
489 | < | rCut = theRcut; |
490 | < | rList = rCut + 1.0; |
491 | < | |
492 | < | notifyFortranCutOffs( &rCut, &rSw, &rList ); |
493 | < | } |
806 | > | if (useCharge || useDipole) { |
807 | > | useElectrostatics = 1; |
808 | > | } |
809 | ||
810 | < | void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
810 | > | #ifdef IS_MPI |
811 | > | int temp; |
812 | ||
813 | < | rSw = theRsw; |
814 | < | setDefaultRcut( theRcut ); |
499 | < | } |
813 | > | temp = usePBC; |
814 | > | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
815 | ||
816 | + | temp = useDirectionalAtom; |
817 | + | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 | ||
819 | < | void SimInfo::checkCutOffs( void ){ |
820 | < | |
504 | < | if( boxIsInit ){ |
505 | < | |
506 | < | //we need to check cutOffs against the box |
507 | < | |
508 | < | if( rCut > maxCutoff ){ |
509 | < | sprintf( painCave.errMsg, |
510 | < | "cutoffRadius is too large for the current periodic box.\n" |
511 | < | "\tCurrent Value of cutoffRadius = %G at time %G\n " |
512 | < | "\tThis is larger than half of at least one of the\n" |
513 | < | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
514 | < | "\n" |
515 | < | "\t[ %G %G %G ]\n" |
516 | < | "\t[ %G %G %G ]\n" |
517 | < | "\t[ %G %G %G ]\n", |
518 | < | rCut, currentTime, |
519 | < | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
520 | < | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
521 | < | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
522 | < | painCave.severity = OOPSE_ERROR; |
523 | < | painCave.isFatal = 1; |
524 | < | simError(); |
525 | < | } |
526 | < | } else { |
527 | < | // initialize this stuff before using it, OK? |
528 | < | sprintf( painCave.errMsg, |
529 | < | "Trying to check cutoffs without a box.\n" |
530 | < | "\tOOPSE should have better programmers than that.\n" ); |
531 | < | painCave.severity = OOPSE_ERROR; |
532 | < | painCave.isFatal = 1; |
533 | < | simError(); |
534 | < | } |
535 | < | |
536 | < | } |
819 | > | temp = useLennardJones; |
820 | > | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
821 | ||
822 | < | void SimInfo::addProperty(GenericData* prop){ |
822 | > | temp = useElectrostatics; |
823 | > | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
824 | ||
825 | < | map<string, GenericData*>::iterator result; |
826 | < | result = properties.find(prop->getID()); |
827 | < | |
828 | < | //we can't simply use properties[prop->getID()] = prop, |
829 | < | //it will cause memory leak if we already contain a propery which has the same name of prop |
830 | < | |
831 | < | if(result != properties.end()){ |
825 | > | temp = useCharge; |
826 | > | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
827 | > | |
828 | > | temp = useDipole; |
829 | > | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 | > | |
831 | > | temp = useSticky; |
832 | > | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
833 | > | |
834 | > | temp = useStickyPower; |
835 | > | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
836 | ||
837 | < | delete (*result).second; |
838 | < | (*result).second = prop; |
550 | < | |
551 | < | } |
552 | < | else{ |
837 | > | temp = useGayBerne; |
838 | > | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
839 | ||
840 | < | properties[prop->getID()] = prop; |
840 | > | temp = useEAM; |
841 | > | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
842 | ||
843 | < | } |
843 | > | temp = useSC; |
844 | > | MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
845 | ||
846 | < | } |
846 | > | temp = useShape; |
847 | > | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
848 | ||
849 | < | GenericData* SimInfo::getProperty(const string& propName){ |
850 | < | |
562 | < | map<string, GenericData*>::iterator result; |
563 | < | |
564 | < | //string lowerCaseName = (); |
565 | < | |
566 | < | result = properties.find(propName); |
567 | < | |
568 | < | if(result != properties.end()) |
569 | < | return (*result).second; |
570 | < | else |
571 | < | return NULL; |
572 | < | } |
849 | > | temp = useFLARB; |
850 | > | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
851 | ||
852 | + | temp = useRF; |
853 | + | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
854 | ||
855 | < | void SimInfo::getFortranGroupArrays(SimInfo* info, |
856 | < | vector<int>& FglobalGroupMembership, |
577 | < | vector<double>& mfact){ |
578 | < | |
579 | < | Molecule* myMols; |
580 | < | Atom** myAtoms; |
581 | < | int numAtom; |
582 | < | double mtot; |
583 | < | int numMol; |
584 | < | int numCutoffGroups; |
585 | < | CutoffGroup* myCutoffGroup; |
586 | < | vector<CutoffGroup*>::iterator iterCutoff; |
587 | < | Atom* cutoffAtom; |
588 | < | vector<Atom*>::iterator iterAtom; |
589 | < | int atomIndex; |
590 | < | double totalMass; |
591 | < | |
592 | < | mfact.clear(); |
593 | < | FglobalGroupMembership.clear(); |
594 | < | |
855 | > | temp = useSF; |
856 | > | MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
857 | ||
858 | < | // Fix the silly fortran indexing problem |
859 | < | #ifdef IS_MPI |
860 | < | numAtom = mpiSim->getNAtomsGlobal(); |
861 | < | #else |
862 | < | numAtom = n_atoms; |
858 | > | temp = useSP; |
859 | > | MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 | > | |
861 | > | temp = useBoxDipole; |
862 | > | MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 | > | |
864 | > | temp = useAtomicVirial_; |
865 | > | MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
866 | > | |
867 | #endif | |
602 | – | for (int i = 0; i < numAtom; i++) |
603 | – | FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
604 | – | |
868 | ||
869 | < | myMols = info->molecules; |
870 | < | numMol = info->n_mol; |
871 | < | for(int i = 0; i < numMol; i++){ |
872 | < | numCutoffGroups = myMols[i].getNCutoffGroups(); |
873 | < | for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
874 | < | myCutoffGroup != NULL; |
875 | < | myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
869 | > | fInfo_.SIM_uses_PBC = usePBC; |
870 | > | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
871 | > | fInfo_.SIM_uses_LennardJones = useLennardJones; |
872 | > | fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
873 | > | fInfo_.SIM_uses_Charges = useCharge; |
874 | > | fInfo_.SIM_uses_Dipoles = useDipole; |
875 | > | fInfo_.SIM_uses_Sticky = useSticky; |
876 | > | fInfo_.SIM_uses_StickyPower = useStickyPower; |
877 | > | fInfo_.SIM_uses_GayBerne = useGayBerne; |
878 | > | fInfo_.SIM_uses_EAM = useEAM; |
879 | > | fInfo_.SIM_uses_SC = useSC; |
880 | > | fInfo_.SIM_uses_Shapes = useShape; |
881 | > | fInfo_.SIM_uses_FLARB = useFLARB; |
882 | > | fInfo_.SIM_uses_RF = useRF; |
883 | > | fInfo_.SIM_uses_SF = useSF; |
884 | > | fInfo_.SIM_uses_SP = useSP; |
885 | > | fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
886 | > | fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
887 | > | } |
888 | ||
889 | < | totalMass = myCutoffGroup->getMass(); |
889 | > | void SimInfo::setupFortranSim() { |
890 | > | int isError; |
891 | > | int nExclude, nOneTwo, nOneThree, nOneFour; |
892 | > | std::vector<int> fortranGlobalGroupMembership; |
893 | > | |
894 | > | isError = 0; |
895 | > | |
896 | > | //globalGroupMembership_ is filled by SimCreator |
897 | > | for (int i = 0; i < nGlobalAtoms_; i++) { |
898 | > | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
899 | > | } |
900 | > | |
901 | > | //calculate mass ratio of cutoff group |
902 | > | std::vector<RealType> mfact; |
903 | > | SimInfo::MoleculeIterator mi; |
904 | > | Molecule* mol; |
905 | > | Molecule::CutoffGroupIterator ci; |
906 | > | CutoffGroup* cg; |
907 | > | Molecule::AtomIterator ai; |
908 | > | Atom* atom; |
909 | > | RealType totalMass; |
910 | > | |
911 | > | //to avoid memory reallocation, reserve enough space for mfact |
912 | > | mfact.reserve(getNCutoffGroups()); |
913 | > | |
914 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
915 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
916 | > | |
917 | > | totalMass = cg->getMass(); |
918 | > | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
919 | > | // Check for massless groups - set mfact to 1 if true |
920 | > | if (totalMass != 0) |
921 | > | mfact.push_back(atom->getMass()/totalMass); |
922 | > | else |
923 | > | mfact.push_back( 1.0 ); |
924 | > | } |
925 | > | } |
926 | > | } |
927 | > | |
928 | > | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
929 | > | std::vector<int> identArray; |
930 | > | |
931 | > | //to avoid memory reallocation, reserve enough space identArray |
932 | > | identArray.reserve(getNAtoms()); |
933 | > | |
934 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
935 | > | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
936 | > | identArray.push_back(atom->getIdent()); |
937 | > | } |
938 | > | } |
939 | > | |
940 | > | //fill molMembershipArray |
941 | > | //molMembershipArray is filled by SimCreator |
942 | > | std::vector<int> molMembershipArray(nGlobalAtoms_); |
943 | > | for (int i = 0; i < nGlobalAtoms_; i++) { |
944 | > | molMembershipArray[i] = globalMolMembership_[i] + 1; |
945 | > | } |
946 | > | |
947 | > | //setup fortran simulation |
948 | > | |
949 | > | nExclude = excludedInteractions_.getSize(); |
950 | > | nOneTwo = oneTwoInteractions_.getSize(); |
951 | > | nOneThree = oneThreeInteractions_.getSize(); |
952 | > | nOneFour = oneFourInteractions_.getSize(); |
953 | > | |
954 | > | int* excludeList = excludedInteractions_.getPairList(); |
955 | > | int* oneTwoList = oneTwoInteractions_.getPairList(); |
956 | > | int* oneThreeList = oneThreeInteractions_.getPairList(); |
957 | > | int* oneFourList = oneFourInteractions_.getPairList(); |
958 | > | |
959 | > | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
960 | > | &nExclude, excludeList, |
961 | > | &nOneTwo, oneTwoList, |
962 | > | &nOneThree, oneThreeList, |
963 | > | &nOneFour, oneFourList, |
964 | > | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
965 | > | &fortranGlobalGroupMembership[0], &isError); |
966 | > | |
967 | > | if( isError ){ |
968 | ||
969 | < | for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
970 | < | cutoffAtom != NULL; |
971 | < | cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
972 | < | mfact.push_back(cutoffAtom->getMass()/totalMass); |
973 | < | } |
969 | > | sprintf( painCave.errMsg, |
970 | > | "There was an error setting the simulation information in fortran.\n" ); |
971 | > | painCave.isFatal = 1; |
972 | > | painCave.severity = OPENMD_ERROR; |
973 | > | simError(); |
974 | > | } |
975 | > | |
976 | > | |
977 | > | sprintf( checkPointMsg, |
978 | > | "succesfully sent the simulation information to fortran.\n"); |
979 | > | |
980 | > | errorCheckPoint(); |
981 | > | |
982 | > | // Setup number of neighbors in neighbor list if present |
983 | > | if (simParams_->haveNeighborListNeighbors()) { |
984 | > | int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
985 | > | setNeighbors(&nlistNeighbors); |
986 | > | } |
987 | > | |
988 | > | |
989 | > | } |
990 | > | |
991 | > | |
992 | > | void SimInfo::setupFortranParallel() { |
993 | > | #ifdef IS_MPI |
994 | > | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
995 | > | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
996 | > | std::vector<int> localToGlobalCutoffGroupIndex; |
997 | > | SimInfo::MoleculeIterator mi; |
998 | > | Molecule::AtomIterator ai; |
999 | > | Molecule::CutoffGroupIterator ci; |
1000 | > | Molecule* mol; |
1001 | > | Atom* atom; |
1002 | > | CutoffGroup* cg; |
1003 | > | mpiSimData parallelData; |
1004 | > | int isError; |
1005 | > | |
1006 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1007 | > | |
1008 | > | //local index(index in DataStorge) of atom is important |
1009 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1010 | > | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1011 | > | } |
1012 | > | |
1013 | > | //local index of cutoff group is trivial, it only depends on the order of travesing |
1014 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1015 | > | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1016 | > | } |
1017 | > | |
1018 | > | } |
1019 | > | |
1020 | > | //fill up mpiSimData struct |
1021 | > | parallelData.nMolGlobal = getNGlobalMolecules(); |
1022 | > | parallelData.nMolLocal = getNMolecules(); |
1023 | > | parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1024 | > | parallelData.nAtomsLocal = getNAtoms(); |
1025 | > | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1026 | > | parallelData.nGroupsLocal = getNCutoffGroups(); |
1027 | > | parallelData.myNode = worldRank; |
1028 | > | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1029 | > | |
1030 | > | //pass mpiSimData struct and index arrays to fortran |
1031 | > | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1032 | > | &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1033 | > | &localToGlobalCutoffGroupIndex[0], &isError); |
1034 | > | |
1035 | > | if (isError) { |
1036 | > | sprintf(painCave.errMsg, |
1037 | > | "mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1038 | > | painCave.isFatal = 1; |
1039 | > | simError(); |
1040 | > | } |
1041 | > | |
1042 | > | sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1043 | > | errorCheckPoint(); |
1044 | > | |
1045 | > | #endif |
1046 | > | } |
1047 | > | |
1048 | > | void SimInfo::setupCutoff() { |
1049 | > | |
1050 | > | ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
1051 | > | |
1052 | > | // Check the cutoff policy |
1053 | > | int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1054 | > | |
1055 | > | // Set LJ shifting bools to false |
1056 | > | ljsp_ = 0; |
1057 | > | ljsf_ = 0; |
1058 | > | |
1059 | > | std::string myPolicy; |
1060 | > | if (forceFieldOptions_.haveCutoffPolicy()){ |
1061 | > | myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1062 | > | }else if (simParams_->haveCutoffPolicy()) { |
1063 | > | myPolicy = simParams_->getCutoffPolicy(); |
1064 | > | } |
1065 | > | |
1066 | > | if (!myPolicy.empty()){ |
1067 | > | toUpper(myPolicy); |
1068 | > | if (myPolicy == "MIX") { |
1069 | > | cp = MIX_CUTOFF_POLICY; |
1070 | > | } else { |
1071 | > | if (myPolicy == "MAX") { |
1072 | > | cp = MAX_CUTOFF_POLICY; |
1073 | > | } else { |
1074 | > | if (myPolicy == "TRADITIONAL") { |
1075 | > | cp = TRADITIONAL_CUTOFF_POLICY; |
1076 | > | } else { |
1077 | > | // throw error |
1078 | > | sprintf( painCave.errMsg, |
1079 | > | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1080 | > | painCave.isFatal = 1; |
1081 | > | simError(); |
1082 | > | } |
1083 | > | } |
1084 | > | } |
1085 | > | } |
1086 | > | notifyFortranCutoffPolicy(&cp); |
1087 | > | |
1088 | > | // Check the Skin Thickness for neighborlists |
1089 | > | RealType skin; |
1090 | > | if (simParams_->haveSkinThickness()) { |
1091 | > | skin = simParams_->getSkinThickness(); |
1092 | > | notifyFortranSkinThickness(&skin); |
1093 | > | } |
1094 | > | |
1095 | > | // Check if the cutoff was set explicitly: |
1096 | > | if (simParams_->haveCutoffRadius()) { |
1097 | > | rcut_ = simParams_->getCutoffRadius(); |
1098 | > | if (simParams_->haveSwitchingRadius()) { |
1099 | > | rsw_ = simParams_->getSwitchingRadius(); |
1100 | > | } else { |
1101 | > | if (fInfo_.SIM_uses_Charges | |
1102 | > | fInfo_.SIM_uses_Dipoles | |
1103 | > | fInfo_.SIM_uses_RF) { |
1104 | > | |
1105 | > | rsw_ = 0.85 * rcut_; |
1106 | > | sprintf(painCave.errMsg, |
1107 | > | "SimCreator Warning: No value was set for the switchingRadius.\n" |
1108 | > | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1109 | > | "\tswitchingRadius = %f. for this simulation\n", rsw_); |
1110 | > | painCave.isFatal = 0; |
1111 | > | simError(); |
1112 | > | } else { |
1113 | > | rsw_ = rcut_; |
1114 | > | sprintf(painCave.errMsg, |
1115 | > | "SimCreator Warning: No value was set for the switchingRadius.\n" |
1116 | > | "\tOpenMD will use the same value as the cutoffRadius.\n" |
1117 | > | "\tswitchingRadius = %f. for this simulation\n", rsw_); |
1118 | > | painCave.isFatal = 0; |
1119 | > | simError(); |
1120 | > | } |
1121 | > | } |
1122 | > | |
1123 | > | if (simParams_->haveElectrostaticSummationMethod()) { |
1124 | > | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1125 | > | toUpper(myMethod); |
1126 | > | |
1127 | > | if (myMethod == "SHIFTED_POTENTIAL") { |
1128 | > | ljsp_ = 1; |
1129 | > | } else if (myMethod == "SHIFTED_FORCE") { |
1130 | > | ljsf_ = 1; |
1131 | > | } |
1132 | > | } |
1133 | > | |
1134 | > | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1135 | > | |
1136 | > | } else { |
1137 | > | |
1138 | > | // For electrostatic atoms, we'll assume a large safe value: |
1139 | > | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1140 | > | sprintf(painCave.errMsg, |
1141 | > | "SimCreator Warning: No value was set for the cutoffRadius.\n" |
1142 | > | "\tOpenMD will use a default value of 15.0 angstroms" |
1143 | > | "\tfor the cutoffRadius.\n"); |
1144 | > | painCave.isFatal = 0; |
1145 | > | simError(); |
1146 | > | rcut_ = 15.0; |
1147 | > | |
1148 | > | if (simParams_->haveElectrostaticSummationMethod()) { |
1149 | > | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1150 | > | toUpper(myMethod); |
1151 | > | |
1152 | > | // For the time being, we're tethering the LJ shifted behavior to the |
1153 | > | // electrostaticSummationMethod keyword options |
1154 | > | if (myMethod == "SHIFTED_POTENTIAL") { |
1155 | > | ljsp_ = 1; |
1156 | > | } else if (myMethod == "SHIFTED_FORCE") { |
1157 | > | ljsf_ = 1; |
1158 | > | } |
1159 | > | if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1160 | > | if (simParams_->haveSwitchingRadius()){ |
1161 | > | sprintf(painCave.errMsg, |
1162 | > | "SimInfo Warning: A value was set for the switchingRadius\n" |
1163 | > | "\teven though the electrostaticSummationMethod was\n" |
1164 | > | "\tset to %s\n", myMethod.c_str()); |
1165 | > | painCave.isFatal = 1; |
1166 | > | simError(); |
1167 | > | } |
1168 | > | } |
1169 | > | } |
1170 | > | |
1171 | > | if (simParams_->haveSwitchingRadius()){ |
1172 | > | rsw_ = simParams_->getSwitchingRadius(); |
1173 | > | } else { |
1174 | > | sprintf(painCave.errMsg, |
1175 | > | "SimCreator Warning: No value was set for switchingRadius.\n" |
1176 | > | "\tOpenMD will use a default value of\n" |
1177 | > | "\t0.85 * cutoffRadius for the switchingRadius\n"); |
1178 | > | painCave.isFatal = 0; |
1179 | > | simError(); |
1180 | > | rsw_ = 0.85 * rcut_; |
1181 | > | } |
1182 | > | |
1183 | > | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1184 | > | |
1185 | > | } else { |
1186 | > | // We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1187 | > | // We'll punt and let fortran figure out the cutoffs later. |
1188 | > | |
1189 | > | notifyFortranYouAreOnYourOwn(); |
1190 | > | |
1191 | > | } |
1192 | } | |
1193 | } | |
1194 | ||
1195 | < | } |
1195 | > | void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1196 | > | |
1197 | > | int errorOut; |
1198 | > | int esm = NONE; |
1199 | > | int sm = UNDAMPED; |
1200 | > | RealType alphaVal; |
1201 | > | RealType dielectric; |
1202 | > | |
1203 | > | errorOut = isError; |
1204 | > | |
1205 | > | if (simParams_->haveElectrostaticSummationMethod()) { |
1206 | > | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1207 | > | toUpper(myMethod); |
1208 | > | if (myMethod == "NONE") { |
1209 | > | esm = NONE; |
1210 | > | } else { |
1211 | > | if (myMethod == "SWITCHING_FUNCTION") { |
1212 | > | esm = SWITCHING_FUNCTION; |
1213 | > | } else { |
1214 | > | if (myMethod == "SHIFTED_POTENTIAL") { |
1215 | > | esm = SHIFTED_POTENTIAL; |
1216 | > | } else { |
1217 | > | if (myMethod == "SHIFTED_FORCE") { |
1218 | > | esm = SHIFTED_FORCE; |
1219 | > | } else { |
1220 | > | if (myMethod == "REACTION_FIELD") { |
1221 | > | esm = REACTION_FIELD; |
1222 | > | dielectric = simParams_->getDielectric(); |
1223 | > | if (!simParams_->haveDielectric()) { |
1224 | > | // throw warning |
1225 | > | sprintf( painCave.errMsg, |
1226 | > | "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1227 | > | "\tA default value of %f will be used for the dielectric.\n", dielectric); |
1228 | > | painCave.isFatal = 0; |
1229 | > | simError(); |
1230 | > | } |
1231 | > | } else { |
1232 | > | // throw error |
1233 | > | sprintf( painCave.errMsg, |
1234 | > | "SimInfo error: Unknown electrostaticSummationMethod.\n" |
1235 | > | "\t(Input file specified %s .)\n" |
1236 | > | "\telectrostaticSummationMethod must be one of: \"none\",\n" |
1237 | > | "\t\"shifted_potential\", \"shifted_force\", or \n" |
1238 | > | "\t\"reaction_field\".\n", myMethod.c_str() ); |
1239 | > | painCave.isFatal = 1; |
1240 | > | simError(); |
1241 | > | } |
1242 | > | } |
1243 | > | } |
1244 | > | } |
1245 | > | } |
1246 | > | } |
1247 | > | |
1248 | > | if (simParams_->haveElectrostaticScreeningMethod()) { |
1249 | > | std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1250 | > | toUpper(myScreen); |
1251 | > | if (myScreen == "UNDAMPED") { |
1252 | > | sm = UNDAMPED; |
1253 | > | } else { |
1254 | > | if (myScreen == "DAMPED") { |
1255 | > | sm = DAMPED; |
1256 | > | if (!simParams_->haveDampingAlpha()) { |
1257 | > | // first set a cutoff dependent alpha value |
1258 | > | // we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1259 | > | alphaVal = 0.5125 - rcut_* 0.025; |
1260 | > | // for values rcut > 20.5, alpha is zero |
1261 | > | if (alphaVal < 0) alphaVal = 0; |
1262 | > | |
1263 | > | // throw warning |
1264 | > | sprintf( painCave.errMsg, |
1265 | > | "SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1266 | > | "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1267 | > | painCave.isFatal = 0; |
1268 | > | simError(); |
1269 | > | } else { |
1270 | > | alphaVal = simParams_->getDampingAlpha(); |
1271 | > | } |
1272 | > | |
1273 | > | } else { |
1274 | > | // throw error |
1275 | > | sprintf( painCave.errMsg, |
1276 | > | "SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1277 | > | "\t(Input file specified %s .)\n" |
1278 | > | "\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1279 | > | "or \"damped\".\n", myScreen.c_str() ); |
1280 | > | painCave.isFatal = 1; |
1281 | > | simError(); |
1282 | > | } |
1283 | > | } |
1284 | > | } |
1285 | > | |
1286 | > | // let's pass some summation method variables to fortran |
1287 | > | setElectrostaticSummationMethod( &esm ); |
1288 | > | setFortranElectrostaticMethod( &esm ); |
1289 | > | setScreeningMethod( &sm ); |
1290 | > | setDampingAlpha( &alphaVal ); |
1291 | > | setReactionFieldDielectric( &dielectric ); |
1292 | > | initFortranFF( &errorOut ); |
1293 | > | } |
1294 | > | |
1295 | > | void SimInfo::setupSwitchingFunction() { |
1296 | > | int ft = CUBIC; |
1297 | > | |
1298 | > | if (simParams_->haveSwitchingFunctionType()) { |
1299 | > | std::string funcType = simParams_->getSwitchingFunctionType(); |
1300 | > | toUpper(funcType); |
1301 | > | if (funcType == "CUBIC") { |
1302 | > | ft = CUBIC; |
1303 | > | } else { |
1304 | > | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1305 | > | ft = FIFTH_ORDER_POLY; |
1306 | > | } else { |
1307 | > | // throw error |
1308 | > | sprintf( painCave.errMsg, |
1309 | > | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1310 | > | painCave.isFatal = 1; |
1311 | > | simError(); |
1312 | > | } |
1313 | > | } |
1314 | > | } |
1315 | > | |
1316 | > | // send switching function notification to switcheroo |
1317 | > | setFunctionType(&ft); |
1318 | > | |
1319 | > | } |
1320 | > | |
1321 | > | void SimInfo::setupAccumulateBoxDipole() { |
1322 | > | |
1323 | > | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1324 | > | if ( simParams_->haveAccumulateBoxDipole() ) |
1325 | > | if ( simParams_->getAccumulateBoxDipole() ) { |
1326 | > | setAccumulateBoxDipole(); |
1327 | > | calcBoxDipole_ = true; |
1328 | > | } |
1329 | > | |
1330 | > | } |
1331 | > | |
1332 | > | void SimInfo::addProperty(GenericData* genData) { |
1333 | > | properties_.addProperty(genData); |
1334 | > | } |
1335 | > | |
1336 | > | void SimInfo::removeProperty(const std::string& propName) { |
1337 | > | properties_.removeProperty(propName); |
1338 | > | } |
1339 | > | |
1340 | > | void SimInfo::clearProperties() { |
1341 | > | properties_.clearProperties(); |
1342 | > | } |
1343 | > | |
1344 | > | std::vector<std::string> SimInfo::getPropertyNames() { |
1345 | > | return properties_.getPropertyNames(); |
1346 | > | } |
1347 | > | |
1348 | > | std::vector<GenericData*> SimInfo::getProperties() { |
1349 | > | return properties_.getProperties(); |
1350 | > | } |
1351 | > | |
1352 | > | GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
1353 | > | return properties_.getPropertyByName(propName); |
1354 | > | } |
1355 | > | |
1356 | > | void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1357 | > | if (sman_ == sman) { |
1358 | > | return; |
1359 | > | } |
1360 | > | delete sman_; |
1361 | > | sman_ = sman; |
1362 | > | |
1363 | > | Molecule* mol; |
1364 | > | RigidBody* rb; |
1365 | > | Atom* atom; |
1366 | > | SimInfo::MoleculeIterator mi; |
1367 | > | Molecule::RigidBodyIterator rbIter; |
1368 | > | Molecule::AtomIterator atomIter;; |
1369 | > | |
1370 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1371 | > | |
1372 | > | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1373 | > | atom->setSnapshotManager(sman_); |
1374 | > | } |
1375 | > | |
1376 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1377 | > | rb->setSnapshotManager(sman_); |
1378 | > | } |
1379 | > | } |
1380 | > | |
1381 | > | } |
1382 | > | |
1383 | > | Vector3d SimInfo::getComVel(){ |
1384 | > | SimInfo::MoleculeIterator i; |
1385 | > | Molecule* mol; |
1386 | > | |
1387 | > | Vector3d comVel(0.0); |
1388 | > | RealType totalMass = 0.0; |
1389 | > | |
1390 | > | |
1391 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1392 | > | RealType mass = mol->getMass(); |
1393 | > | totalMass += mass; |
1394 | > | comVel += mass * mol->getComVel(); |
1395 | > | } |
1396 | > | |
1397 | > | #ifdef IS_MPI |
1398 | > | RealType tmpMass = totalMass; |
1399 | > | Vector3d tmpComVel(comVel); |
1400 | > | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1401 | > | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1402 | > | #endif |
1403 | > | |
1404 | > | comVel /= totalMass; |
1405 | > | |
1406 | > | return comVel; |
1407 | > | } |
1408 | > | |
1409 | > | Vector3d SimInfo::getCom(){ |
1410 | > | SimInfo::MoleculeIterator i; |
1411 | > | Molecule* mol; |
1412 | > | |
1413 | > | Vector3d com(0.0); |
1414 | > | RealType totalMass = 0.0; |
1415 | > | |
1416 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1417 | > | RealType mass = mol->getMass(); |
1418 | > | totalMass += mass; |
1419 | > | com += mass * mol->getCom(); |
1420 | > | } |
1421 | > | |
1422 | > | #ifdef IS_MPI |
1423 | > | RealType tmpMass = totalMass; |
1424 | > | Vector3d tmpCom(com); |
1425 | > | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1426 | > | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1427 | > | #endif |
1428 | > | |
1429 | > | com /= totalMass; |
1430 | > | |
1431 | > | return com; |
1432 | > | |
1433 | > | } |
1434 | > | |
1435 | > | std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1436 | > | |
1437 | > | return o; |
1438 | > | } |
1439 | > | |
1440 | > | |
1441 | > | /* |
1442 | > | Returns center of mass and center of mass velocity in one function call. |
1443 | > | */ |
1444 | > | |
1445 | > | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1446 | > | SimInfo::MoleculeIterator i; |
1447 | > | Molecule* mol; |
1448 | > | |
1449 | > | |
1450 | > | RealType totalMass = 0.0; |
1451 | > | |
1452 | > | |
1453 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1454 | > | RealType mass = mol->getMass(); |
1455 | > | totalMass += mass; |
1456 | > | com += mass * mol->getCom(); |
1457 | > | comVel += mass * mol->getComVel(); |
1458 | > | } |
1459 | > | |
1460 | > | #ifdef IS_MPI |
1461 | > | RealType tmpMass = totalMass; |
1462 | > | Vector3d tmpCom(com); |
1463 | > | Vector3d tmpComVel(comVel); |
1464 | > | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1465 | > | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1466 | > | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1467 | > | #endif |
1468 | > | |
1469 | > | com /= totalMass; |
1470 | > | comVel /= totalMass; |
1471 | > | } |
1472 | > | |
1473 | > | /* |
1474 | > | Return intertia tensor for entire system and angular momentum Vector. |
1475 | > | |
1476 | > | |
1477 | > | [ Ixx -Ixy -Ixz ] |
1478 | > | J =| -Iyx Iyy -Iyz | |
1479 | > | [ -Izx -Iyz Izz ] |
1480 | > | */ |
1481 | > | |
1482 | > | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1483 | > | |
1484 | > | |
1485 | > | RealType xx = 0.0; |
1486 | > | RealType yy = 0.0; |
1487 | > | RealType zz = 0.0; |
1488 | > | RealType xy = 0.0; |
1489 | > | RealType xz = 0.0; |
1490 | > | RealType yz = 0.0; |
1491 | > | Vector3d com(0.0); |
1492 | > | Vector3d comVel(0.0); |
1493 | > | |
1494 | > | getComAll(com, comVel); |
1495 | > | |
1496 | > | SimInfo::MoleculeIterator i; |
1497 | > | Molecule* mol; |
1498 | > | |
1499 | > | Vector3d thisq(0.0); |
1500 | > | Vector3d thisv(0.0); |
1501 | > | |
1502 | > | RealType thisMass = 0.0; |
1503 | > | |
1504 | > | |
1505 | > | |
1506 | > | |
1507 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1508 | > | |
1509 | > | thisq = mol->getCom()-com; |
1510 | > | thisv = mol->getComVel()-comVel; |
1511 | > | thisMass = mol->getMass(); |
1512 | > | // Compute moment of intertia coefficients. |
1513 | > | xx += thisq[0]*thisq[0]*thisMass; |
1514 | > | yy += thisq[1]*thisq[1]*thisMass; |
1515 | > | zz += thisq[2]*thisq[2]*thisMass; |
1516 | > | |
1517 | > | // compute products of intertia |
1518 | > | xy += thisq[0]*thisq[1]*thisMass; |
1519 | > | xz += thisq[0]*thisq[2]*thisMass; |
1520 | > | yz += thisq[1]*thisq[2]*thisMass; |
1521 | > | |
1522 | > | angularMomentum += cross( thisq, thisv ) * thisMass; |
1523 | > | |
1524 | > | } |
1525 | > | |
1526 | > | |
1527 | > | inertiaTensor(0,0) = yy + zz; |
1528 | > | inertiaTensor(0,1) = -xy; |
1529 | > | inertiaTensor(0,2) = -xz; |
1530 | > | inertiaTensor(1,0) = -xy; |
1531 | > | inertiaTensor(1,1) = xx + zz; |
1532 | > | inertiaTensor(1,2) = -yz; |
1533 | > | inertiaTensor(2,0) = -xz; |
1534 | > | inertiaTensor(2,1) = -yz; |
1535 | > | inertiaTensor(2,2) = xx + yy; |
1536 | > | |
1537 | > | #ifdef IS_MPI |
1538 | > | Mat3x3d tmpI(inertiaTensor); |
1539 | > | Vector3d tmpAngMom; |
1540 | > | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1541 | > | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1542 | > | #endif |
1543 | > | |
1544 | > | return; |
1545 | > | } |
1546 | > | |
1547 | > | //Returns the angular momentum of the system |
1548 | > | Vector3d SimInfo::getAngularMomentum(){ |
1549 | > | |
1550 | > | Vector3d com(0.0); |
1551 | > | Vector3d comVel(0.0); |
1552 | > | Vector3d angularMomentum(0.0); |
1553 | > | |
1554 | > | getComAll(com,comVel); |
1555 | > | |
1556 | > | SimInfo::MoleculeIterator i; |
1557 | > | Molecule* mol; |
1558 | > | |
1559 | > | Vector3d thisr(0.0); |
1560 | > | Vector3d thisp(0.0); |
1561 | > | |
1562 | > | RealType thisMass; |
1563 | > | |
1564 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1565 | > | thisMass = mol->getMass(); |
1566 | > | thisr = mol->getCom()-com; |
1567 | > | thisp = (mol->getComVel()-comVel)*thisMass; |
1568 | > | |
1569 | > | angularMomentum += cross( thisr, thisp ); |
1570 | > | |
1571 | > | } |
1572 | > | |
1573 | > | #ifdef IS_MPI |
1574 | > | Vector3d tmpAngMom; |
1575 | > | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1576 | > | #endif |
1577 | > | |
1578 | > | return angularMomentum; |
1579 | > | } |
1580 | > | |
1581 | > | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1582 | > | return IOIndexToIntegrableObject.at(index); |
1583 | > | } |
1584 | > | |
1585 | > | void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1586 | > | IOIndexToIntegrableObject= v; |
1587 | > | } |
1588 | > | |
1589 | > | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1590 | > | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1591 | > | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1592 | > | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1593 | > | */ |
1594 | > | void SimInfo::getGyrationalVolume(RealType &volume){ |
1595 | > | Mat3x3d intTensor; |
1596 | > | RealType det; |
1597 | > | Vector3d dummyAngMom; |
1598 | > | RealType sysconstants; |
1599 | > | RealType geomCnst; |
1600 | > | |
1601 | > | geomCnst = 3.0/2.0; |
1602 | > | /* Get the inertial tensor and angular momentum for free*/ |
1603 | > | getInertiaTensor(intTensor,dummyAngMom); |
1604 | > | |
1605 | > | det = intTensor.determinant(); |
1606 | > | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1607 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1608 | > | return; |
1609 | > | } |
1610 | > | |
1611 | > | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1612 | > | Mat3x3d intTensor; |
1613 | > | Vector3d dummyAngMom; |
1614 | > | RealType sysconstants; |
1615 | > | RealType geomCnst; |
1616 | > | |
1617 | > | geomCnst = 3.0/2.0; |
1618 | > | /* Get the inertial tensor and angular momentum for free*/ |
1619 | > | getInertiaTensor(intTensor,dummyAngMom); |
1620 | > | |
1621 | > | detI = intTensor.determinant(); |
1622 | > | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1623 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1624 | > | return; |
1625 | > | } |
1626 | > | /* |
1627 | > | void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1628 | > | assert( v.size() == nAtoms_ + nRigidBodies_); |
1629 | > | sdByGlobalIndex_ = v; |
1630 | > | } |
1631 | > | |
1632 | > | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1633 | > | //assert(index < nAtoms_ + nRigidBodies_); |
1634 | > | return sdByGlobalIndex_.at(index); |
1635 | > | } |
1636 | > | */ |
1637 | > | }//end namespace OpenMD |
1638 | > |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |