# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | ||
43 | /** | |
# | Line 54 | Line 55 | |
55 | #include "math/Vector3.hpp" | |
56 | #include "primitives/Molecule.hpp" | |
57 | #include "primitives/StuntDouble.hpp" | |
57 | – | #include "UseTheForce/fCutoffPolicy.h" |
58 | – | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
59 | – | #include "UseTheForce/doForces_interface.h" |
60 | – | #include "UseTheForce/DarkSide/neighborLists_interface.h" |
61 | – | #include "UseTheForce/DarkSide/switcheroo_interface.h" |
58 | #include "utils/MemoryUtils.hpp" | |
59 | #include "utils/simError.h" | |
60 | #include "selection/SelectionManager.hpp" | |
61 | #include "io/ForceFieldOptions.hpp" | |
62 | < | #include "UseTheForce/ForceField.hpp" |
63 | < | |
68 | < | |
62 | > | #include "brains/ForceField.hpp" |
63 | > | #include "nonbonded/SwitchingFunction.hpp" |
64 | #ifdef IS_MPI | |
65 | < | #include "UseTheForce/mpiComponentPlan.h" |
66 | < | #include "UseTheForce/DarkSide/simParallel_interface.h" |
72 | < | #endif |
65 | > | #include <mpi.h> |
66 | > | #endif |
67 | ||
68 | + | using namespace std; |
69 | namespace OpenMD { | |
75 | – | std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
76 | – | std::map<int, std::set<int> >::iterator i = container.find(index); |
77 | – | std::set<int> result; |
78 | – | if (i != container.end()) { |
79 | – | result = i->second; |
80 | – | } |
81 | – | |
82 | – | return result; |
83 | – | } |
70 | ||
71 | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | |
72 | forceField_(ff), simParams_(simParams), | |
73 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | |
74 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | |
75 | < | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), | |
77 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | |
78 | < | nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
79 | < | calcBoxDipole_(false), useAtomicVirial_(true) { |
80 | < | |
81 | < | |
82 | < | MoleculeStamp* molStamp; |
83 | < | int nMolWithSameStamp; |
84 | < | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
85 | < | int nGroups = 0; //total cutoff groups defined in meta-data file |
86 | < | CutoffGroupStamp* cgStamp; |
87 | < | RigidBodyStamp* rbStamp; |
88 | < | int nRigidAtoms = 0; |
89 | < | |
90 | < | std::vector<Component*> components = simParams->getComponents(); |
78 | > | nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 | > | calcBoxDipole_(false), useAtomicVirial_(true) { |
80 | > | |
81 | > | MoleculeStamp* molStamp; |
82 | > | int nMolWithSameStamp; |
83 | > | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 | > | int nGroups = 0; //total cutoff groups defined in meta-data file |
85 | > | CutoffGroupStamp* cgStamp; |
86 | > | RigidBodyStamp* rbStamp; |
87 | > | int nRigidAtoms = 0; |
88 | > | |
89 | > | vector<Component*> components = simParams->getComponents(); |
90 | > | |
91 | > | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
92 | > | molStamp = (*i)->getMoleculeStamp(); |
93 | > | nMolWithSameStamp = (*i)->getNMol(); |
94 | ||
95 | < | for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
96 | < | molStamp = (*i)->getMoleculeStamp(); |
97 | < | nMolWithSameStamp = (*i)->getNMol(); |
98 | < | |
99 | < | addMoleculeStamp(molStamp, nMolWithSameStamp); |
100 | < | |
101 | < | //calculate atoms in molecules |
102 | < | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
103 | < | |
104 | < | //calculate atoms in cutoff groups |
105 | < | int nAtomsInGroups = 0; |
106 | < | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
118 | < | |
119 | < | for (int j=0; j < nCutoffGroupsInStamp; j++) { |
120 | < | cgStamp = molStamp->getCutoffGroupStamp(j); |
121 | < | nAtomsInGroups += cgStamp->getNMembers(); |
122 | < | } |
123 | < | |
124 | < | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
125 | < | |
126 | < | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
127 | < | |
128 | < | //calculate atoms in rigid bodies |
129 | < | int nAtomsInRigidBodies = 0; |
130 | < | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
131 | < | |
132 | < | for (int j=0; j < nRigidBodiesInStamp; j++) { |
133 | < | rbStamp = molStamp->getRigidBodyStamp(j); |
134 | < | nAtomsInRigidBodies += rbStamp->getNMembers(); |
135 | < | } |
136 | < | |
137 | < | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
138 | < | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
139 | < | |
95 | > | addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 | > | |
97 | > | //calculate atoms in molecules |
98 | > | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 | > | |
100 | > | //calculate atoms in cutoff groups |
101 | > | int nAtomsInGroups = 0; |
102 | > | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
103 | > | |
104 | > | for (int j=0; j < nCutoffGroupsInStamp; j++) { |
105 | > | cgStamp = molStamp->getCutoffGroupStamp(j); |
106 | > | nAtomsInGroups += cgStamp->getNMembers(); |
107 | } | |
108 | < | |
109 | < | //every free atom (atom does not belong to cutoff groups) is a cutoff |
110 | < | //group therefore the total number of cutoff groups in the system is |
111 | < | //equal to the total number of atoms minus number of atoms belong to |
112 | < | //cutoff group defined in meta-data file plus the number of cutoff |
113 | < | //groups defined in meta-data file |
114 | < | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
115 | < | |
116 | < | //every free atom (atom does not belong to rigid bodies) is an |
117 | < | //integrable object therefore the total number of integrable objects |
118 | < | //in the system is equal to the total number of atoms minus number of |
119 | < | //atoms belong to rigid body defined in meta-data file plus the number |
120 | < | //of rigid bodies defined in meta-data file |
121 | < | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
122 | < | + nGlobalRigidBodies_; |
123 | < | |
124 | < | nGlobalMols_ = molStampIds_.size(); |
158 | < | molToProcMap_.resize(nGlobalMols_); |
108 | > | |
109 | > | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
110 | > | |
111 | > | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
112 | > | |
113 | > | //calculate atoms in rigid bodies |
114 | > | int nAtomsInRigidBodies = 0; |
115 | > | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
116 | > | |
117 | > | for (int j=0; j < nRigidBodiesInStamp; j++) { |
118 | > | rbStamp = molStamp->getRigidBodyStamp(j); |
119 | > | nAtomsInRigidBodies += rbStamp->getNMembers(); |
120 | > | } |
121 | > | |
122 | > | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
123 | > | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
124 | > | |
125 | } | |
126 | + | |
127 | + | //every free atom (atom does not belong to cutoff groups) is a cutoff |
128 | + | //group therefore the total number of cutoff groups in the system is |
129 | + | //equal to the total number of atoms minus number of atoms belong to |
130 | + | //cutoff group defined in meta-data file plus the number of cutoff |
131 | + | //groups defined in meta-data file |
132 | ||
133 | + | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 | + | |
135 | + | //every free atom (atom does not belong to rigid bodies) is an |
136 | + | //integrable object therefore the total number of integrable objects |
137 | + | //in the system is equal to the total number of atoms minus number of |
138 | + | //atoms belong to rigid body defined in meta-data file plus the number |
139 | + | //of rigid bodies defined in meta-data file |
140 | + | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
141 | + | + nGlobalRigidBodies_; |
142 | + | |
143 | + | nGlobalMols_ = molStampIds_.size(); |
144 | + | molToProcMap_.resize(nGlobalMols_); |
145 | + | } |
146 | + | |
147 | SimInfo::~SimInfo() { | |
148 | < | std::map<int, Molecule*>::iterator i; |
148 | > | map<int, Molecule*>::iterator i; |
149 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | |
150 | delete i->second; | |
151 | } | |
# | Line 170 | Line 156 | namespace OpenMD { | |
156 | delete forceField_; | |
157 | } | |
158 | ||
173 | – | int SimInfo::getNGlobalConstraints() { |
174 | – | int nGlobalConstraints; |
175 | – | #ifdef IS_MPI |
176 | – | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
177 | – | MPI_COMM_WORLD); |
178 | – | #else |
179 | – | nGlobalConstraints = nConstraints_; |
180 | – | #endif |
181 | – | return nGlobalConstraints; |
182 | – | } |
159 | ||
160 | bool SimInfo::addMolecule(Molecule* mol) { | |
161 | MoleculeIterator i; | |
162 | < | |
162 | > | |
163 | i = molecules_.find(mol->getGlobalIndex()); | |
164 | if (i == molecules_.end() ) { | |
165 | < | |
166 | < | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
167 | < | |
165 | > | |
166 | > | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
167 | > | |
168 | nAtoms_ += mol->getNAtoms(); | |
169 | nBonds_ += mol->getNBonds(); | |
170 | nBends_ += mol->getNBends(); | |
# | Line 198 | Line 174 | namespace OpenMD { | |
174 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | |
175 | nCutoffGroups_ += mol->getNCutoffGroups(); | |
176 | nConstraints_ += mol->getNConstraintPairs(); | |
177 | < | |
177 | > | |
178 | addInteractionPairs(mol); | |
179 | < | |
179 | > | |
180 | return true; | |
181 | } else { | |
182 | return false; | |
183 | } | |
184 | } | |
185 | < | |
185 | > | |
186 | bool SimInfo::removeMolecule(Molecule* mol) { | |
187 | MoleculeIterator i; | |
188 | i = molecules_.find(mol->getGlobalIndex()); | |
# | Line 234 | Line 210 | namespace OpenMD { | |
210 | } else { | |
211 | return false; | |
212 | } | |
237 | – | |
238 | – | |
213 | } | |
214 | ||
215 | ||
# | Line 251 | Line 225 | namespace OpenMD { | |
225 | ||
226 | ||
227 | void SimInfo::calcNdf() { | |
228 | < | int ndf_local; |
228 | > | int ndf_local, nfq_local; |
229 | MoleculeIterator i; | |
230 | < | std::vector<StuntDouble*>::iterator j; |
230 | > | vector<StuntDouble*>::iterator j; |
231 | > | vector<Atom*>::iterator k; |
232 | > | |
233 | Molecule* mol; | |
234 | StuntDouble* integrableObject; | |
235 | + | Atom* atom; |
236 | ||
237 | ndf_local = 0; | |
238 | + | nfq_local = 0; |
239 | ||
240 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | |
241 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | |
# | Line 272 | Line 250 | namespace OpenMD { | |
250 | ndf_local += 3; | |
251 | } | |
252 | } | |
275 | – | |
253 | } | |
254 | + | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 | + | atom = mol->nextFluctuatingCharge(k)) { |
256 | + | if (atom->isFluctuatingCharge()) { |
257 | + | nfq_local++; |
258 | + | } |
259 | + | } |
260 | } | |
261 | ||
262 | // n_constraints is local, so subtract them on each processor | |
# | Line 281 | Line 264 | namespace OpenMD { | |
264 | ||
265 | #ifdef IS_MPI | |
266 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
267 | + | MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
268 | #else | |
269 | ndf_ = ndf_local; | |
270 | + | nGlobalFluctuatingCharges_ = nfq_local; |
271 | #endif | |
272 | ||
273 | // nZconstraints_ is global, as are the 3 COM translations for the | |
# | Line 298 | Line 283 | namespace OpenMD { | |
283 | fdf_ = fdf_local; | |
284 | #endif | |
285 | return fdf_; | |
286 | + | } |
287 | + | |
288 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ |
289 | + | int nLocalCutoffAtoms = 0; |
290 | + | Molecule* mol; |
291 | + | MoleculeIterator mi; |
292 | + | CutoffGroup* cg; |
293 | + | Molecule::CutoffGroupIterator ci; |
294 | + | |
295 | + | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
296 | + | |
297 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
298 | + | cg = mol->nextCutoffGroup(ci)) { |
299 | + | nLocalCutoffAtoms += cg->getNumAtom(); |
300 | + | |
301 | + | } |
302 | + | } |
303 | + | |
304 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
305 | } | |
306 | ||
307 | void SimInfo::calcNdfRaw() { | |
308 | int ndfRaw_local; | |
309 | ||
310 | MoleculeIterator i; | |
311 | < | std::vector<StuntDouble*>::iterator j; |
311 | > | vector<StuntDouble*>::iterator j; |
312 | Molecule* mol; | |
313 | StuntDouble* integrableObject; | |
314 | ||
# | Line 353 | Line 357 | namespace OpenMD { | |
357 | ||
358 | void SimInfo::addInteractionPairs(Molecule* mol) { | |
359 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | |
360 | < | std::vector<Bond*>::iterator bondIter; |
361 | < | std::vector<Bend*>::iterator bendIter; |
362 | < | std::vector<Torsion*>::iterator torsionIter; |
363 | < | std::vector<Inversion*>::iterator inversionIter; |
360 | > | vector<Bond*>::iterator bondIter; |
361 | > | vector<Bend*>::iterator bendIter; |
362 | > | vector<Torsion*>::iterator torsionIter; |
363 | > | vector<Inversion*>::iterator inversionIter; |
364 | Bond* bond; | |
365 | Bend* bend; | |
366 | Torsion* torsion; | |
# | Line 374 | Line 378 | namespace OpenMD { | |
378 | // always be excluded. These are done at the bottom of this | |
379 | // function. | |
380 | ||
381 | < | std::map<int, std::set<int> > atomGroups; |
381 | > | map<int, set<int> > atomGroups; |
382 | Molecule::RigidBodyIterator rbIter; | |
383 | RigidBody* rb; | |
384 | Molecule::IntegrableObjectIterator ii; | |
# | Line 386 | Line 390 | namespace OpenMD { | |
390 | ||
391 | if (integrableObject->isRigidBody()) { | |
392 | rb = static_cast<RigidBody*>(integrableObject); | |
393 | < | std::vector<Atom*> atoms = rb->getAtoms(); |
394 | < | std::set<int> rigidAtoms; |
393 | > | vector<Atom*> atoms = rb->getAtoms(); |
394 | > | set<int> rigidAtoms; |
395 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
396 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | |
397 | } | |
398 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
399 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
399 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
400 | } | |
401 | } else { | |
402 | < | std::set<int> oneAtomSet; |
402 | > | set<int> oneAtomSet; |
403 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | |
404 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
404 | > | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
405 | } | |
406 | } | |
407 | ||
# | Line 500 | Line 504 | namespace OpenMD { | |
504 | ||
505 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | |
506 | rb = mol->nextRigidBody(rbIter)) { | |
507 | < | std::vector<Atom*> atoms = rb->getAtoms(); |
507 | > | vector<Atom*> atoms = rb->getAtoms(); |
508 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | |
509 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | |
510 | a = atoms[i]->getGlobalIndex(); | |
# | Line 514 | Line 518 | namespace OpenMD { | |
518 | ||
519 | void SimInfo::removeInteractionPairs(Molecule* mol) { | |
520 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | |
521 | < | std::vector<Bond*>::iterator bondIter; |
522 | < | std::vector<Bend*>::iterator bendIter; |
523 | < | std::vector<Torsion*>::iterator torsionIter; |
524 | < | std::vector<Inversion*>::iterator inversionIter; |
521 | > | vector<Bond*>::iterator bondIter; |
522 | > | vector<Bend*>::iterator bendIter; |
523 | > | vector<Torsion*>::iterator torsionIter; |
524 | > | vector<Inversion*>::iterator inversionIter; |
525 | Bond* bond; | |
526 | Bend* bend; | |
527 | Torsion* torsion; | |
# | Line 527 | Line 531 | namespace OpenMD { | |
531 | int c; | |
532 | int d; | |
533 | ||
534 | < | std::map<int, std::set<int> > atomGroups; |
534 | > | map<int, set<int> > atomGroups; |
535 | Molecule::RigidBodyIterator rbIter; | |
536 | RigidBody* rb; | |
537 | Molecule::IntegrableObjectIterator ii; | |
# | Line 539 | Line 543 | namespace OpenMD { | |
543 | ||
544 | if (integrableObject->isRigidBody()) { | |
545 | rb = static_cast<RigidBody*>(integrableObject); | |
546 | < | std::vector<Atom*> atoms = rb->getAtoms(); |
547 | < | std::set<int> rigidAtoms; |
546 | > | vector<Atom*> atoms = rb->getAtoms(); |
547 | > | set<int> rigidAtoms; |
548 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
549 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | |
550 | } | |
551 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
552 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
552 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
553 | } | |
554 | } else { | |
555 | < | std::set<int> oneAtomSet; |
555 | > | set<int> oneAtomSet; |
556 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | |
557 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
557 | > | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
558 | } | |
559 | } | |
560 | ||
# | Line 653 | Line 657 | namespace OpenMD { | |
657 | ||
658 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | |
659 | rb = mol->nextRigidBody(rbIter)) { | |
660 | < | std::vector<Atom*> atoms = rb->getAtoms(); |
660 | > | vector<Atom*> atoms = rb->getAtoms(); |
661 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | |
662 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | |
663 | a = atoms[i]->getGlobalIndex(); | |
# | Line 676 | Line 680 | namespace OpenMD { | |
680 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | |
681 | } | |
682 | ||
679 | – | void SimInfo::update() { |
683 | ||
684 | < | setupSimType(); |
685 | < | |
686 | < | #ifdef IS_MPI |
687 | < | setupFortranParallel(); |
688 | < | #endif |
689 | < | |
690 | < | setupFortranSim(); |
691 | < | |
692 | < | //setup fortran force field |
690 | < | /** @deprecate */ |
691 | < | int isError = 0; |
692 | < | |
693 | < | setupCutoff(); |
694 | < | |
695 | < | setupElectrostaticSummationMethod( isError ); |
696 | < | setupSwitchingFunction(); |
697 | < | setupAccumulateBoxDipole(); |
698 | < | |
699 | < | if(isError){ |
700 | < | sprintf( painCave.errMsg, |
701 | < | "ForceField error: There was an error initializing the forceField in fortran.\n" ); |
702 | < | painCave.isFatal = 1; |
703 | < | simError(); |
704 | < | } |
705 | < | |
684 | > | /** |
685 | > | * update |
686 | > | * |
687 | > | * Performs the global checks and variable settings after the |
688 | > | * objects have been created. |
689 | > | * |
690 | > | */ |
691 | > | void SimInfo::update() { |
692 | > | setupSimVariables(); |
693 | calcNdf(); | |
694 | calcNdfRaw(); | |
695 | calcNdfTrans(); | |
709 | – | |
710 | – | fortranInitialized_ = true; |
696 | } | |
697 | < | |
698 | < | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
697 | > | |
698 | > | /** |
699 | > | * getSimulatedAtomTypes |
700 | > | * |
701 | > | * Returns an STL set of AtomType* that are actually present in this |
702 | > | * simulation. Must query all processors to assemble this information. |
703 | > | * |
704 | > | */ |
705 | > | set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
706 | SimInfo::MoleculeIterator mi; | |
707 | Molecule* mol; | |
708 | Molecule::AtomIterator ai; | |
709 | Atom* atom; | |
710 | < | std::set<AtomType*> atomTypes; |
711 | < | |
710 | > | set<AtomType*> atomTypes; |
711 | > | |
712 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
713 | < | |
714 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
713 | > | for(atom = mol->beginAtom(ai); atom != NULL; |
714 | > | atom = mol->nextAtom(ai)) { |
715 | atomTypes.insert(atom->getAtomType()); | |
716 | < | } |
717 | < | |
718 | < | } |
716 | > | } |
717 | > | } |
718 | > | |
719 | > | #ifdef IS_MPI |
720 | ||
721 | < | return atomTypes; |
722 | < | } |
730 | < | |
731 | < | void SimInfo::setupSimType() { |
732 | < | std::set<AtomType*>::iterator i; |
733 | < | std::set<AtomType*> atomTypes; |
734 | < | atomTypes = getUniqueAtomTypes(); |
721 | > | // loop over the found atom types on this processor, and add their |
722 | > | // numerical idents to a vector: |
723 | ||
724 | < | int useLennardJones = 0; |
725 | < | int useElectrostatic = 0; |
726 | < | int useEAM = 0; |
727 | < | int useSC = 0; |
740 | < | int useCharge = 0; |
741 | < | int useDirectional = 0; |
742 | < | int useDipole = 0; |
743 | < | int useGayBerne = 0; |
744 | < | int useSticky = 0; |
745 | < | int useStickyPower = 0; |
746 | < | int useShape = 0; |
747 | < | int useFLARB = 0; //it is not in AtomType yet |
748 | < | int useDirectionalAtom = 0; |
749 | < | int useElectrostatics = 0; |
750 | < | //usePBC and useRF are from simParams |
751 | < | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
752 | < | int useRF; |
753 | < | int useSF; |
754 | < | int useSP; |
755 | < | int useBoxDipole; |
724 | > | vector<int> foundTypes; |
725 | > | set<AtomType*>::iterator i; |
726 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
727 | > | foundTypes.push_back( (*i)->getIdent() ); |
728 | ||
729 | < | std::string myMethod; |
729 | > | // count_local holds the number of found types on this processor |
730 | > | int count_local = foundTypes.size(); |
731 | ||
732 | < | // set the useRF logical |
760 | < | useRF = 0; |
761 | < | useSF = 0; |
762 | < | useSP = 0; |
763 | < | useBoxDipole = 0; |
732 | > | int nproc = MPI::COMM_WORLD.Get_size(); |
733 | ||
734 | + | // we need arrays to hold the counts and displacement vectors for |
735 | + | // all processors |
736 | + | vector<int> counts(nproc, 0); |
737 | + | vector<int> disps(nproc, 0); |
738 | ||
739 | < | if (simParams_->haveElectrostaticSummationMethod()) { |
740 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
741 | < | toUpper(myMethod); |
742 | < | if (myMethod == "REACTION_FIELD"){ |
743 | < | useRF = 1; |
744 | < | } else if (myMethod == "SHIFTED_FORCE"){ |
745 | < | useSF = 1; |
746 | < | } else if (myMethod == "SHIFTED_POTENTIAL"){ |
747 | < | useSP = 1; |
748 | < | } |
739 | > | // fill the counts array |
740 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
741 | > | 1, MPI::INT); |
742 | > | |
743 | > | // use the processor counts to compute the displacement array |
744 | > | disps[0] = 0; |
745 | > | int totalCount = counts[0]; |
746 | > | for (int iproc = 1; iproc < nproc; iproc++) { |
747 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
748 | > | totalCount += counts[iproc]; |
749 | } | |
750 | + | |
751 | + | // we need a (possibly redundant) set of all found types: |
752 | + | vector<int> ftGlobal(totalCount); |
753 | ||
754 | < | if (simParams_->haveAccumulateBoxDipole()) |
755 | < | if (simParams_->getAccumulateBoxDipole()) |
756 | < | useBoxDipole = 1; |
754 | > | // now spray out the foundTypes to all the other processors: |
755 | > | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
756 | > | &ftGlobal[0], &counts[0], &disps[0], |
757 | > | MPI::INT); |
758 | ||
759 | < | useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
759 | > | vector<int>::iterator j; |
760 | ||
761 | < | //loop over all of the atom types |
762 | < | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
763 | < | useLennardJones |= (*i)->isLennardJones(); |
787 | < | useElectrostatic |= (*i)->isElectrostatic(); |
788 | < | useEAM |= (*i)->isEAM(); |
789 | < | useSC |= (*i)->isSC(); |
790 | < | useCharge |= (*i)->isCharge(); |
791 | < | useDirectional |= (*i)->isDirectional(); |
792 | < | useDipole |= (*i)->isDipole(); |
793 | < | useGayBerne |= (*i)->isGayBerne(); |
794 | < | useSticky |= (*i)->isSticky(); |
795 | < | useStickyPower |= (*i)->isStickyPower(); |
796 | < | useShape |= (*i)->isShape(); |
797 | < | } |
761 | > | // foundIdents is a stl set, so inserting an already found ident |
762 | > | // will have no effect. |
763 | > | set<int> foundIdents; |
764 | ||
765 | < | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
766 | < | useDirectionalAtom = 1; |
767 | < | } |
765 | > | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
766 | > | foundIdents.insert((*j)); |
767 | > | |
768 | > | // now iterate over the foundIdents and get the actual atom types |
769 | > | // that correspond to these: |
770 | > | set<int>::iterator it; |
771 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
772 | > | atomTypes.insert( forceField_->getAtomType((*it)) ); |
773 | > | |
774 | > | #endif |
775 | ||
776 | < | if (useCharge || useDipole) { |
777 | < | useElectrostatics = 1; |
805 | < | } |
776 | > | return atomTypes; |
777 | > | } |
778 | ||
779 | + | void SimInfo::setupSimVariables() { |
780 | + | useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
781 | + | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
782 | + | calcBoxDipole_ = false; |
783 | + | if ( simParams_->haveAccumulateBoxDipole() ) |
784 | + | if ( simParams_->getAccumulateBoxDipole() ) { |
785 | + | calcBoxDipole_ = true; |
786 | + | } |
787 | + | |
788 | + | set<AtomType*>::iterator i; |
789 | + | set<AtomType*> atomTypes; |
790 | + | atomTypes = getSimulatedAtomTypes(); |
791 | + | int usesElectrostatic = 0; |
792 | + | int usesMetallic = 0; |
793 | + | int usesDirectional = 0; |
794 | + | int usesFluctuatingCharges = 0; |
795 | + | //loop over all of the atom types |
796 | + | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
797 | + | usesElectrostatic |= (*i)->isElectrostatic(); |
798 | + | usesMetallic |= (*i)->isMetal(); |
799 | + | usesDirectional |= (*i)->isDirectional(); |
800 | + | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
801 | + | } |
802 | + | |
803 | #ifdef IS_MPI | |
804 | int temp; | |
805 | + | temp = usesDirectional; |
806 | + | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
807 | + | |
808 | + | temp = usesMetallic; |
809 | + | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
810 | + | |
811 | + | temp = usesElectrostatic; |
812 | + | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 | ||
814 | < | temp = usePBC; |
815 | < | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
814 | > | temp = usesFluctuatingCharges; |
815 | > | MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 | > | #else |
817 | ||
818 | < | temp = useDirectionalAtom; |
819 | < | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 | > | usesDirectionalAtoms_ = usesDirectional; |
819 | > | usesMetallicAtoms_ = usesMetallic; |
820 | > | usesElectrostaticAtoms_ = usesElectrostatic; |
821 | > | usesFluctuatingCharges_ = usesFluctuatingCharges; |
822 | ||
823 | < | temp = useLennardJones; |
824 | < | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
823 | > | #endif |
824 | > | |
825 | > | requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
826 | > | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
827 | > | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
828 | > | } |
829 | ||
819 | – | temp = useElectrostatics; |
820 | – | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 | ||
831 | < | temp = useCharge; |
832 | < | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
831 | > | vector<int> SimInfo::getGlobalAtomIndices() { |
832 | > | SimInfo::MoleculeIterator mi; |
833 | > | Molecule* mol; |
834 | > | Molecule::AtomIterator ai; |
835 | > | Atom* atom; |
836 | ||
837 | < | temp = useDipole; |
826 | < | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
827 | < | |
828 | < | temp = useSticky; |
829 | < | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 | < | |
831 | < | temp = useStickyPower; |
832 | < | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
837 | > | vector<int> GlobalAtomIndices(getNAtoms(), 0); |
838 | ||
839 | < | temp = useGayBerne; |
840 | < | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
839 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
840 | > | |
841 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
842 | > | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
843 | > | } |
844 | > | } |
845 | > | return GlobalAtomIndices; |
846 | > | } |
847 | ||
837 | – | temp = useEAM; |
838 | – | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
848 | ||
849 | < | temp = useSC; |
850 | < | MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
851 | < | |
852 | < | temp = useShape; |
853 | < | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
849 | > | vector<int> SimInfo::getGlobalGroupIndices() { |
850 | > | SimInfo::MoleculeIterator mi; |
851 | > | Molecule* mol; |
852 | > | Molecule::CutoffGroupIterator ci; |
853 | > | CutoffGroup* cg; |
854 | ||
855 | < | temp = useFLARB; |
856 | < | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
857 | < | |
858 | < | temp = useRF; |
859 | < | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 | < | |
861 | < | temp = useSF; |
862 | < | MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 | < | |
864 | < | temp = useSP; |
865 | < | MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
866 | < | |
858 | < | temp = useBoxDipole; |
859 | < | MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 | < | |
861 | < | temp = useAtomicVirial_; |
862 | < | MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 | < | |
864 | < | #endif |
865 | < | |
866 | < | fInfo_.SIM_uses_PBC = usePBC; |
867 | < | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
868 | < | fInfo_.SIM_uses_LennardJones = useLennardJones; |
869 | < | fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
870 | < | fInfo_.SIM_uses_Charges = useCharge; |
871 | < | fInfo_.SIM_uses_Dipoles = useDipole; |
872 | < | fInfo_.SIM_uses_Sticky = useSticky; |
873 | < | fInfo_.SIM_uses_StickyPower = useStickyPower; |
874 | < | fInfo_.SIM_uses_GayBerne = useGayBerne; |
875 | < | fInfo_.SIM_uses_EAM = useEAM; |
876 | < | fInfo_.SIM_uses_SC = useSC; |
877 | < | fInfo_.SIM_uses_Shapes = useShape; |
878 | < | fInfo_.SIM_uses_FLARB = useFLARB; |
879 | < | fInfo_.SIM_uses_RF = useRF; |
880 | < | fInfo_.SIM_uses_SF = useSF; |
881 | < | fInfo_.SIM_uses_SP = useSP; |
882 | < | fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
883 | < | fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
855 | > | vector<int> GlobalGroupIndices; |
856 | > | |
857 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
858 | > | |
859 | > | //local index of cutoff group is trivial, it only depends on the |
860 | > | //order of travesing |
861 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
862 | > | cg = mol->nextCutoffGroup(ci)) { |
863 | > | GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
864 | > | } |
865 | > | } |
866 | > | return GlobalGroupIndices; |
867 | } | |
868 | ||
869 | < | void SimInfo::setupFortranSim() { |
870 | < | int isError; |
869 | > | |
870 | > | void SimInfo::prepareTopology() { |
871 | int nExclude, nOneTwo, nOneThree, nOneFour; | |
889 | – | std::vector<int> fortranGlobalGroupMembership; |
890 | – | |
891 | – | isError = 0; |
872 | ||
893 | – | //globalGroupMembership_ is filled by SimCreator |
894 | – | for (int i = 0; i < nGlobalAtoms_; i++) { |
895 | – | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
896 | – | } |
897 | – | |
873 | //calculate mass ratio of cutoff group | |
899 | – | std::vector<RealType> mfact; |
874 | SimInfo::MoleculeIterator mi; | |
875 | Molecule* mol; | |
876 | Molecule::CutoffGroupIterator ci; | |
# | Line 905 | Line 879 | namespace OpenMD { | |
879 | Atom* atom; | |
880 | RealType totalMass; | |
881 | ||
882 | < | //to avoid memory reallocation, reserve enough space for mfact |
883 | < | mfact.reserve(getNCutoffGroups()); |
882 | > | /** |
883 | > | * The mass factor is the relative mass of an atom to the total |
884 | > | * mass of the cutoff group it belongs to. By default, all atoms |
885 | > | * are their own cutoff groups, and therefore have mass factors of |
886 | > | * 1. We need some special handling for massless atoms, which |
887 | > | * will be treated as carrying the entire mass of the cutoff |
888 | > | * group. |
889 | > | */ |
890 | > | massFactors_.clear(); |
891 | > | massFactors_.resize(getNAtoms(), 1.0); |
892 | ||
893 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
894 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
894 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
895 | > | cg = mol->nextCutoffGroup(ci)) { |
896 | ||
897 | totalMass = cg->getMass(); | |
898 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
899 | // Check for massless groups - set mfact to 1 if true | |
900 | < | if (totalMass != 0) |
901 | < | mfact.push_back(atom->getMass()/totalMass); |
900 | > | if (totalMass != 0) |
901 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
902 | else | |
903 | < | mfact.push_back( 1.0 ); |
903 | > | massFactors_[atom->getLocalIndex()] = 1.0; |
904 | } | |
905 | } | |
906 | } | |
907 | ||
908 | < | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
926 | < | std::vector<int> identArray; |
908 | > | // Build the identArray_ |
909 | ||
910 | < | //to avoid memory reallocation, reserve enough space identArray |
911 | < | identArray.reserve(getNAtoms()); |
930 | < | |
910 | > | identArray_.clear(); |
911 | > | identArray_.reserve(getNAtoms()); |
912 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
913 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | |
914 | < | identArray.push_back(atom->getIdent()); |
914 | > | identArray_.push_back(atom->getIdent()); |
915 | } | |
916 | } | |
936 | – | |
937 | – | //fill molMembershipArray |
938 | – | //molMembershipArray is filled by SimCreator |
939 | – | std::vector<int> molMembershipArray(nGlobalAtoms_); |
940 | – | for (int i = 0; i < nGlobalAtoms_; i++) { |
941 | – | molMembershipArray[i] = globalMolMembership_[i] + 1; |
942 | – | } |
917 | ||
918 | < | //setup fortran simulation |
918 | > | //scan topology |
919 | ||
920 | nExclude = excludedInteractions_.getSize(); | |
921 | nOneTwo = oneTwoInteractions_.getSize(); | |
# | Line 953 | Line 927 | namespace OpenMD { | |
927 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
928 | int* oneFourList = oneFourInteractions_.getPairList(); | |
929 | ||
930 | < | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
957 | < | &nExclude, excludeList, |
958 | < | &nOneTwo, oneTwoList, |
959 | < | &nOneThree, oneThreeList, |
960 | < | &nOneFour, oneFourList, |
961 | < | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
962 | < | &fortranGlobalGroupMembership[0], &isError); |
963 | < | |
964 | < | if( isError ){ |
965 | < | |
966 | < | sprintf( painCave.errMsg, |
967 | < | "There was an error setting the simulation information in fortran.\n" ); |
968 | < | painCave.isFatal = 1; |
969 | < | painCave.severity = OPENMD_ERROR; |
970 | < | simError(); |
971 | < | } |
972 | < | |
973 | < | |
974 | < | sprintf( checkPointMsg, |
975 | < | "succesfully sent the simulation information to fortran.\n"); |
976 | < | |
977 | < | errorCheckPoint(); |
978 | < | |
979 | < | // Setup number of neighbors in neighbor list if present |
980 | < | if (simParams_->haveNeighborListNeighbors()) { |
981 | < | int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
982 | < | setNeighbors(&nlistNeighbors); |
983 | < | } |
984 | < | |
985 | < | |
986 | < | } |
987 | < | |
988 | < | |
989 | < | void SimInfo::setupFortranParallel() { |
990 | < | #ifdef IS_MPI |
991 | < | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
992 | < | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
993 | < | std::vector<int> localToGlobalCutoffGroupIndex; |
994 | < | SimInfo::MoleculeIterator mi; |
995 | < | Molecule::AtomIterator ai; |
996 | < | Molecule::CutoffGroupIterator ci; |
997 | < | Molecule* mol; |
998 | < | Atom* atom; |
999 | < | CutoffGroup* cg; |
1000 | < | mpiSimData parallelData; |
1001 | < | int isError; |
1002 | < | |
1003 | < | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1004 | < | |
1005 | < | //local index(index in DataStorge) of atom is important |
1006 | < | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1007 | < | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1008 | < | } |
1009 | < | |
1010 | < | //local index of cutoff group is trivial, it only depends on the order of travesing |
1011 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1012 | < | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1013 | < | } |
1014 | < | |
1015 | < | } |
1016 | < | |
1017 | < | //fill up mpiSimData struct |
1018 | < | parallelData.nMolGlobal = getNGlobalMolecules(); |
1019 | < | parallelData.nMolLocal = getNMolecules(); |
1020 | < | parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1021 | < | parallelData.nAtomsLocal = getNAtoms(); |
1022 | < | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1023 | < | parallelData.nGroupsLocal = getNCutoffGroups(); |
1024 | < | parallelData.myNode = worldRank; |
1025 | < | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1026 | < | |
1027 | < | //pass mpiSimData struct and index arrays to fortran |
1028 | < | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1029 | < | &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1030 | < | &localToGlobalCutoffGroupIndex[0], &isError); |
1031 | < | |
1032 | < | if (isError) { |
1033 | < | sprintf(painCave.errMsg, |
1034 | < | "mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1035 | < | painCave.isFatal = 1; |
1036 | < | simError(); |
1037 | < | } |
1038 | < | |
1039 | < | sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1040 | < | errorCheckPoint(); |
1041 | < | |
1042 | < | #endif |
1043 | < | } |
1044 | < | |
1045 | < | void SimInfo::setupCutoff() { |
1046 | < | |
1047 | < | ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
1048 | < | |
1049 | < | // Check the cutoff policy |
1050 | < | int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1051 | < | |
1052 | < | // Set LJ shifting bools to false |
1053 | < | ljsp_ = 0; |
1054 | < | ljsf_ = 0; |
1055 | < | |
1056 | < | std::string myPolicy; |
1057 | < | if (forceFieldOptions_.haveCutoffPolicy()){ |
1058 | < | myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1059 | < | }else if (simParams_->haveCutoffPolicy()) { |
1060 | < | myPolicy = simParams_->getCutoffPolicy(); |
1061 | < | } |
1062 | < | |
1063 | < | if (!myPolicy.empty()){ |
1064 | < | toUpper(myPolicy); |
1065 | < | if (myPolicy == "MIX") { |
1066 | < | cp = MIX_CUTOFF_POLICY; |
1067 | < | } else { |
1068 | < | if (myPolicy == "MAX") { |
1069 | < | cp = MAX_CUTOFF_POLICY; |
1070 | < | } else { |
1071 | < | if (myPolicy == "TRADITIONAL") { |
1072 | < | cp = TRADITIONAL_CUTOFF_POLICY; |
1073 | < | } else { |
1074 | < | // throw error |
1075 | < | sprintf( painCave.errMsg, |
1076 | < | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1077 | < | painCave.isFatal = 1; |
1078 | < | simError(); |
1079 | < | } |
1080 | < | } |
1081 | < | } |
1082 | < | } |
1083 | < | notifyFortranCutoffPolicy(&cp); |
1084 | < | |
1085 | < | // Check the Skin Thickness for neighborlists |
1086 | < | RealType skin; |
1087 | < | if (simParams_->haveSkinThickness()) { |
1088 | < | skin = simParams_->getSkinThickness(); |
1089 | < | notifyFortranSkinThickness(&skin); |
1090 | < | } |
1091 | < | |
1092 | < | // Check if the cutoff was set explicitly: |
1093 | < | if (simParams_->haveCutoffRadius()) { |
1094 | < | rcut_ = simParams_->getCutoffRadius(); |
1095 | < | if (simParams_->haveSwitchingRadius()) { |
1096 | < | rsw_ = simParams_->getSwitchingRadius(); |
1097 | < | } else { |
1098 | < | if (fInfo_.SIM_uses_Charges | |
1099 | < | fInfo_.SIM_uses_Dipoles | |
1100 | < | fInfo_.SIM_uses_RF) { |
1101 | < | |
1102 | < | rsw_ = 0.85 * rcut_; |
1103 | < | sprintf(painCave.errMsg, |
1104 | < | "SimCreator Warning: No value was set for the switchingRadius.\n" |
1105 | < | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1106 | < | "\tswitchingRadius = %f. for this simulation\n", rsw_); |
1107 | < | painCave.isFatal = 0; |
1108 | < | simError(); |
1109 | < | } else { |
1110 | < | rsw_ = rcut_; |
1111 | < | sprintf(painCave.errMsg, |
1112 | < | "SimCreator Warning: No value was set for the switchingRadius.\n" |
1113 | < | "\tOpenMD will use the same value as the cutoffRadius.\n" |
1114 | < | "\tswitchingRadius = %f. for this simulation\n", rsw_); |
1115 | < | painCave.isFatal = 0; |
1116 | < | simError(); |
1117 | < | } |
1118 | < | } |
1119 | < | |
1120 | < | if (simParams_->haveElectrostaticSummationMethod()) { |
1121 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1122 | < | toUpper(myMethod); |
1123 | < | |
1124 | < | if (myMethod == "SHIFTED_POTENTIAL") { |
1125 | < | ljsp_ = 1; |
1126 | < | } else if (myMethod == "SHIFTED_FORCE") { |
1127 | < | ljsf_ = 1; |
1128 | < | } |
1129 | < | } |
1130 | < | |
1131 | < | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1132 | < | |
1133 | < | } else { |
1134 | < | |
1135 | < | // For electrostatic atoms, we'll assume a large safe value: |
1136 | < | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1137 | < | sprintf(painCave.errMsg, |
1138 | < | "SimCreator Warning: No value was set for the cutoffRadius.\n" |
1139 | < | "\tOpenMD will use a default value of 15.0 angstroms" |
1140 | < | "\tfor the cutoffRadius.\n"); |
1141 | < | painCave.isFatal = 0; |
1142 | < | simError(); |
1143 | < | rcut_ = 15.0; |
1144 | < | |
1145 | < | if (simParams_->haveElectrostaticSummationMethod()) { |
1146 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1147 | < | toUpper(myMethod); |
1148 | < | |
1149 | < | // For the time being, we're tethering the LJ shifted behavior to the |
1150 | < | // electrostaticSummationMethod keyword options |
1151 | < | if (myMethod == "SHIFTED_POTENTIAL") { |
1152 | < | ljsp_ = 1; |
1153 | < | } else if (myMethod == "SHIFTED_FORCE") { |
1154 | < | ljsf_ = 1; |
1155 | < | } |
1156 | < | if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1157 | < | if (simParams_->haveSwitchingRadius()){ |
1158 | < | sprintf(painCave.errMsg, |
1159 | < | "SimInfo Warning: A value was set for the switchingRadius\n" |
1160 | < | "\teven though the electrostaticSummationMethod was\n" |
1161 | < | "\tset to %s\n", myMethod.c_str()); |
1162 | < | painCave.isFatal = 1; |
1163 | < | simError(); |
1164 | < | } |
1165 | < | } |
1166 | < | } |
1167 | < | |
1168 | < | if (simParams_->haveSwitchingRadius()){ |
1169 | < | rsw_ = simParams_->getSwitchingRadius(); |
1170 | < | } else { |
1171 | < | sprintf(painCave.errMsg, |
1172 | < | "SimCreator Warning: No value was set for switchingRadius.\n" |
1173 | < | "\tOpenMD will use a default value of\n" |
1174 | < | "\t0.85 * cutoffRadius for the switchingRadius\n"); |
1175 | < | painCave.isFatal = 0; |
1176 | < | simError(); |
1177 | < | rsw_ = 0.85 * rcut_; |
1178 | < | } |
1179 | < | |
1180 | < | Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_); |
1181 | < | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1182 | < | |
1183 | < | } else { |
1184 | < | // We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1185 | < | // We'll punt and let fortran figure out the cutoffs later. |
1186 | < | |
1187 | < | notifyFortranYouAreOnYourOwn(); |
1188 | < | |
1189 | < | } |
1190 | < | } |
930 | > | topologyDone_ = true; |
931 | } | |
932 | ||
1193 | – | void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1194 | – | |
1195 | – | int errorOut; |
1196 | – | ElectrostaticSummationMethod esm = NONE; |
1197 | – | ElectrostaticScreeningMethod sm = UNDAMPED; |
1198 | – | RealType alphaVal; |
1199 | – | RealType dielectric; |
1200 | – | |
1201 | – | errorOut = isError; |
1202 | – | |
1203 | – | if (simParams_->haveElectrostaticSummationMethod()) { |
1204 | – | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1205 | – | toUpper(myMethod); |
1206 | – | if (myMethod == "NONE") { |
1207 | – | esm = NONE; |
1208 | – | } else { |
1209 | – | if (myMethod == "SWITCHING_FUNCTION") { |
1210 | – | esm = SWITCHING_FUNCTION; |
1211 | – | } else { |
1212 | – | if (myMethod == "SHIFTED_POTENTIAL") { |
1213 | – | esm = SHIFTED_POTENTIAL; |
1214 | – | } else { |
1215 | – | if (myMethod == "SHIFTED_FORCE") { |
1216 | – | esm = SHIFTED_FORCE; |
1217 | – | } else { |
1218 | – | if (myMethod == "REACTION_FIELD") { |
1219 | – | esm = REACTION_FIELD; |
1220 | – | dielectric = simParams_->getDielectric(); |
1221 | – | if (!simParams_->haveDielectric()) { |
1222 | – | // throw warning |
1223 | – | sprintf( painCave.errMsg, |
1224 | – | "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1225 | – | "\tA default value of %f will be used for the dielectric.\n", dielectric); |
1226 | – | painCave.isFatal = 0; |
1227 | – | simError(); |
1228 | – | } |
1229 | – | } else { |
1230 | – | // throw error |
1231 | – | sprintf( painCave.errMsg, |
1232 | – | "SimInfo error: Unknown electrostaticSummationMethod.\n" |
1233 | – | "\t(Input file specified %s .)\n" |
1234 | – | "\telectrostaticSummationMethod must be one of: \"none\",\n" |
1235 | – | "\t\"shifted_potential\", \"shifted_force\", or \n" |
1236 | – | "\t\"reaction_field\".\n", myMethod.c_str() ); |
1237 | – | painCave.isFatal = 1; |
1238 | – | simError(); |
1239 | – | } |
1240 | – | } |
1241 | – | } |
1242 | – | } |
1243 | – | } |
1244 | – | } |
1245 | – | |
1246 | – | if (simParams_->haveElectrostaticScreeningMethod()) { |
1247 | – | std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1248 | – | toUpper(myScreen); |
1249 | – | if (myScreen == "UNDAMPED") { |
1250 | – | sm = UNDAMPED; |
1251 | – | } else { |
1252 | – | if (myScreen == "DAMPED") { |
1253 | – | sm = DAMPED; |
1254 | – | if (!simParams_->haveDampingAlpha()) { |
1255 | – | // first set a cutoff dependent alpha value |
1256 | – | // we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1257 | – | alphaVal = 0.5125 - rcut_* 0.025; |
1258 | – | // for values rcut > 20.5, alpha is zero |
1259 | – | if (alphaVal < 0) alphaVal = 0; |
1260 | – | |
1261 | – | // throw warning |
1262 | – | sprintf( painCave.errMsg, |
1263 | – | "SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1264 | – | "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1265 | – | painCave.isFatal = 0; |
1266 | – | simError(); |
1267 | – | } else { |
1268 | – | alphaVal = simParams_->getDampingAlpha(); |
1269 | – | } |
1270 | – | |
1271 | – | } else { |
1272 | – | // throw error |
1273 | – | sprintf( painCave.errMsg, |
1274 | – | "SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1275 | – | "\t(Input file specified %s .)\n" |
1276 | – | "\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1277 | – | "or \"damped\".\n", myScreen.c_str() ); |
1278 | – | painCave.isFatal = 1; |
1279 | – | simError(); |
1280 | – | } |
1281 | – | } |
1282 | – | } |
1283 | – | |
1284 | – | |
1285 | – | Electrostatic::setElectrostaticSummationMethod( esm ); |
1286 | – | Electrostatic::setElectrostaticScreeningMethod( sm ); |
1287 | – | Electrostatic::setDampingAlpha( alphaVal ); |
1288 | – | Electrostatic::setReactionFieldDielectric( dielectric ); |
1289 | – | initFortranFF( &errorOut ); |
1290 | – | } |
1291 | – | |
1292 | – | void SimInfo::setupSwitchingFunction() { |
1293 | – | int ft = CUBIC; |
1294 | – | |
1295 | – | if (simParams_->haveSwitchingFunctionType()) { |
1296 | – | std::string funcType = simParams_->getSwitchingFunctionType(); |
1297 | – | toUpper(funcType); |
1298 | – | if (funcType == "CUBIC") { |
1299 | – | ft = CUBIC; |
1300 | – | } else { |
1301 | – | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1302 | – | ft = FIFTH_ORDER_POLY; |
1303 | – | } else { |
1304 | – | // throw error |
1305 | – | sprintf( painCave.errMsg, |
1306 | – | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1307 | – | painCave.isFatal = 1; |
1308 | – | simError(); |
1309 | – | } |
1310 | – | } |
1311 | – | } |
1312 | – | |
1313 | – | // send switching function notification to switcheroo |
1314 | – | setFunctionType(&ft); |
1315 | – | |
1316 | – | } |
1317 | – | |
1318 | – | void SimInfo::setupAccumulateBoxDipole() { |
1319 | – | |
1320 | – | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1321 | – | if ( simParams_->haveAccumulateBoxDipole() ) |
1322 | – | if ( simParams_->getAccumulateBoxDipole() ) { |
1323 | – | setAccumulateBoxDipole(); |
1324 | – | calcBoxDipole_ = true; |
1325 | – | } |
1326 | – | |
1327 | – | } |
1328 | – | |
933 | void SimInfo::addProperty(GenericData* genData) { | |
934 | properties_.addProperty(genData); | |
935 | } | |
936 | ||
937 | < | void SimInfo::removeProperty(const std::string& propName) { |
937 | > | void SimInfo::removeProperty(const string& propName) { |
938 | properties_.removeProperty(propName); | |
939 | } | |
940 | ||
# | Line 1338 | Line 942 | namespace OpenMD { | |
942 | properties_.clearProperties(); | |
943 | } | |
944 | ||
945 | < | std::vector<std::string> SimInfo::getPropertyNames() { |
945 | > | vector<string> SimInfo::getPropertyNames() { |
946 | return properties_.getPropertyNames(); | |
947 | } | |
948 | ||
949 | < | std::vector<GenericData*> SimInfo::getProperties() { |
949 | > | vector<GenericData*> SimInfo::getProperties() { |
950 | return properties_.getProperties(); | |
951 | } | |
952 | ||
953 | < | GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
953 | > | GenericData* SimInfo::getPropertyByName(const string& propName) { |
954 | return properties_.getPropertyByName(propName); | |
955 | } | |
956 | ||
# | Line 1360 | Line 964 | namespace OpenMD { | |
964 | Molecule* mol; | |
965 | RigidBody* rb; | |
966 | Atom* atom; | |
967 | + | CutoffGroup* cg; |
968 | SimInfo::MoleculeIterator mi; | |
969 | Molecule::RigidBodyIterator rbIter; | |
970 | < | Molecule::AtomIterator atomIter;; |
970 | > | Molecule::AtomIterator atomIter; |
971 | > | Molecule::CutoffGroupIterator cgIter; |
972 | ||
973 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
974 | ||
# | Line 1372 | Line 978 | namespace OpenMD { | |
978 | ||
979 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | |
980 | rb->setSnapshotManager(sman_); | |
981 | + | } |
982 | + | |
983 | + | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
984 | + | cg->setSnapshotManager(sman_); |
985 | } | |
986 | } | |
987 | ||
# | Line 1429 | Line 1039 | namespace OpenMD { | |
1039 | ||
1040 | } | |
1041 | ||
1042 | < | std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1042 | > | ostream& operator <<(ostream& o, SimInfo& info) { |
1043 | ||
1044 | return o; | |
1045 | } | |
# | Line 1472 | Line 1082 | namespace OpenMD { | |
1082 | ||
1083 | ||
1084 | [ Ixx -Ixy -Ixz ] | |
1085 | < | J =| -Iyx Iyy -Iyz | |
1085 | > | J =| -Iyx Iyy -Iyz | |
1086 | [ -Izx -Iyz Izz ] | |
1087 | */ | |
1088 | ||
# | Line 1579 | Line 1189 | namespace OpenMD { | |
1189 | return IOIndexToIntegrableObject.at(index); | |
1190 | } | |
1191 | ||
1192 | < | void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1192 | > | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1193 | IOIndexToIntegrableObject= v; | |
1194 | } | |
1195 | ||
# | Line 1601 | Line 1211 | namespace OpenMD { | |
1211 | ||
1212 | det = intTensor.determinant(); | |
1213 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1214 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1214 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1215 | return; | |
1216 | } | |
1217 | ||
# | Line 1617 | Line 1227 | namespace OpenMD { | |
1227 | ||
1228 | detI = intTensor.determinant(); | |
1229 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1230 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1230 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1231 | return; | |
1232 | } | |
1233 | /* | |
1234 | < | void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1234 | > | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1235 | assert( v.size() == nAtoms_ + nRigidBodies_); | |
1236 | sdByGlobalIndex_ = v; | |
1237 | } | |
# | Line 1631 | Line 1241 | namespace OpenMD { | |
1241 | return sdByGlobalIndex_.at(index); | |
1242 | } | |
1243 | */ | |
1244 | + | int SimInfo::getNGlobalConstraints() { |
1245 | + | int nGlobalConstraints; |
1246 | + | #ifdef IS_MPI |
1247 | + | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1248 | + | MPI_COMM_WORLD); |
1249 | + | #else |
1250 | + | nGlobalConstraints = nConstraints_; |
1251 | + | #endif |
1252 | + | return nGlobalConstraints; |
1253 | + | } |
1254 | + | |
1255 | }//end namespace OpenMD | |
1256 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |