# | Line 54 | Line 54 | |
---|---|---|
54 | #include "math/Vector3.hpp" | |
55 | #include "primitives/Molecule.hpp" | |
56 | #include "primitives/StuntDouble.hpp" | |
57 | – | #include "UseTheForce/fCutoffPolicy.h" |
58 | – | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
59 | – | #include "UseTheForce/doForces_interface.h" |
60 | – | #include "UseTheForce/DarkSide/neighborLists_interface.h" |
61 | – | #include "UseTheForce/DarkSide/switcheroo_interface.h" |
57 | #include "utils/MemoryUtils.hpp" | |
58 | #include "utils/simError.h" | |
59 | #include "selection/SelectionManager.hpp" | |
60 | #include "io/ForceFieldOptions.hpp" | |
61 | #include "UseTheForce/ForceField.hpp" | |
62 | < | #include "nonbonded/InteractionManager.hpp" |
62 | > | #include "nonbonded/SwitchingFunction.hpp" |
63 | ||
69 | – | |
70 | – | #ifdef IS_MPI |
71 | – | #include "UseTheForce/mpiComponentPlan.h" |
72 | – | #include "UseTheForce/DarkSide/simParallel_interface.h" |
73 | – | #endif |
74 | – | |
64 | using namespace std; | |
65 | namespace OpenMD { | |
66 | ||
# | Line 82 | Line 71 | namespace OpenMD { | |
71 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | |
72 | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), | |
73 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | |
74 | < | nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
74 | > | nConstraints_(0), sman_(NULL), topologyDone_(false), |
75 | calcBoxDipole_(false), useAtomicVirial_(true) { | |
76 | ||
77 | MoleculeStamp* molStamp; | |
# | Line 136 | Line 125 | namespace OpenMD { | |
125 | //equal to the total number of atoms minus number of atoms belong to | |
126 | //cutoff group defined in meta-data file plus the number of cutoff | |
127 | //groups defined in meta-data file | |
128 | + | std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 | + | std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 | + | std::cerr << "nG = " << nGroups << "\n"; |
131 | + | |
132 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | |
133 | + | |
134 | + | std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
135 | ||
136 | //every free atom (atom does not belong to rigid bodies) is an | |
137 | //integrable object therefore the total number of integrable objects | |
# | Line 656 | Line 651 | namespace OpenMD { | |
651 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | |
652 | } | |
653 | ||
659 | – | void SimInfo::update() { |
654 | ||
655 | < | setupSimType(); |
656 | < | setupCutoffRadius(); |
657 | < | setupSwitchingRadius(); |
658 | < | setupCutoffMethod(); |
659 | < | setupSkinThickness(); |
660 | < | setupSwitchingFunction(); |
661 | < | setupAccumulateBoxDipole(); |
662 | < | |
663 | < | #ifdef IS_MPI |
670 | < | setupFortranParallel(); |
671 | < | #endif |
672 | < | setupFortranSim(); |
673 | < | fortranInitialized_ = true; |
674 | < | |
655 | > | /** |
656 | > | * update |
657 | > | * |
658 | > | * Performs the global checks and variable settings after the |
659 | > | * objects have been created. |
660 | > | * |
661 | > | */ |
662 | > | void SimInfo::update() { |
663 | > | setupSimVariables(); |
664 | calcNdf(); | |
665 | calcNdfRaw(); | |
666 | calcNdfTrans(); | |
667 | } | |
668 | ||
669 | + | /** |
670 | + | * getSimulatedAtomTypes |
671 | + | * |
672 | + | * Returns an STL set of AtomType* that are actually present in this |
673 | + | * simulation. Must query all processors to assemble this information. |
674 | + | * |
675 | + | */ |
676 | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | |
677 | SimInfo::MoleculeIterator mi; | |
678 | Molecule* mol; | |
# | Line 689 | Line 685 | namespace OpenMD { | |
685 | atomTypes.insert(atom->getAtomType()); | |
686 | } | |
687 | } | |
692 | – | return atomTypes; |
693 | – | } |
694 | – | |
695 | – | /** |
696 | – | * setupCutoffRadius |
697 | – | * |
698 | – | * If the cutoffRadius was explicitly set, use that value. |
699 | – | * If the cutoffRadius was not explicitly set: |
700 | – | * Are there electrostatic atoms? Use 12.0 Angstroms. |
701 | – | * No electrostatic atoms? Poll the atom types present in the |
702 | – | * simulation for suggested cutoff values (e.g. 2.5 * sigma). |
703 | – | * Use the maximum suggested value that was found. |
704 | – | */ |
705 | – | void SimInfo::setupCutoffRadius() { |
706 | – | |
707 | – | if (simParams_->haveCutoffRadius()) { |
708 | – | cutoffRadius_ = simParams_->getCutoffRadius(); |
709 | – | } else { |
710 | – | if (usesElectrostaticAtoms_) { |
711 | – | sprintf(painCave.errMsg, |
712 | – | "SimInfo Warning: No value was set for the cutoffRadius.\n" |
713 | – | "\tOpenMD will use a default value of 12.0 angstroms" |
714 | – | "\tfor the cutoffRadius.\n"); |
715 | – | painCave.isFatal = 0; |
716 | – | simError(); |
717 | – | cutoffRadius_ = 12.0; |
718 | – | } else { |
719 | – | RealType thisCut; |
720 | – | set<AtomType*>::iterator i; |
721 | – | set<AtomType*> atomTypes; |
722 | – | atomTypes = getSimulatedAtomTypes(); |
723 | – | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
724 | – | thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
725 | – | cutoffRadius_ = max(thisCut, cutoffRadius_); |
726 | – | } |
727 | – | sprintf(painCave.errMsg, |
728 | – | "SimInfo Warning: No value was set for the cutoffRadius.\n" |
729 | – | "\tOpenMD will use %lf angstroms.\n", |
730 | – | cutoffRadius_); |
731 | – | painCave.isFatal = 0; |
732 | – | simError(); |
733 | – | } |
734 | – | } |
688 | ||
689 | < | InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
737 | < | } |
738 | < | |
739 | < | /** |
740 | < | * setupSwitchingRadius |
741 | < | * |
742 | < | * If the switchingRadius was explicitly set, use that value (but check it) |
743 | < | * If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
744 | < | */ |
745 | < | void SimInfo::setupSwitchingRadius() { |
746 | < | |
747 | < | if (simParams_->haveSwitchingRadius()) { |
748 | < | switchingRadius_ = simParams_->getSwitchingRadius(); |
749 | < | if (switchingRadius_ > cutoffRadius_) { |
750 | < | sprintf(painCave.errMsg, |
751 | < | "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
752 | < | switchingRadius_, cutoffRadius_); |
753 | < | painCave.isFatal = 1; |
754 | < | simError(); |
689 | > | #ifdef IS_MPI |
690 | ||
691 | < | } |
692 | < | } else { |
758 | < | switchingRadius_ = 0.85 * cutoffRadius_; |
759 | < | sprintf(painCave.errMsg, |
760 | < | "SimInfo Warning: No value was set for the switchingRadius.\n" |
761 | < | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
762 | < | "\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
763 | < | painCave.isFatal = 0; |
764 | < | simError(); |
765 | < | } |
766 | < | InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
767 | < | } |
691 | > | // loop over the found atom types on this processor, and add their |
692 | > | // numerical idents to a vector: |
693 | ||
694 | < | /** |
770 | < | * setupSkinThickness |
771 | < | * |
772 | < | * If the skinThickness was explicitly set, use that value (but check it) |
773 | < | * If the skinThickness was not explicitly set: use 1.0 angstroms |
774 | < | */ |
775 | < | void SimInfo::setupSkinThickness() { |
776 | < | if (simParams_->haveSkinThickness()) { |
777 | < | skinThickness_ = simParams_->getSkinThickness(); |
778 | < | } else { |
779 | < | skinThickness_ = 1.0; |
780 | < | sprintf(painCave.errMsg, |
781 | < | "SimInfo Warning: No value was set for the skinThickness.\n" |
782 | < | "\tOpenMD will use a default value of %f Angstroms\n" |
783 | < | "\tfor this simulation\n", skinThickness_); |
784 | < | painCave.isFatal = 0; |
785 | < | simError(); |
786 | < | } |
787 | < | } |
788 | < | |
789 | < | void SimInfo::setupSimType() { |
694 | > | vector<int> foundTypes; |
695 | set<AtomType*>::iterator i; | |
696 | < | set<AtomType*> atomTypes; |
697 | < | atomTypes = getSimulatedAtomTypes(); |
696 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
697 | > | foundTypes.push_back( (*i)->getIdent() ); |
698 | ||
699 | + | // count_local holds the number of found types on this processor |
700 | + | int count_local = foundTypes.size(); |
701 | + | |
702 | + | // count holds the total number of found types on all processors |
703 | + | // (some will be redundant with the ones found locally): |
704 | + | int count; |
705 | + | MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
706 | + | |
707 | + | // create a vector to hold the globally found types, and resize it: |
708 | + | vector<int> ftGlobal; |
709 | + | ftGlobal.resize(count); |
710 | + | vector<int> counts; |
711 | + | |
712 | + | int nproc = MPI::COMM_WORLD.Get_size(); |
713 | + | counts.resize(nproc); |
714 | + | vector<int> disps; |
715 | + | disps.resize(nproc); |
716 | + | |
717 | + | // now spray out the foundTypes to all the other processors: |
718 | + | |
719 | + | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
720 | + | &ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
721 | + | |
722 | + | // foundIdents is a stl set, so inserting an already found ident |
723 | + | // will have no effect. |
724 | + | set<int> foundIdents; |
725 | + | vector<int>::iterator j; |
726 | + | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
727 | + | foundIdents.insert((*j)); |
728 | + | |
729 | + | // now iterate over the foundIdents and get the actual atom types |
730 | + | // that correspond to these: |
731 | + | set<int>::iterator it; |
732 | + | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
733 | + | atomTypes.insert( forceField_->getAtomType((*it)) ); |
734 | + | |
735 | + | #endif |
736 | + | |
737 | + | return atomTypes; |
738 | + | } |
739 | + | |
740 | + | void SimInfo::setupSimVariables() { |
741 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | |
742 | + | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
743 | + | calcBoxDipole_ = false; |
744 | + | if ( simParams_->haveAccumulateBoxDipole() ) |
745 | + | if ( simParams_->getAccumulateBoxDipole() ) { |
746 | + | calcBoxDipole_ = true; |
747 | + | } |
748 | ||
749 | + | set<AtomType*>::iterator i; |
750 | + | set<AtomType*> atomTypes; |
751 | + | atomTypes = getSimulatedAtomTypes(); |
752 | int usesElectrostatic = 0; | |
753 | int usesMetallic = 0; | |
754 | int usesDirectional = 0; | |
# | Line 814 | Line 770 | namespace OpenMD { | |
770 | temp = usesElectrostatic; | |
771 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
772 | #endif | |
817 | – | fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
818 | – | fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
819 | – | fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
820 | – | fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
821 | – | fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
822 | – | fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
773 | } | |
774 | ||
825 | – | void SimInfo::setupFortranSim() { |
826 | – | int isError; |
827 | – | int nExclude, nOneTwo, nOneThree, nOneFour; |
828 | – | vector<int> fortranGlobalGroupMembership; |
829 | – | |
830 | – | notifyFortranSkinThickness(&skinThickness_); |
775 | ||
776 | < | int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
777 | < | int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
778 | < | notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
779 | < | |
780 | < | isError = 0; |
776 | > | vector<int> SimInfo::getGlobalAtomIndices() { |
777 | > | SimInfo::MoleculeIterator mi; |
778 | > | Molecule* mol; |
779 | > | Molecule::AtomIterator ai; |
780 | > | Atom* atom; |
781 | ||
782 | < | //globalGroupMembership_ is filled by SimCreator |
783 | < | for (int i = 0; i < nGlobalAtoms_; i++) { |
784 | < | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
782 | > | vector<int> GlobalAtomIndices(getNAtoms(), 0); |
783 | > | |
784 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
785 | > | |
786 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
787 | > | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
788 | > | } |
789 | } | |
790 | + | return GlobalAtomIndices; |
791 | + | } |
792 | ||
793 | + | |
794 | + | vector<int> SimInfo::getGlobalGroupIndices() { |
795 | + | SimInfo::MoleculeIterator mi; |
796 | + | Molecule* mol; |
797 | + | Molecule::CutoffGroupIterator ci; |
798 | + | CutoffGroup* cg; |
799 | + | |
800 | + | vector<int> GlobalGroupIndices; |
801 | + | |
802 | + | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
803 | + | |
804 | + | //local index of cutoff group is trivial, it only depends on the |
805 | + | //order of travesing |
806 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
807 | + | cg = mol->nextCutoffGroup(ci)) { |
808 | + | GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
809 | + | } |
810 | + | } |
811 | + | return GlobalGroupIndices; |
812 | + | } |
813 | + | |
814 | + | |
815 | + | void SimInfo::prepareTopology() { |
816 | + | int nExclude, nOneTwo, nOneThree, nOneFour; |
817 | + | |
818 | //calculate mass ratio of cutoff group | |
844 | – | vector<RealType> mfact; |
819 | SimInfo::MoleculeIterator mi; | |
820 | Molecule* mol; | |
821 | Molecule::CutoffGroupIterator ci; | |
# | Line 850 | Line 824 | namespace OpenMD { | |
824 | Atom* atom; | |
825 | RealType totalMass; | |
826 | ||
827 | < | //to avoid memory reallocation, reserve enough space for mfact |
828 | < | mfact.reserve(getNCutoffGroups()); |
827 | > | //to avoid memory reallocation, reserve enough space for massFactors_ |
828 | > | massFactors_.clear(); |
829 | > | massFactors_.reserve(getNCutoffGroups()); |
830 | ||
831 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
832 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
832 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
833 | > | cg = mol->nextCutoffGroup(ci)) { |
834 | ||
835 | totalMass = cg->getMass(); | |
836 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
837 | // Check for massless groups - set mfact to 1 if true | |
838 | if (totalMass != 0) | |
839 | < | mfact.push_back(atom->getMass()/totalMass); |
839 | > | massFactors_.push_back(atom->getMass()/totalMass); |
840 | else | |
841 | < | mfact.push_back( 1.0 ); |
841 | > | massFactors_.push_back( 1.0 ); |
842 | } | |
843 | } | |
844 | } | |
845 | ||
846 | < | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
871 | < | vector<int> identArray; |
846 | > | // Build the identArray_ |
847 | ||
848 | < | //to avoid memory reallocation, reserve enough space identArray |
849 | < | identArray.reserve(getNAtoms()); |
875 | < | |
848 | > | identArray_.clear(); |
849 | > | identArray_.reserve(getNAtoms()); |
850 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
851 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | |
852 | < | identArray.push_back(atom->getIdent()); |
852 | > | identArray_.push_back(atom->getIdent()); |
853 | } | |
854 | } | |
881 | – | |
882 | – | //fill molMembershipArray |
883 | – | //molMembershipArray is filled by SimCreator |
884 | – | vector<int> molMembershipArray(nGlobalAtoms_); |
885 | – | for (int i = 0; i < nGlobalAtoms_; i++) { |
886 | – | molMembershipArray[i] = globalMolMembership_[i] + 1; |
887 | – | } |
855 | ||
856 | < | //setup fortran simulation |
856 | > | //scan topology |
857 | ||
858 | nExclude = excludedInteractions_.getSize(); | |
859 | nOneTwo = oneTwoInteractions_.getSize(); | |
# | Line 898 | Line 865 | namespace OpenMD { | |
865 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
866 | int* oneFourList = oneFourInteractions_.getPairList(); | |
867 | ||
868 | < | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
869 | < | &nExclude, excludeList, |
870 | < | &nOneTwo, oneTwoList, |
871 | < | &nOneThree, oneThreeList, |
872 | < | &nOneFour, oneFourList, |
873 | < | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 | < | &fortranGlobalGroupMembership[0], &isError); |
868 | > | //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 | > | // &nExclude, excludeList, |
870 | > | // &nOneTwo, oneTwoList, |
871 | > | // &nOneThree, oneThreeList, |
872 | > | // &nOneFour, oneFourList, |
873 | > | // &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 | > | // &fortranGlobalGroupMembership[0], &isError); |
875 | ||
876 | < | if( isError ){ |
910 | < | |
911 | < | sprintf( painCave.errMsg, |
912 | < | "There was an error setting the simulation information in fortran.\n" ); |
913 | < | painCave.isFatal = 1; |
914 | < | painCave.severity = OPENMD_ERROR; |
915 | < | simError(); |
916 | < | } |
917 | < | |
918 | < | |
919 | < | sprintf( checkPointMsg, |
920 | < | "succesfully sent the simulation information to fortran.\n"); |
921 | < | |
922 | < | errorCheckPoint(); |
923 | < | |
924 | < | // Setup number of neighbors in neighbor list if present |
925 | < | if (simParams_->haveNeighborListNeighbors()) { |
926 | < | int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
927 | < | setNeighbors(&nlistNeighbors); |
928 | < | } |
929 | < | |
930 | < | |
931 | < | } |
932 | < | |
933 | < | |
934 | < | void SimInfo::setupFortranParallel() { |
935 | < | #ifdef IS_MPI |
936 | < | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
937 | < | vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
938 | < | vector<int> localToGlobalCutoffGroupIndex; |
939 | < | SimInfo::MoleculeIterator mi; |
940 | < | Molecule::AtomIterator ai; |
941 | < | Molecule::CutoffGroupIterator ci; |
942 | < | Molecule* mol; |
943 | < | Atom* atom; |
944 | < | CutoffGroup* cg; |
945 | < | mpiSimData parallelData; |
946 | < | int isError; |
947 | < | |
948 | < | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
949 | < | |
950 | < | //local index(index in DataStorge) of atom is important |
951 | < | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
952 | < | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
953 | < | } |
954 | < | |
955 | < | //local index of cutoff group is trivial, it only depends on the order of travesing |
956 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
957 | < | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
958 | < | } |
959 | < | |
960 | < | } |
961 | < | |
962 | < | //fill up mpiSimData struct |
963 | < | parallelData.nMolGlobal = getNGlobalMolecules(); |
964 | < | parallelData.nMolLocal = getNMolecules(); |
965 | < | parallelData.nAtomsGlobal = getNGlobalAtoms(); |
966 | < | parallelData.nAtomsLocal = getNAtoms(); |
967 | < | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
968 | < | parallelData.nGroupsLocal = getNCutoffGroups(); |
969 | < | parallelData.myNode = worldRank; |
970 | < | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
971 | < | |
972 | < | //pass mpiSimData struct and index arrays to fortran |
973 | < | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
974 | < | &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
975 | < | &localToGlobalCutoffGroupIndex[0], &isError); |
976 | < | |
977 | < | if (isError) { |
978 | < | sprintf(painCave.errMsg, |
979 | < | "mpiRefresh errror: fortran didn't like something we gave it.\n"); |
980 | < | painCave.isFatal = 1; |
981 | < | simError(); |
982 | < | } |
983 | < | |
984 | < | sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
985 | < | errorCheckPoint(); |
986 | < | |
987 | < | #endif |
988 | < | } |
989 | < | |
990 | < | |
991 | < | void SimInfo::setupSwitchingFunction() { |
992 | < | int ft = CUBIC; |
993 | < | |
994 | < | if (simParams_->haveSwitchingFunctionType()) { |
995 | < | string funcType = simParams_->getSwitchingFunctionType(); |
996 | < | toUpper(funcType); |
997 | < | if (funcType == "CUBIC") { |
998 | < | ft = CUBIC; |
999 | < | } else { |
1000 | < | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1001 | < | ft = FIFTH_ORDER_POLY; |
1002 | < | } else { |
1003 | < | // throw error |
1004 | < | sprintf( painCave.errMsg, |
1005 | < | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n" |
1006 | < | "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", |
1007 | < | funcType.c_str() ); |
1008 | < | painCave.isFatal = 1; |
1009 | < | simError(); |
1010 | < | } |
1011 | < | } |
1012 | < | } |
1013 | < | |
1014 | < | // send switching function notification to switcheroo |
1015 | < | setFunctionType(&ft); |
1016 | < | |
876 | > | topologyDone_ = true; |
877 | } | |
878 | ||
1019 | – | void SimInfo::setupAccumulateBoxDipole() { |
1020 | – | |
1021 | – | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1022 | – | if ( simParams_->haveAccumulateBoxDipole() ) |
1023 | – | if ( simParams_->getAccumulateBoxDipole() ) { |
1024 | – | calcBoxDipole_ = true; |
1025 | – | } |
1026 | – | |
1027 | – | } |
1028 | – | |
879 | void SimInfo::addProperty(GenericData* genData) { | |
880 | properties_.addProperty(genData); | |
881 | } | |
# | Line 1060 | Line 910 | namespace OpenMD { | |
910 | Molecule* mol; | |
911 | RigidBody* rb; | |
912 | Atom* atom; | |
913 | + | CutoffGroup* cg; |
914 | SimInfo::MoleculeIterator mi; | |
915 | Molecule::RigidBodyIterator rbIter; | |
916 | < | Molecule::AtomIterator atomIter;; |
916 | > | Molecule::AtomIterator atomIter; |
917 | > | Molecule::CutoffGroupIterator cgIter; |
918 | ||
919 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
920 | ||
# | Line 1073 | Line 925 | namespace OpenMD { | |
925 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | |
926 | rb->setSnapshotManager(sman_); | |
927 | } | |
928 | + | |
929 | + | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
930 | + | cg->setSnapshotManager(sman_); |
931 | + | } |
932 | } | |
933 | ||
934 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |