# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). | |
40 | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | |
41 | */ | |
# | Line 88 | Line 88 | namespace OpenMD { | |
88 | ||
89 | vector<Component*> components = simParams->getComponents(); | |
90 | ||
91 | < | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
91 | > | for (vector<Component*>::iterator i = components.begin(); |
92 | > | i !=components.end(); ++i) { |
93 | molStamp = (*i)->getMoleculeStamp(); | |
94 | nMolWithSameStamp = (*i)->getNMol(); | |
95 | ||
# | Line 231 | Line 232 | namespace OpenMD { | |
232 | vector<Atom*>::iterator k; | |
233 | ||
234 | Molecule* mol; | |
235 | < | StuntDouble* integrableObject; |
235 | > | StuntDouble* sd; |
236 | Atom* atom; | |
237 | ||
238 | ndf_local = 0; | |
239 | nfq_local = 0; | |
240 | ||
241 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | |
241 | – | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
242 | – | integrableObject = mol->nextIntegrableObject(j)) { |
242 | ||
243 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; |
244 | + | sd = mol->nextIntegrableObject(j)) { |
245 | + | |
246 | ndf_local += 3; | |
247 | ||
248 | < | if (integrableObject->isDirectional()) { |
249 | < | if (integrableObject->isLinear()) { |
248 | > | if (sd->isDirectional()) { |
249 | > | if (sd->isLinear()) { |
250 | ndf_local += 2; | |
251 | } else { | |
252 | ndf_local += 3; | |
253 | } | |
254 | } | |
255 | } | |
256 | + | |
257 | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; | |
258 | atom = mol->nextFluctuatingCharge(k)) { | |
259 | if (atom->isFluctuatingCharge()) { | |
# | Line 265 | Line 268 | namespace OpenMD { | |
268 | ndf_local -= nConstraints_; | |
269 | ||
270 | #ifdef IS_MPI | |
271 | < | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
272 | < | MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
271 | > | MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
272 | > | MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
273 | > | MPI::INT, MPI::SUM); |
274 | #else | |
275 | ndf_ = ndf_local; | |
276 | nGlobalFluctuatingCharges_ = nfq_local; | |
# | Line 280 | Line 284 | namespace OpenMD { | |
284 | ||
285 | int SimInfo::getFdf() { | |
286 | #ifdef IS_MPI | |
287 | < | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
287 | > | MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
288 | #else | |
289 | fdf_ = fdf_local; | |
290 | #endif | |
# | Line 312 | Line 316 | namespace OpenMD { | |
316 | MoleculeIterator i; | |
317 | vector<StuntDouble*>::iterator j; | |
318 | Molecule* mol; | |
319 | < | StuntDouble* integrableObject; |
319 | > | StuntDouble* sd; |
320 | ||
321 | // Raw degrees of freedom that we have to set | |
322 | ndfRaw_local = 0; | |
323 | ||
324 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | |
321 | – | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
322 | – | integrableObject = mol->nextIntegrableObject(j)) { |
325 | ||
326 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; |
327 | + | sd = mol->nextIntegrableObject(j)) { |
328 | + | |
329 | ndfRaw_local += 3; | |
330 | ||
331 | < | if (integrableObject->isDirectional()) { |
332 | < | if (integrableObject->isLinear()) { |
331 | > | if (sd->isDirectional()) { |
332 | > | if (sd->isLinear()) { |
333 | ndfRaw_local += 2; | |
334 | } else { | |
335 | ndfRaw_local += 3; | |
# | Line 335 | Line 340 | namespace OpenMD { | |
340 | } | |
341 | ||
342 | #ifdef IS_MPI | |
343 | < | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
343 | > | MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
344 | #else | |
345 | ndfRaw_ = ndfRaw_local; | |
346 | #endif | |
# | Line 348 | Line 353 | namespace OpenMD { | |
353 | ||
354 | ||
355 | #ifdef IS_MPI | |
356 | < | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
356 | > | MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
357 | > | MPI::INT, MPI::SUM); |
358 | #else | |
359 | ndfTrans_ = ndfTrans_local; | |
360 | #endif | |
# | Line 384 | Line 390 | namespace OpenMD { | |
390 | Molecule::RigidBodyIterator rbIter; | |
391 | RigidBody* rb; | |
392 | Molecule::IntegrableObjectIterator ii; | |
393 | < | StuntDouble* integrableObject; |
393 | > | StuntDouble* sd; |
394 | ||
395 | < | for (integrableObject = mol->beginIntegrableObject(ii); |
396 | < | integrableObject != NULL; |
391 | < | integrableObject = mol->nextIntegrableObject(ii)) { |
395 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
396 | > | sd = mol->nextIntegrableObject(ii)) { |
397 | ||
398 | < | if (integrableObject->isRigidBody()) { |
399 | < | rb = static_cast<RigidBody*>(integrableObject); |
398 | > | if (sd->isRigidBody()) { |
399 | > | rb = static_cast<RigidBody*>(sd); |
400 | vector<Atom*> atoms = rb->getAtoms(); | |
401 | set<int> rigidAtoms; | |
402 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
# | Line 402 | Line 407 | namespace OpenMD { | |
407 | } | |
408 | } else { | |
409 | set<int> oneAtomSet; | |
410 | < | oneAtomSet.insert(integrableObject->getGlobalIndex()); |
411 | < | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
410 | > | oneAtomSet.insert(sd->getGlobalIndex()); |
411 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
412 | } | |
413 | } | |
414 | ||
# | Line 537 | Line 542 | namespace OpenMD { | |
542 | Molecule::RigidBodyIterator rbIter; | |
543 | RigidBody* rb; | |
544 | Molecule::IntegrableObjectIterator ii; | |
545 | < | StuntDouble* integrableObject; |
545 | > | StuntDouble* sd; |
546 | ||
547 | < | for (integrableObject = mol->beginIntegrableObject(ii); |
548 | < | integrableObject != NULL; |
544 | < | integrableObject = mol->nextIntegrableObject(ii)) { |
547 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
548 | > | sd = mol->nextIntegrableObject(ii)) { |
549 | ||
550 | < | if (integrableObject->isRigidBody()) { |
551 | < | rb = static_cast<RigidBody*>(integrableObject); |
550 | > | if (sd->isRigidBody()) { |
551 | > | rb = static_cast<RigidBody*>(sd); |
552 | vector<Atom*> atoms = rb->getAtoms(); | |
553 | set<int> rigidAtoms; | |
554 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
# | Line 555 | Line 559 | namespace OpenMD { | |
559 | } | |
560 | } else { | |
561 | set<int> oneAtomSet; | |
562 | < | oneAtomSet.insert(integrableObject->getGlobalIndex()); |
563 | < | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
562 | > | oneAtomSet.insert(sd->getGlobalIndex()); |
563 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
564 | } | |
565 | } | |
566 | ||
# | Line 778 | Line 782 | namespace OpenMD { | |
782 | return atomTypes; | |
783 | } | |
784 | ||
785 | + | |
786 | + | int getGlobalCountOfType(AtomType* atype) { |
787 | + | /* |
788 | + | set<AtomType*> atypes = getSimulatedAtomTypes(); |
789 | + | map<AtomType*, int> counts_; |
790 | + | |
791 | + | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
792 | + | for(atom = mol->beginAtom(ai); atom != NULL; |
793 | + | atom = mol->nextAtom(ai)) { |
794 | + | atom->getAtomType(); |
795 | + | } |
796 | + | } |
797 | + | */ |
798 | + | return 0; |
799 | + | } |
800 | + | |
801 | void SimInfo::setupSimVariables() { | |
802 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | |
803 | < | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
803 | > | // we only call setAccumulateBoxDipole if the accumulateBoxDipole |
804 | > | // parameter is true |
805 | calcBoxDipole_ = false; | |
806 | if ( simParams_->haveAccumulateBoxDipole() ) | |
807 | if ( simParams_->getAccumulateBoxDipole() ) { | |
# | Line 790 | Line 811 | namespace OpenMD { | |
811 | set<AtomType*>::iterator i; | |
812 | set<AtomType*> atomTypes; | |
813 | atomTypes = getSimulatedAtomTypes(); | |
814 | < | int usesElectrostatic = 0; |
815 | < | int usesMetallic = 0; |
816 | < | int usesDirectional = 0; |
817 | < | int usesFluctuatingCharges = 0; |
814 | > | bool usesElectrostatic = false; |
815 | > | bool usesMetallic = false; |
816 | > | bool usesDirectional = false; |
817 | > | bool usesFluctuatingCharges = false; |
818 | //loop over all of the atom types | |
819 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | |
820 | usesElectrostatic |= (*i)->isElectrostatic(); | |
# | Line 801 | Line 822 | namespace OpenMD { | |
822 | usesDirectional |= (*i)->isDirectional(); | |
823 | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); | |
824 | } | |
825 | < | |
826 | < | #ifdef IS_MPI |
827 | < | int temp; |
825 | > | |
826 | > | #ifdef IS_MPI |
827 | > | bool temp; |
828 | temp = usesDirectional; | |
829 | < | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 | < | |
829 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
830 | > | MPI::LOR); |
831 | > | |
832 | temp = usesMetallic; | |
833 | < | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
833 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
834 | > | MPI::LOR); |
835 | ||
836 | temp = usesElectrostatic; | |
837 | < | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
837 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
838 | > | MPI::LOR); |
839 | ||
840 | temp = usesFluctuatingCharges; | |
841 | < | MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
841 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
842 | > | MPI::LOR); |
843 | #else | |
844 | ||
845 | usesDirectionalAtoms_ = usesDirectional; | |
# | Line 870 | Line 895 | namespace OpenMD { | |
895 | ||
896 | ||
897 | void SimInfo::prepareTopology() { | |
873 | – | int nExclude, nOneTwo, nOneThree, nOneFour; |
898 | ||
899 | //calculate mass ratio of cutoff group | |
900 | SimInfo::MoleculeIterator mi; | |
# | Line 919 | Line 943 | namespace OpenMD { | |
943 | ||
944 | //scan topology | |
945 | ||
922 | – | nExclude = excludedInteractions_.getSize(); |
923 | – | nOneTwo = oneTwoInteractions_.getSize(); |
924 | – | nOneThree = oneThreeInteractions_.getSize(); |
925 | – | nOneFour = oneFourInteractions_.getSize(); |
926 | – | |
946 | int* excludeList = excludedInteractions_.getPairList(); | |
947 | int* oneTwoList = oneTwoInteractions_.getPairList(); | |
948 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
# | Line 974 | Line 993 | namespace OpenMD { | |
993 | ||
994 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
995 | ||
996 | < | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
996 | > | for (atom = mol->beginAtom(atomIter); atom != NULL; |
997 | > | atom = mol->nextAtom(atomIter)) { |
998 | atom->setSnapshotManager(sman_); | |
999 | } | |
1000 | ||
1001 | < | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1001 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
1002 | > | rb = mol->nextRigidBody(rbIter)) { |
1003 | rb->setSnapshotManager(sman_); | |
1004 | } | |
1005 | ||
1006 | < | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
1006 | > | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
1007 | > | cg = mol->nextCutoffGroup(cgIter)) { |
1008 | cg->setSnapshotManager(sman_); | |
1009 | } | |
1010 | } | |
1011 | ||
1012 | } | |
1013 | ||
992 | – | Vector3d SimInfo::getComVel(){ |
993 | – | SimInfo::MoleculeIterator i; |
994 | – | Molecule* mol; |
1014 | ||
996 | – | Vector3d comVel(0.0); |
997 | – | RealType totalMass = 0.0; |
998 | – | |
999 | – | |
1000 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1001 | – | RealType mass = mol->getMass(); |
1002 | – | totalMass += mass; |
1003 | – | comVel += mass * mol->getComVel(); |
1004 | – | } |
1005 | – | |
1006 | – | #ifdef IS_MPI |
1007 | – | RealType tmpMass = totalMass; |
1008 | – | Vector3d tmpComVel(comVel); |
1009 | – | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1010 | – | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1011 | – | #endif |
1012 | – | |
1013 | – | comVel /= totalMass; |
1014 | – | |
1015 | – | return comVel; |
1016 | – | } |
1017 | – | |
1018 | – | Vector3d SimInfo::getCom(){ |
1019 | – | SimInfo::MoleculeIterator i; |
1020 | – | Molecule* mol; |
1021 | – | |
1022 | – | Vector3d com(0.0); |
1023 | – | RealType totalMass = 0.0; |
1024 | – | |
1025 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1026 | – | RealType mass = mol->getMass(); |
1027 | – | totalMass += mass; |
1028 | – | com += mass * mol->getCom(); |
1029 | – | } |
1030 | – | |
1031 | – | #ifdef IS_MPI |
1032 | – | RealType tmpMass = totalMass; |
1033 | – | Vector3d tmpCom(com); |
1034 | – | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1035 | – | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1036 | – | #endif |
1037 | – | |
1038 | – | com /= totalMass; |
1039 | – | |
1040 | – | return com; |
1041 | – | |
1042 | – | } |
1043 | – | |
1015 | ostream& operator <<(ostream& o, SimInfo& info) { | |
1016 | ||
1017 | return o; | |
1018 | } | |
1019 | ||
1020 | < | |
1050 | < | /* |
1051 | < | Returns center of mass and center of mass velocity in one function call. |
1052 | < | */ |
1053 | < | |
1054 | < | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1055 | < | SimInfo::MoleculeIterator i; |
1056 | < | Molecule* mol; |
1057 | < | |
1058 | < | |
1059 | < | RealType totalMass = 0.0; |
1060 | < | |
1061 | < | |
1062 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1063 | < | RealType mass = mol->getMass(); |
1064 | < | totalMass += mass; |
1065 | < | com += mass * mol->getCom(); |
1066 | < | comVel += mass * mol->getComVel(); |
1067 | < | } |
1068 | < | |
1069 | < | #ifdef IS_MPI |
1070 | < | RealType tmpMass = totalMass; |
1071 | < | Vector3d tmpCom(com); |
1072 | < | Vector3d tmpComVel(comVel); |
1073 | < | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1074 | < | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1075 | < | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1076 | < | #endif |
1077 | < | |
1078 | < | com /= totalMass; |
1079 | < | comVel /= totalMass; |
1080 | < | } |
1081 | < | |
1082 | < | /* |
1083 | < | Return intertia tensor for entire system and angular momentum Vector. |
1084 | < | |
1085 | < | |
1086 | < | [ Ixx -Ixy -Ixz ] |
1087 | < | J =| -Iyx Iyy -Iyz | |
1088 | < | [ -Izx -Iyz Izz ] |
1089 | < | */ |
1090 | < | |
1091 | < | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1092 | < | |
1093 | < | |
1094 | < | RealType xx = 0.0; |
1095 | < | RealType yy = 0.0; |
1096 | < | RealType zz = 0.0; |
1097 | < | RealType xy = 0.0; |
1098 | < | RealType xz = 0.0; |
1099 | < | RealType yz = 0.0; |
1100 | < | Vector3d com(0.0); |
1101 | < | Vector3d comVel(0.0); |
1102 | < | |
1103 | < | getComAll(com, comVel); |
1104 | < | |
1105 | < | SimInfo::MoleculeIterator i; |
1106 | < | Molecule* mol; |
1107 | < | |
1108 | < | Vector3d thisq(0.0); |
1109 | < | Vector3d thisv(0.0); |
1110 | < | |
1111 | < | RealType thisMass = 0.0; |
1112 | < | |
1113 | < | |
1114 | < | |
1115 | < | |
1116 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1117 | < | |
1118 | < | thisq = mol->getCom()-com; |
1119 | < | thisv = mol->getComVel()-comVel; |
1120 | < | thisMass = mol->getMass(); |
1121 | < | // Compute moment of intertia coefficients. |
1122 | < | xx += thisq[0]*thisq[0]*thisMass; |
1123 | < | yy += thisq[1]*thisq[1]*thisMass; |
1124 | < | zz += thisq[2]*thisq[2]*thisMass; |
1125 | < | |
1126 | < | // compute products of intertia |
1127 | < | xy += thisq[0]*thisq[1]*thisMass; |
1128 | < | xz += thisq[0]*thisq[2]*thisMass; |
1129 | < | yz += thisq[1]*thisq[2]*thisMass; |
1130 | < | |
1131 | < | angularMomentum += cross( thisq, thisv ) * thisMass; |
1132 | < | |
1133 | < | } |
1134 | < | |
1135 | < | |
1136 | < | inertiaTensor(0,0) = yy + zz; |
1137 | < | inertiaTensor(0,1) = -xy; |
1138 | < | inertiaTensor(0,2) = -xz; |
1139 | < | inertiaTensor(1,0) = -xy; |
1140 | < | inertiaTensor(1,1) = xx + zz; |
1141 | < | inertiaTensor(1,2) = -yz; |
1142 | < | inertiaTensor(2,0) = -xz; |
1143 | < | inertiaTensor(2,1) = -yz; |
1144 | < | inertiaTensor(2,2) = xx + yy; |
1145 | < | |
1146 | < | #ifdef IS_MPI |
1147 | < | Mat3x3d tmpI(inertiaTensor); |
1148 | < | Vector3d tmpAngMom; |
1149 | < | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1150 | < | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1151 | < | #endif |
1152 | < | |
1153 | < | return; |
1154 | < | } |
1155 | < | |
1156 | < | //Returns the angular momentum of the system |
1157 | < | Vector3d SimInfo::getAngularMomentum(){ |
1158 | < | |
1159 | < | Vector3d com(0.0); |
1160 | < | Vector3d comVel(0.0); |
1161 | < | Vector3d angularMomentum(0.0); |
1162 | < | |
1163 | < | getComAll(com,comVel); |
1164 | < | |
1165 | < | SimInfo::MoleculeIterator i; |
1166 | < | Molecule* mol; |
1167 | < | |
1168 | < | Vector3d thisr(0.0); |
1169 | < | Vector3d thisp(0.0); |
1170 | < | |
1171 | < | RealType thisMass; |
1172 | < | |
1173 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1174 | < | thisMass = mol->getMass(); |
1175 | < | thisr = mol->getCom()-com; |
1176 | < | thisp = (mol->getComVel()-comVel)*thisMass; |
1177 | < | |
1178 | < | angularMomentum += cross( thisr, thisp ); |
1179 | < | |
1180 | < | } |
1181 | < | |
1182 | < | #ifdef IS_MPI |
1183 | < | Vector3d tmpAngMom; |
1184 | < | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1185 | < | #endif |
1186 | < | |
1187 | < | return angularMomentum; |
1188 | < | } |
1189 | < | |
1020 | > | |
1021 | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | |
1022 | < | return IOIndexToIntegrableObject.at(index); |
1022 | > | if (index >= int(IOIndexToIntegrableObject.size())) { |
1023 | > | sprintf(painCave.errMsg, |
1024 | > | "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1025 | > | "\tindex exceeds number of known objects!\n"); |
1026 | > | painCave.isFatal = 1; |
1027 | > | simError(); |
1028 | > | return NULL; |
1029 | > | } else |
1030 | > | return IOIndexToIntegrableObject.at(index); |
1031 | } | |
1032 | ||
1033 | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | |
1034 | IOIndexToIntegrableObject= v; | |
1035 | } | |
1036 | ||
1198 | – | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1199 | – | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1200 | – | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1201 | – | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1202 | – | */ |
1203 | – | void SimInfo::getGyrationalVolume(RealType &volume){ |
1204 | – | Mat3x3d intTensor; |
1205 | – | RealType det; |
1206 | – | Vector3d dummyAngMom; |
1207 | – | RealType sysconstants; |
1208 | – | RealType geomCnst; |
1209 | – | |
1210 | – | geomCnst = 3.0/2.0; |
1211 | – | /* Get the inertial tensor and angular momentum for free*/ |
1212 | – | getInertiaTensor(intTensor,dummyAngMom); |
1213 | – | |
1214 | – | det = intTensor.determinant(); |
1215 | – | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1216 | – | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1217 | – | return; |
1218 | – | } |
1219 | – | |
1220 | – | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1221 | – | Mat3x3d intTensor; |
1222 | – | Vector3d dummyAngMom; |
1223 | – | RealType sysconstants; |
1224 | – | RealType geomCnst; |
1225 | – | |
1226 | – | geomCnst = 3.0/2.0; |
1227 | – | /* Get the inertial tensor and angular momentum for free*/ |
1228 | – | getInertiaTensor(intTensor,dummyAngMom); |
1229 | – | |
1230 | – | detI = intTensor.determinant(); |
1231 | – | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1232 | – | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1233 | – | return; |
1234 | – | } |
1235 | – | /* |
1236 | – | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1237 | – | assert( v.size() == nAtoms_ + nRigidBodies_); |
1238 | – | sdByGlobalIndex_ = v; |
1239 | – | } |
1240 | – | |
1241 | – | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1242 | – | //assert(index < nAtoms_ + nRigidBodies_); |
1243 | – | return sdByGlobalIndex_.at(index); |
1244 | – | } |
1245 | – | */ |
1037 | int SimInfo::getNGlobalConstraints() { | |
1038 | int nGlobalConstraints; | |
1039 | #ifdef IS_MPI | |
1040 | < | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1041 | < | MPI_COMM_WORLD); |
1040 | > | MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1041 | > | MPI::INT, MPI::SUM); |
1042 | #else | |
1043 | nGlobalConstraints = nConstraints_; | |
1044 | #endif |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |