# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | ||
43 | /** | |
# | Line 54 | Line 55 | |
55 | #include "math/Vector3.hpp" | |
56 | #include "primitives/Molecule.hpp" | |
57 | #include "primitives/StuntDouble.hpp" | |
57 | – | #include "UseTheForce/fCutoffPolicy.h" |
58 | – | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 | – | #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 | – | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 | – | #include "UseTheForce/doForces_interface.h" |
62 | – | #include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 | – | #include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 | – | #include "UseTheForce/DarkSide/switcheroo_interface.h" |
58 | #include "utils/MemoryUtils.hpp" | |
59 | #include "utils/simError.h" | |
60 | #include "selection/SelectionManager.hpp" | |
61 | #include "io/ForceFieldOptions.hpp" | |
62 | < | #include "UseTheForce/ForceField.hpp" |
63 | < | |
71 | < | |
62 | > | #include "brains/ForceField.hpp" |
63 | > | #include "nonbonded/SwitchingFunction.hpp" |
64 | #ifdef IS_MPI | |
65 | < | #include "UseTheForce/mpiComponentPlan.h" |
66 | < | #include "UseTheForce/DarkSide/simParallel_interface.h" |
75 | < | #endif |
65 | > | #include <mpi.h> |
66 | > | #endif |
67 | ||
68 | + | using namespace std; |
69 | namespace OpenMD { | |
78 | – | std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 | – | std::map<int, std::set<int> >::iterator i = container.find(index); |
80 | – | std::set<int> result; |
81 | – | if (i != container.end()) { |
82 | – | result = i->second; |
83 | – | } |
84 | – | |
85 | – | return result; |
86 | – | } |
70 | ||
71 | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | |
72 | forceField_(ff), simParams_(simParams), | |
73 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | |
74 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | |
75 | < | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), | |
77 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | |
78 | < | nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
79 | < | calcBoxDipole_(false), useAtomicVirial_(true) { |
80 | < | |
81 | < | |
82 | < | MoleculeStamp* molStamp; |
83 | < | int nMolWithSameStamp; |
84 | < | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
85 | < | int nGroups = 0; //total cutoff groups defined in meta-data file |
86 | < | CutoffGroupStamp* cgStamp; |
87 | < | RigidBodyStamp* rbStamp; |
88 | < | int nRigidAtoms = 0; |
89 | < | |
90 | < | std::vector<Component*> components = simParams->getComponents(); |
78 | > | nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 | > | calcBoxDipole_(false), useAtomicVirial_(true) { |
80 | > | |
81 | > | MoleculeStamp* molStamp; |
82 | > | int nMolWithSameStamp; |
83 | > | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 | > | int nGroups = 0; //total cutoff groups defined in meta-data file |
85 | > | CutoffGroupStamp* cgStamp; |
86 | > | RigidBodyStamp* rbStamp; |
87 | > | int nRigidAtoms = 0; |
88 | > | |
89 | > | vector<Component*> components = simParams->getComponents(); |
90 | > | |
91 | > | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
92 | > | molStamp = (*i)->getMoleculeStamp(); |
93 | > | nMolWithSameStamp = (*i)->getNMol(); |
94 | ||
95 | < | for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
96 | < | molStamp = (*i)->getMoleculeStamp(); |
97 | < | nMolWithSameStamp = (*i)->getNMol(); |
98 | < | |
99 | < | addMoleculeStamp(molStamp, nMolWithSameStamp); |
100 | < | |
101 | < | //calculate atoms in molecules |
102 | < | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
103 | < | |
104 | < | //calculate atoms in cutoff groups |
105 | < | int nAtomsInGroups = 0; |
106 | < | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
121 | < | |
122 | < | for (int j=0; j < nCutoffGroupsInStamp; j++) { |
123 | < | cgStamp = molStamp->getCutoffGroupStamp(j); |
124 | < | nAtomsInGroups += cgStamp->getNMembers(); |
125 | < | } |
126 | < | |
127 | < | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
128 | < | |
129 | < | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
130 | < | |
131 | < | //calculate atoms in rigid bodies |
132 | < | int nAtomsInRigidBodies = 0; |
133 | < | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
134 | < | |
135 | < | for (int j=0; j < nRigidBodiesInStamp; j++) { |
136 | < | rbStamp = molStamp->getRigidBodyStamp(j); |
137 | < | nAtomsInRigidBodies += rbStamp->getNMembers(); |
138 | < | } |
139 | < | |
140 | < | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
141 | < | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
142 | < | |
95 | > | addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 | > | |
97 | > | //calculate atoms in molecules |
98 | > | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 | > | |
100 | > | //calculate atoms in cutoff groups |
101 | > | int nAtomsInGroups = 0; |
102 | > | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
103 | > | |
104 | > | for (int j=0; j < nCutoffGroupsInStamp; j++) { |
105 | > | cgStamp = molStamp->getCutoffGroupStamp(j); |
106 | > | nAtomsInGroups += cgStamp->getNMembers(); |
107 | } | |
108 | < | |
109 | < | //every free atom (atom does not belong to cutoff groups) is a cutoff |
110 | < | //group therefore the total number of cutoff groups in the system is |
111 | < | //equal to the total number of atoms minus number of atoms belong to |
112 | < | //cutoff group defined in meta-data file plus the number of cutoff |
113 | < | //groups defined in meta-data file |
114 | < | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
115 | < | |
116 | < | //every free atom (atom does not belong to rigid bodies) is an |
117 | < | //integrable object therefore the total number of integrable objects |
118 | < | //in the system is equal to the total number of atoms minus number of |
119 | < | //atoms belong to rigid body defined in meta-data file plus the number |
120 | < | //of rigid bodies defined in meta-data file |
121 | < | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
122 | < | + nGlobalRigidBodies_; |
123 | < | |
124 | < | nGlobalMols_ = molStampIds_.size(); |
161 | < | molToProcMap_.resize(nGlobalMols_); |
108 | > | |
109 | > | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
110 | > | |
111 | > | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
112 | > | |
113 | > | //calculate atoms in rigid bodies |
114 | > | int nAtomsInRigidBodies = 0; |
115 | > | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
116 | > | |
117 | > | for (int j=0; j < nRigidBodiesInStamp; j++) { |
118 | > | rbStamp = molStamp->getRigidBodyStamp(j); |
119 | > | nAtomsInRigidBodies += rbStamp->getNMembers(); |
120 | > | } |
121 | > | |
122 | > | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
123 | > | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
124 | > | |
125 | } | |
126 | + | |
127 | + | //every free atom (atom does not belong to cutoff groups) is a cutoff |
128 | + | //group therefore the total number of cutoff groups in the system is |
129 | + | //equal to the total number of atoms minus number of atoms belong to |
130 | + | //cutoff group defined in meta-data file plus the number of cutoff |
131 | + | //groups defined in meta-data file |
132 | ||
133 | + | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 | + | |
135 | + | //every free atom (atom does not belong to rigid bodies) is an |
136 | + | //integrable object therefore the total number of integrable objects |
137 | + | //in the system is equal to the total number of atoms minus number of |
138 | + | //atoms belong to rigid body defined in meta-data file plus the number |
139 | + | //of rigid bodies defined in meta-data file |
140 | + | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
141 | + | + nGlobalRigidBodies_; |
142 | + | |
143 | + | nGlobalMols_ = molStampIds_.size(); |
144 | + | molToProcMap_.resize(nGlobalMols_); |
145 | + | } |
146 | + | |
147 | SimInfo::~SimInfo() { | |
148 | < | std::map<int, Molecule*>::iterator i; |
148 | > | map<int, Molecule*>::iterator i; |
149 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | |
150 | delete i->second; | |
151 | } | |
# | Line 173 | Line 156 | namespace OpenMD { | |
156 | delete forceField_; | |
157 | } | |
158 | ||
176 | – | int SimInfo::getNGlobalConstraints() { |
177 | – | int nGlobalConstraints; |
178 | – | #ifdef IS_MPI |
179 | – | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
180 | – | MPI_COMM_WORLD); |
181 | – | #else |
182 | – | nGlobalConstraints = nConstraints_; |
183 | – | #endif |
184 | – | return nGlobalConstraints; |
185 | – | } |
159 | ||
160 | bool SimInfo::addMolecule(Molecule* mol) { | |
161 | MoleculeIterator i; | |
162 | < | |
162 | > | |
163 | i = molecules_.find(mol->getGlobalIndex()); | |
164 | if (i == molecules_.end() ) { | |
165 | < | |
166 | < | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
167 | < | |
165 | > | |
166 | > | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
167 | > | |
168 | nAtoms_ += mol->getNAtoms(); | |
169 | nBonds_ += mol->getNBonds(); | |
170 | nBends_ += mol->getNBends(); | |
# | Line 201 | Line 174 | namespace OpenMD { | |
174 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | |
175 | nCutoffGroups_ += mol->getNCutoffGroups(); | |
176 | nConstraints_ += mol->getNConstraintPairs(); | |
177 | < | |
177 | > | |
178 | addInteractionPairs(mol); | |
179 | < | |
179 | > | |
180 | return true; | |
181 | } else { | |
182 | return false; | |
183 | } | |
184 | } | |
185 | < | |
185 | > | |
186 | bool SimInfo::removeMolecule(Molecule* mol) { | |
187 | MoleculeIterator i; | |
188 | i = molecules_.find(mol->getGlobalIndex()); | |
# | Line 237 | Line 210 | namespace OpenMD { | |
210 | } else { | |
211 | return false; | |
212 | } | |
240 | – | |
241 | – | |
213 | } | |
214 | ||
215 | ||
# | Line 254 | Line 225 | namespace OpenMD { | |
225 | ||
226 | ||
227 | void SimInfo::calcNdf() { | |
228 | < | int ndf_local; |
228 | > | int ndf_local, nfq_local; |
229 | MoleculeIterator i; | |
230 | < | std::vector<StuntDouble*>::iterator j; |
230 | > | vector<StuntDouble*>::iterator j; |
231 | > | vector<Atom*>::iterator k; |
232 | > | |
233 | Molecule* mol; | |
234 | StuntDouble* integrableObject; | |
235 | + | Atom* atom; |
236 | ||
237 | ndf_local = 0; | |
238 | + | nfq_local = 0; |
239 | ||
240 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | |
241 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | |
# | Line 275 | Line 250 | namespace OpenMD { | |
250 | ndf_local += 3; | |
251 | } | |
252 | } | |
278 | – | |
253 | } | |
254 | + | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 | + | atom = mol->nextFluctuatingCharge(k)) { |
256 | + | if (atom->isFluctuatingCharge()) { |
257 | + | nfq_local++; |
258 | + | } |
259 | + | } |
260 | } | |
261 | ||
262 | + | ndfLocal_ = ndf_local; |
263 | + | |
264 | // n_constraints is local, so subtract them on each processor | |
265 | ndf_local -= nConstraints_; | |
266 | ||
267 | #ifdef IS_MPI | |
268 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
269 | + | MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
270 | #else | |
271 | ndf_ = ndf_local; | |
272 | + | nGlobalFluctuatingCharges_ = nfq_local; |
273 | #endif | |
274 | ||
275 | // nZconstraints_ is global, as are the 3 COM translations for the | |
# | Line 302 | Line 286 | namespace OpenMD { | |
286 | #endif | |
287 | return fdf_; | |
288 | } | |
289 | + | |
290 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ |
291 | + | int nLocalCutoffAtoms = 0; |
292 | + | Molecule* mol; |
293 | + | MoleculeIterator mi; |
294 | + | CutoffGroup* cg; |
295 | + | Molecule::CutoffGroupIterator ci; |
296 | ||
297 | + | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
298 | + | |
299 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
300 | + | cg = mol->nextCutoffGroup(ci)) { |
301 | + | nLocalCutoffAtoms += cg->getNumAtom(); |
302 | + | |
303 | + | } |
304 | + | } |
305 | + | |
306 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
307 | + | } |
308 | + | |
309 | void SimInfo::calcNdfRaw() { | |
310 | int ndfRaw_local; | |
311 | ||
312 | MoleculeIterator i; | |
313 | < | std::vector<StuntDouble*>::iterator j; |
313 | > | vector<StuntDouble*>::iterator j; |
314 | Molecule* mol; | |
315 | StuntDouble* integrableObject; | |
316 | ||
# | Line 356 | Line 359 | namespace OpenMD { | |
359 | ||
360 | void SimInfo::addInteractionPairs(Molecule* mol) { | |
361 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | |
362 | < | std::vector<Bond*>::iterator bondIter; |
363 | < | std::vector<Bend*>::iterator bendIter; |
364 | < | std::vector<Torsion*>::iterator torsionIter; |
365 | < | std::vector<Inversion*>::iterator inversionIter; |
362 | > | vector<Bond*>::iterator bondIter; |
363 | > | vector<Bend*>::iterator bendIter; |
364 | > | vector<Torsion*>::iterator torsionIter; |
365 | > | vector<Inversion*>::iterator inversionIter; |
366 | Bond* bond; | |
367 | Bend* bend; | |
368 | Torsion* torsion; | |
# | Line 377 | Line 380 | namespace OpenMD { | |
380 | // always be excluded. These are done at the bottom of this | |
381 | // function. | |
382 | ||
383 | < | std::map<int, std::set<int> > atomGroups; |
383 | > | map<int, set<int> > atomGroups; |
384 | Molecule::RigidBodyIterator rbIter; | |
385 | RigidBody* rb; | |
386 | Molecule::IntegrableObjectIterator ii; | |
# | Line 389 | Line 392 | namespace OpenMD { | |
392 | ||
393 | if (integrableObject->isRigidBody()) { | |
394 | rb = static_cast<RigidBody*>(integrableObject); | |
395 | < | std::vector<Atom*> atoms = rb->getAtoms(); |
396 | < | std::set<int> rigidAtoms; |
395 | > | vector<Atom*> atoms = rb->getAtoms(); |
396 | > | set<int> rigidAtoms; |
397 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
398 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | |
399 | } | |
400 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
401 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
401 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
402 | } | |
403 | } else { | |
404 | < | std::set<int> oneAtomSet; |
404 | > | set<int> oneAtomSet; |
405 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | |
406 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
406 | > | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
407 | } | |
408 | } | |
409 | ||
# | Line 503 | Line 506 | namespace OpenMD { | |
506 | ||
507 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | |
508 | rb = mol->nextRigidBody(rbIter)) { | |
509 | < | std::vector<Atom*> atoms = rb->getAtoms(); |
509 | > | vector<Atom*> atoms = rb->getAtoms(); |
510 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | |
511 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | |
512 | a = atoms[i]->getGlobalIndex(); | |
# | Line 517 | Line 520 | namespace OpenMD { | |
520 | ||
521 | void SimInfo::removeInteractionPairs(Molecule* mol) { | |
522 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | |
523 | < | std::vector<Bond*>::iterator bondIter; |
524 | < | std::vector<Bend*>::iterator bendIter; |
525 | < | std::vector<Torsion*>::iterator torsionIter; |
526 | < | std::vector<Inversion*>::iterator inversionIter; |
523 | > | vector<Bond*>::iterator bondIter; |
524 | > | vector<Bend*>::iterator bendIter; |
525 | > | vector<Torsion*>::iterator torsionIter; |
526 | > | vector<Inversion*>::iterator inversionIter; |
527 | Bond* bond; | |
528 | Bend* bend; | |
529 | Torsion* torsion; | |
# | Line 530 | Line 533 | namespace OpenMD { | |
533 | int c; | |
534 | int d; | |
535 | ||
536 | < | std::map<int, std::set<int> > atomGroups; |
536 | > | map<int, set<int> > atomGroups; |
537 | Molecule::RigidBodyIterator rbIter; | |
538 | RigidBody* rb; | |
539 | Molecule::IntegrableObjectIterator ii; | |
# | Line 542 | Line 545 | namespace OpenMD { | |
545 | ||
546 | if (integrableObject->isRigidBody()) { | |
547 | rb = static_cast<RigidBody*>(integrableObject); | |
548 | < | std::vector<Atom*> atoms = rb->getAtoms(); |
549 | < | std::set<int> rigidAtoms; |
548 | > | vector<Atom*> atoms = rb->getAtoms(); |
549 | > | set<int> rigidAtoms; |
550 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
551 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | |
552 | } | |
553 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
554 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
554 | > | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
555 | } | |
556 | } else { | |
557 | < | std::set<int> oneAtomSet; |
557 | > | set<int> oneAtomSet; |
558 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | |
559 | < | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
559 | > | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
560 | } | |
561 | } | |
562 | ||
# | Line 656 | Line 659 | namespace OpenMD { | |
659 | ||
660 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | |
661 | rb = mol->nextRigidBody(rbIter)) { | |
662 | < | std::vector<Atom*> atoms = rb->getAtoms(); |
662 | > | vector<Atom*> atoms = rb->getAtoms(); |
663 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | |
664 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | |
665 | a = atoms[i]->getGlobalIndex(); | |
# | Line 679 | Line 682 | namespace OpenMD { | |
682 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | |
683 | } | |
684 | ||
682 | – | void SimInfo::update() { |
685 | ||
686 | < | setupSimType(); |
687 | < | |
688 | < | #ifdef IS_MPI |
689 | < | setupFortranParallel(); |
690 | < | #endif |
691 | < | |
692 | < | setupFortranSim(); |
693 | < | |
694 | < | //setup fortran force field |
693 | < | /** @deprecate */ |
694 | < | int isError = 0; |
695 | < | |
696 | < | setupCutoff(); |
697 | < | |
698 | < | setupElectrostaticSummationMethod( isError ); |
699 | < | setupSwitchingFunction(); |
700 | < | setupAccumulateBoxDipole(); |
701 | < | |
702 | < | if(isError){ |
703 | < | sprintf( painCave.errMsg, |
704 | < | "ForceField error: There was an error initializing the forceField in fortran.\n" ); |
705 | < | painCave.isFatal = 1; |
706 | < | simError(); |
707 | < | } |
708 | < | |
686 | > | /** |
687 | > | * update |
688 | > | * |
689 | > | * Performs the global checks and variable settings after the |
690 | > | * objects have been created. |
691 | > | * |
692 | > | */ |
693 | > | void SimInfo::update() { |
694 | > | setupSimVariables(); |
695 | calcNdf(); | |
696 | calcNdfRaw(); | |
697 | calcNdfTrans(); | |
712 | – | |
713 | – | fortranInitialized_ = true; |
698 | } | |
699 | < | |
700 | < | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
699 | > | |
700 | > | /** |
701 | > | * getSimulatedAtomTypes |
702 | > | * |
703 | > | * Returns an STL set of AtomType* that are actually present in this |
704 | > | * simulation. Must query all processors to assemble this information. |
705 | > | * |
706 | > | */ |
707 | > | set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
708 | SimInfo::MoleculeIterator mi; | |
709 | Molecule* mol; | |
710 | Molecule::AtomIterator ai; | |
711 | Atom* atom; | |
712 | < | std::set<AtomType*> atomTypes; |
713 | < | |
712 | > | set<AtomType*> atomTypes; |
713 | > | |
714 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
715 | < | |
716 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
715 | > | for(atom = mol->beginAtom(ai); atom != NULL; |
716 | > | atom = mol->nextAtom(ai)) { |
717 | atomTypes.insert(atom->getAtomType()); | |
718 | < | } |
719 | < | |
720 | < | } |
718 | > | } |
719 | > | } |
720 | > | |
721 | > | #ifdef IS_MPI |
722 | ||
723 | < | return atomTypes; |
724 | < | } |
733 | < | |
734 | < | void SimInfo::setupSimType() { |
735 | < | std::set<AtomType*>::iterator i; |
736 | < | std::set<AtomType*> atomTypes; |
737 | < | atomTypes = getUniqueAtomTypes(); |
723 | > | // loop over the found atom types on this processor, and add their |
724 | > | // numerical idents to a vector: |
725 | ||
726 | < | int useLennardJones = 0; |
727 | < | int useElectrostatic = 0; |
728 | < | int useEAM = 0; |
729 | < | int useSC = 0; |
743 | < | int useCharge = 0; |
744 | < | int useDirectional = 0; |
745 | < | int useDipole = 0; |
746 | < | int useGayBerne = 0; |
747 | < | int useSticky = 0; |
748 | < | int useStickyPower = 0; |
749 | < | int useShape = 0; |
750 | < | int useFLARB = 0; //it is not in AtomType yet |
751 | < | int useDirectionalAtom = 0; |
752 | < | int useElectrostatics = 0; |
753 | < | //usePBC and useRF are from simParams |
754 | < | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
755 | < | int useRF; |
756 | < | int useSF; |
757 | < | int useSP; |
758 | < | int useBoxDipole; |
726 | > | vector<int> foundTypes; |
727 | > | set<AtomType*>::iterator i; |
728 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
729 | > | foundTypes.push_back( (*i)->getIdent() ); |
730 | ||
731 | < | std::string myMethod; |
731 | > | // count_local holds the number of found types on this processor |
732 | > | int count_local = foundTypes.size(); |
733 | ||
734 | < | // set the useRF logical |
763 | < | useRF = 0; |
764 | < | useSF = 0; |
765 | < | useSP = 0; |
766 | < | useBoxDipole = 0; |
734 | > | int nproc = MPI::COMM_WORLD.Get_size(); |
735 | ||
736 | + | // we need arrays to hold the counts and displacement vectors for |
737 | + | // all processors |
738 | + | vector<int> counts(nproc, 0); |
739 | + | vector<int> disps(nproc, 0); |
740 | ||
741 | < | if (simParams_->haveElectrostaticSummationMethod()) { |
742 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
743 | < | toUpper(myMethod); |
744 | < | if (myMethod == "REACTION_FIELD"){ |
745 | < | useRF = 1; |
746 | < | } else if (myMethod == "SHIFTED_FORCE"){ |
747 | < | useSF = 1; |
748 | < | } else if (myMethod == "SHIFTED_POTENTIAL"){ |
749 | < | useSP = 1; |
750 | < | } |
741 | > | // fill the counts array |
742 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
743 | > | 1, MPI::INT); |
744 | > | |
745 | > | // use the processor counts to compute the displacement array |
746 | > | disps[0] = 0; |
747 | > | int totalCount = counts[0]; |
748 | > | for (int iproc = 1; iproc < nproc; iproc++) { |
749 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
750 | > | totalCount += counts[iproc]; |
751 | } | |
752 | + | |
753 | + | // we need a (possibly redundant) set of all found types: |
754 | + | vector<int> ftGlobal(totalCount); |
755 | ||
756 | < | if (simParams_->haveAccumulateBoxDipole()) |
757 | < | if (simParams_->getAccumulateBoxDipole()) |
758 | < | useBoxDipole = 1; |
756 | > | // now spray out the foundTypes to all the other processors: |
757 | > | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
758 | > | &ftGlobal[0], &counts[0], &disps[0], |
759 | > | MPI::INT); |
760 | ||
761 | < | useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
761 | > | vector<int>::iterator j; |
762 | ||
763 | < | //loop over all of the atom types |
764 | < | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
765 | < | useLennardJones |= (*i)->isLennardJones(); |
790 | < | useElectrostatic |= (*i)->isElectrostatic(); |
791 | < | useEAM |= (*i)->isEAM(); |
792 | < | useSC |= (*i)->isSC(); |
793 | < | useCharge |= (*i)->isCharge(); |
794 | < | useDirectional |= (*i)->isDirectional(); |
795 | < | useDipole |= (*i)->isDipole(); |
796 | < | useGayBerne |= (*i)->isGayBerne(); |
797 | < | useSticky |= (*i)->isSticky(); |
798 | < | useStickyPower |= (*i)->isStickyPower(); |
799 | < | useShape |= (*i)->isShape(); |
800 | < | } |
763 | > | // foundIdents is a stl set, so inserting an already found ident |
764 | > | // will have no effect. |
765 | > | set<int> foundIdents; |
766 | ||
767 | < | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
768 | < | useDirectionalAtom = 1; |
769 | < | } |
767 | > | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
768 | > | foundIdents.insert((*j)); |
769 | > | |
770 | > | // now iterate over the foundIdents and get the actual atom types |
771 | > | // that correspond to these: |
772 | > | set<int>::iterator it; |
773 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
774 | > | atomTypes.insert( forceField_->getAtomType((*it)) ); |
775 | > | |
776 | > | #endif |
777 | ||
778 | < | if (useCharge || useDipole) { |
779 | < | useElectrostatics = 1; |
808 | < | } |
778 | > | return atomTypes; |
779 | > | } |
780 | ||
781 | + | void SimInfo::setupSimVariables() { |
782 | + | useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
783 | + | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
784 | + | calcBoxDipole_ = false; |
785 | + | if ( simParams_->haveAccumulateBoxDipole() ) |
786 | + | if ( simParams_->getAccumulateBoxDipole() ) { |
787 | + | calcBoxDipole_ = true; |
788 | + | } |
789 | + | |
790 | + | set<AtomType*>::iterator i; |
791 | + | set<AtomType*> atomTypes; |
792 | + | atomTypes = getSimulatedAtomTypes(); |
793 | + | int usesElectrostatic = 0; |
794 | + | int usesMetallic = 0; |
795 | + | int usesDirectional = 0; |
796 | + | int usesFluctuatingCharges = 0; |
797 | + | //loop over all of the atom types |
798 | + | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
799 | + | usesElectrostatic |= (*i)->isElectrostatic(); |
800 | + | usesMetallic |= (*i)->isMetal(); |
801 | + | usesDirectional |= (*i)->isDirectional(); |
802 | + | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
803 | + | } |
804 | + | |
805 | #ifdef IS_MPI | |
806 | int temp; | |
807 | < | |
808 | < | temp = usePBC; |
814 | < | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
815 | < | |
816 | < | temp = useDirectionalAtom; |
817 | < | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 | < | |
819 | < | temp = useLennardJones; |
820 | < | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
821 | < | |
822 | < | temp = useElectrostatics; |
823 | < | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
824 | < | |
825 | < | temp = useCharge; |
826 | < | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
827 | < | |
828 | < | temp = useDipole; |
829 | < | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 | < | |
831 | < | temp = useSticky; |
832 | < | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
833 | < | |
834 | < | temp = useStickyPower; |
835 | < | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
807 | > | temp = usesDirectional; |
808 | > | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
809 | ||
810 | < | temp = useGayBerne; |
811 | < | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
839 | < | |
840 | < | temp = useEAM; |
841 | < | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
842 | < | |
843 | < | temp = useSC; |
844 | < | MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
810 | > | temp = usesMetallic; |
811 | > | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
812 | ||
813 | < | temp = useShape; |
814 | < | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 | > | temp = usesElectrostatic; |
814 | > | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
815 | ||
816 | < | temp = useFLARB; |
817 | < | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 | > | temp = usesFluctuatingCharges; |
817 | > | MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 | > | #else |
819 | ||
820 | < | temp = useRF; |
821 | < | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
822 | < | |
823 | < | temp = useSF; |
856 | < | MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
857 | < | |
858 | < | temp = useSP; |
859 | < | MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 | < | |
861 | < | temp = useBoxDipole; |
862 | < | MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 | < | |
864 | < | temp = useAtomicVirial_; |
865 | < | MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
820 | > | usesDirectionalAtoms_ = usesDirectional; |
821 | > | usesMetallicAtoms_ = usesMetallic; |
822 | > | usesElectrostaticAtoms_ = usesElectrostatic; |
823 | > | usesFluctuatingCharges_ = usesFluctuatingCharges; |
824 | ||
825 | #endif | |
826 | < | |
827 | < | fInfo_.SIM_uses_PBC = usePBC; |
828 | < | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
829 | < | fInfo_.SIM_uses_LennardJones = useLennardJones; |
872 | < | fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
873 | < | fInfo_.SIM_uses_Charges = useCharge; |
874 | < | fInfo_.SIM_uses_Dipoles = useDipole; |
875 | < | fInfo_.SIM_uses_Sticky = useSticky; |
876 | < | fInfo_.SIM_uses_StickyPower = useStickyPower; |
877 | < | fInfo_.SIM_uses_GayBerne = useGayBerne; |
878 | < | fInfo_.SIM_uses_EAM = useEAM; |
879 | < | fInfo_.SIM_uses_SC = useSC; |
880 | < | fInfo_.SIM_uses_Shapes = useShape; |
881 | < | fInfo_.SIM_uses_FLARB = useFLARB; |
882 | < | fInfo_.SIM_uses_RF = useRF; |
883 | < | fInfo_.SIM_uses_SF = useSF; |
884 | < | fInfo_.SIM_uses_SP = useSP; |
885 | < | fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
886 | < | fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
826 | > | |
827 | > | requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
828 | > | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
829 | > | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
830 | } | |
831 | ||
832 | < | void SimInfo::setupFortranSim() { |
833 | < | int isError; |
834 | < | int nExclude, nOneTwo, nOneThree, nOneFour; |
835 | < | std::vector<int> fortranGlobalGroupMembership; |
832 | > | |
833 | > | vector<int> SimInfo::getGlobalAtomIndices() { |
834 | > | SimInfo::MoleculeIterator mi; |
835 | > | Molecule* mol; |
836 | > | Molecule::AtomIterator ai; |
837 | > | Atom* atom; |
838 | > | |
839 | > | vector<int> GlobalAtomIndices(getNAtoms(), 0); |
840 | ||
841 | < | isError = 0; |
841 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
842 | > | |
843 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
844 | > | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
845 | > | } |
846 | > | } |
847 | > | return GlobalAtomIndices; |
848 | > | } |
849 | ||
850 | < | //globalGroupMembership_ is filled by SimCreator |
851 | < | for (int i = 0; i < nGlobalAtoms_; i++) { |
852 | < | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
850 | > | |
851 | > | vector<int> SimInfo::getGlobalGroupIndices() { |
852 | > | SimInfo::MoleculeIterator mi; |
853 | > | Molecule* mol; |
854 | > | Molecule::CutoffGroupIterator ci; |
855 | > | CutoffGroup* cg; |
856 | > | |
857 | > | vector<int> GlobalGroupIndices; |
858 | > | |
859 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
860 | > | |
861 | > | //local index of cutoff group is trivial, it only depends on the |
862 | > | //order of travesing |
863 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
864 | > | cg = mol->nextCutoffGroup(ci)) { |
865 | > | GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
866 | > | } |
867 | } | |
868 | + | return GlobalGroupIndices; |
869 | + | } |
870 | ||
871 | + | |
872 | + | void SimInfo::prepareTopology() { |
873 | + | int nExclude, nOneTwo, nOneThree, nOneFour; |
874 | + | |
875 | //calculate mass ratio of cutoff group | |
902 | – | std::vector<RealType> mfact; |
876 | SimInfo::MoleculeIterator mi; | |
877 | Molecule* mol; | |
878 | Molecule::CutoffGroupIterator ci; | |
# | Line 908 | Line 881 | namespace OpenMD { | |
881 | Atom* atom; | |
882 | RealType totalMass; | |
883 | ||
884 | < | //to avoid memory reallocation, reserve enough space for mfact |
885 | < | mfact.reserve(getNCutoffGroups()); |
884 | > | /** |
885 | > | * The mass factor is the relative mass of an atom to the total |
886 | > | * mass of the cutoff group it belongs to. By default, all atoms |
887 | > | * are their own cutoff groups, and therefore have mass factors of |
888 | > | * 1. We need some special handling for massless atoms, which |
889 | > | * will be treated as carrying the entire mass of the cutoff |
890 | > | * group. |
891 | > | */ |
892 | > | massFactors_.clear(); |
893 | > | massFactors_.resize(getNAtoms(), 1.0); |
894 | ||
895 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
896 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
896 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
897 | > | cg = mol->nextCutoffGroup(ci)) { |
898 | ||
899 | totalMass = cg->getMass(); | |
900 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
901 | // Check for massless groups - set mfact to 1 if true | |
902 | < | if (totalMass != 0) |
903 | < | mfact.push_back(atom->getMass()/totalMass); |
902 | > | if (totalMass != 0) |
903 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
904 | else | |
905 | < | mfact.push_back( 1.0 ); |
905 | > | massFactors_[atom->getLocalIndex()] = 1.0; |
906 | } | |
907 | } | |
908 | } | |
909 | ||
910 | < | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
929 | < | std::vector<int> identArray; |
910 | > | // Build the identArray_ |
911 | ||
912 | < | //to avoid memory reallocation, reserve enough space identArray |
913 | < | identArray.reserve(getNAtoms()); |
933 | < | |
912 | > | identArray_.clear(); |
913 | > | identArray_.reserve(getNAtoms()); |
914 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
915 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | |
916 | < | identArray.push_back(atom->getIdent()); |
916 | > | identArray_.push_back(atom->getIdent()); |
917 | } | |
918 | } | |
939 | – | |
940 | – | //fill molMembershipArray |
941 | – | //molMembershipArray is filled by SimCreator |
942 | – | std::vector<int> molMembershipArray(nGlobalAtoms_); |
943 | – | for (int i = 0; i < nGlobalAtoms_; i++) { |
944 | – | molMembershipArray[i] = globalMolMembership_[i] + 1; |
945 | – | } |
919 | ||
920 | < | //setup fortran simulation |
920 | > | //scan topology |
921 | ||
922 | nExclude = excludedInteractions_.getSize(); | |
923 | nOneTwo = oneTwoInteractions_.getSize(); | |
# | Line 956 | Line 929 | namespace OpenMD { | |
929 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
930 | int* oneFourList = oneFourInteractions_.getPairList(); | |
931 | ||
932 | < | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
960 | < | &nExclude, excludeList, |
961 | < | &nOneTwo, oneTwoList, |
962 | < | &nOneThree, oneThreeList, |
963 | < | &nOneFour, oneFourList, |
964 | < | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
965 | < | &fortranGlobalGroupMembership[0], &isError); |
966 | < | |
967 | < | if( isError ){ |
968 | < | |
969 | < | sprintf( painCave.errMsg, |
970 | < | "There was an error setting the simulation information in fortran.\n" ); |
971 | < | painCave.isFatal = 1; |
972 | < | painCave.severity = OPENMD_ERROR; |
973 | < | simError(); |
974 | < | } |
975 | < | |
976 | < | |
977 | < | sprintf( checkPointMsg, |
978 | < | "succesfully sent the simulation information to fortran.\n"); |
979 | < | |
980 | < | errorCheckPoint(); |
981 | < | |
982 | < | // Setup number of neighbors in neighbor list if present |
983 | < | if (simParams_->haveNeighborListNeighbors()) { |
984 | < | int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
985 | < | setNeighbors(&nlistNeighbors); |
986 | < | } |
987 | < | |
988 | < | |
989 | < | } |
990 | < | |
991 | < | |
992 | < | void SimInfo::setupFortranParallel() { |
993 | < | #ifdef IS_MPI |
994 | < | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
995 | < | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
996 | < | std::vector<int> localToGlobalCutoffGroupIndex; |
997 | < | SimInfo::MoleculeIterator mi; |
998 | < | Molecule::AtomIterator ai; |
999 | < | Molecule::CutoffGroupIterator ci; |
1000 | < | Molecule* mol; |
1001 | < | Atom* atom; |
1002 | < | CutoffGroup* cg; |
1003 | < | mpiSimData parallelData; |
1004 | < | int isError; |
1005 | < | |
1006 | < | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1007 | < | |
1008 | < | //local index(index in DataStorge) of atom is important |
1009 | < | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1010 | < | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1011 | < | } |
1012 | < | |
1013 | < | //local index of cutoff group is trivial, it only depends on the order of travesing |
1014 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1015 | < | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1016 | < | } |
1017 | < | |
1018 | < | } |
1019 | < | |
1020 | < | //fill up mpiSimData struct |
1021 | < | parallelData.nMolGlobal = getNGlobalMolecules(); |
1022 | < | parallelData.nMolLocal = getNMolecules(); |
1023 | < | parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1024 | < | parallelData.nAtomsLocal = getNAtoms(); |
1025 | < | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1026 | < | parallelData.nGroupsLocal = getNCutoffGroups(); |
1027 | < | parallelData.myNode = worldRank; |
1028 | < | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1029 | < | |
1030 | < | //pass mpiSimData struct and index arrays to fortran |
1031 | < | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1032 | < | &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1033 | < | &localToGlobalCutoffGroupIndex[0], &isError); |
1034 | < | |
1035 | < | if (isError) { |
1036 | < | sprintf(painCave.errMsg, |
1037 | < | "mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1038 | < | painCave.isFatal = 1; |
1039 | < | simError(); |
1040 | < | } |
1041 | < | |
1042 | < | sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1043 | < | errorCheckPoint(); |
1044 | < | |
1045 | < | #endif |
1046 | < | } |
1047 | < | |
1048 | < | void SimInfo::setupCutoff() { |
1049 | < | |
1050 | < | ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
1051 | < | |
1052 | < | // Check the cutoff policy |
1053 | < | int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1054 | < | |
1055 | < | // Set LJ shifting bools to false |
1056 | < | ljsp_ = 0; |
1057 | < | ljsf_ = 0; |
1058 | < | |
1059 | < | std::string myPolicy; |
1060 | < | if (forceFieldOptions_.haveCutoffPolicy()){ |
1061 | < | myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1062 | < | }else if (simParams_->haveCutoffPolicy()) { |
1063 | < | myPolicy = simParams_->getCutoffPolicy(); |
1064 | < | } |
1065 | < | |
1066 | < | if (!myPolicy.empty()){ |
1067 | < | toUpper(myPolicy); |
1068 | < | if (myPolicy == "MIX") { |
1069 | < | cp = MIX_CUTOFF_POLICY; |
1070 | < | } else { |
1071 | < | if (myPolicy == "MAX") { |
1072 | < | cp = MAX_CUTOFF_POLICY; |
1073 | < | } else { |
1074 | < | if (myPolicy == "TRADITIONAL") { |
1075 | < | cp = TRADITIONAL_CUTOFF_POLICY; |
1076 | < | } else { |
1077 | < | // throw error |
1078 | < | sprintf( painCave.errMsg, |
1079 | < | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1080 | < | painCave.isFatal = 1; |
1081 | < | simError(); |
1082 | < | } |
1083 | < | } |
1084 | < | } |
1085 | < | } |
1086 | < | notifyFortranCutoffPolicy(&cp); |
1087 | < | |
1088 | < | // Check the Skin Thickness for neighborlists |
1089 | < | RealType skin; |
1090 | < | if (simParams_->haveSkinThickness()) { |
1091 | < | skin = simParams_->getSkinThickness(); |
1092 | < | notifyFortranSkinThickness(&skin); |
1093 | < | } |
1094 | < | |
1095 | < | // Check if the cutoff was set explicitly: |
1096 | < | if (simParams_->haveCutoffRadius()) { |
1097 | < | rcut_ = simParams_->getCutoffRadius(); |
1098 | < | if (simParams_->haveSwitchingRadius()) { |
1099 | < | rsw_ = simParams_->getSwitchingRadius(); |
1100 | < | } else { |
1101 | < | if (fInfo_.SIM_uses_Charges | |
1102 | < | fInfo_.SIM_uses_Dipoles | |
1103 | < | fInfo_.SIM_uses_RF) { |
1104 | < | |
1105 | < | rsw_ = 0.85 * rcut_; |
1106 | < | sprintf(painCave.errMsg, |
1107 | < | "SimCreator Warning: No value was set for the switchingRadius.\n" |
1108 | < | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1109 | < | "\tswitchingRadius = %f. for this simulation\n", rsw_); |
1110 | < | painCave.isFatal = 0; |
1111 | < | simError(); |
1112 | < | } else { |
1113 | < | rsw_ = rcut_; |
1114 | < | sprintf(painCave.errMsg, |
1115 | < | "SimCreator Warning: No value was set for the switchingRadius.\n" |
1116 | < | "\tOpenMD will use the same value as the cutoffRadius.\n" |
1117 | < | "\tswitchingRadius = %f. for this simulation\n", rsw_); |
1118 | < | painCave.isFatal = 0; |
1119 | < | simError(); |
1120 | < | } |
1121 | < | } |
1122 | < | |
1123 | < | if (simParams_->haveElectrostaticSummationMethod()) { |
1124 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1125 | < | toUpper(myMethod); |
1126 | < | |
1127 | < | if (myMethod == "SHIFTED_POTENTIAL") { |
1128 | < | ljsp_ = 1; |
1129 | < | } else if (myMethod == "SHIFTED_FORCE") { |
1130 | < | ljsf_ = 1; |
1131 | < | } |
1132 | < | } |
1133 | < | |
1134 | < | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1135 | < | |
1136 | < | } else { |
1137 | < | |
1138 | < | // For electrostatic atoms, we'll assume a large safe value: |
1139 | < | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1140 | < | sprintf(painCave.errMsg, |
1141 | < | "SimCreator Warning: No value was set for the cutoffRadius.\n" |
1142 | < | "\tOpenMD will use a default value of 15.0 angstroms" |
1143 | < | "\tfor the cutoffRadius.\n"); |
1144 | < | painCave.isFatal = 0; |
1145 | < | simError(); |
1146 | < | rcut_ = 15.0; |
1147 | < | |
1148 | < | if (simParams_->haveElectrostaticSummationMethod()) { |
1149 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1150 | < | toUpper(myMethod); |
1151 | < | |
1152 | < | // For the time being, we're tethering the LJ shifted behavior to the |
1153 | < | // electrostaticSummationMethod keyword options |
1154 | < | if (myMethod == "SHIFTED_POTENTIAL") { |
1155 | < | ljsp_ = 1; |
1156 | < | } else if (myMethod == "SHIFTED_FORCE") { |
1157 | < | ljsf_ = 1; |
1158 | < | } |
1159 | < | if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1160 | < | if (simParams_->haveSwitchingRadius()){ |
1161 | < | sprintf(painCave.errMsg, |
1162 | < | "SimInfo Warning: A value was set for the switchingRadius\n" |
1163 | < | "\teven though the electrostaticSummationMethod was\n" |
1164 | < | "\tset to %s\n", myMethod.c_str()); |
1165 | < | painCave.isFatal = 1; |
1166 | < | simError(); |
1167 | < | } |
1168 | < | } |
1169 | < | } |
1170 | < | |
1171 | < | if (simParams_->haveSwitchingRadius()){ |
1172 | < | rsw_ = simParams_->getSwitchingRadius(); |
1173 | < | } else { |
1174 | < | sprintf(painCave.errMsg, |
1175 | < | "SimCreator Warning: No value was set for switchingRadius.\n" |
1176 | < | "\tOpenMD will use a default value of\n" |
1177 | < | "\t0.85 * cutoffRadius for the switchingRadius\n"); |
1178 | < | painCave.isFatal = 0; |
1179 | < | simError(); |
1180 | < | rsw_ = 0.85 * rcut_; |
1181 | < | } |
1182 | < | |
1183 | < | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1184 | < | |
1185 | < | } else { |
1186 | < | // We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1187 | < | // We'll punt and let fortran figure out the cutoffs later. |
1188 | < | |
1189 | < | notifyFortranYouAreOnYourOwn(); |
1190 | < | |
1191 | < | } |
1192 | < | } |
1193 | < | } |
1194 | < | |
1195 | < | void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1196 | < | |
1197 | < | int errorOut; |
1198 | < | int esm = NONE; |
1199 | < | int sm = UNDAMPED; |
1200 | < | RealType alphaVal; |
1201 | < | RealType dielectric; |
1202 | < | |
1203 | < | errorOut = isError; |
1204 | < | |
1205 | < | if (simParams_->haveElectrostaticSummationMethod()) { |
1206 | < | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1207 | < | toUpper(myMethod); |
1208 | < | if (myMethod == "NONE") { |
1209 | < | esm = NONE; |
1210 | < | } else { |
1211 | < | if (myMethod == "SWITCHING_FUNCTION") { |
1212 | < | esm = SWITCHING_FUNCTION; |
1213 | < | } else { |
1214 | < | if (myMethod == "SHIFTED_POTENTIAL") { |
1215 | < | esm = SHIFTED_POTENTIAL; |
1216 | < | } else { |
1217 | < | if (myMethod == "SHIFTED_FORCE") { |
1218 | < | esm = SHIFTED_FORCE; |
1219 | < | } else { |
1220 | < | if (myMethod == "REACTION_FIELD") { |
1221 | < | esm = REACTION_FIELD; |
1222 | < | dielectric = simParams_->getDielectric(); |
1223 | < | if (!simParams_->haveDielectric()) { |
1224 | < | // throw warning |
1225 | < | sprintf( painCave.errMsg, |
1226 | < | "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1227 | < | "\tA default value of %f will be used for the dielectric.\n", dielectric); |
1228 | < | painCave.isFatal = 0; |
1229 | < | simError(); |
1230 | < | } |
1231 | < | } else { |
1232 | < | // throw error |
1233 | < | sprintf( painCave.errMsg, |
1234 | < | "SimInfo error: Unknown electrostaticSummationMethod.\n" |
1235 | < | "\t(Input file specified %s .)\n" |
1236 | < | "\telectrostaticSummationMethod must be one of: \"none\",\n" |
1237 | < | "\t\"shifted_potential\", \"shifted_force\", or \n" |
1238 | < | "\t\"reaction_field\".\n", myMethod.c_str() ); |
1239 | < | painCave.isFatal = 1; |
1240 | < | simError(); |
1241 | < | } |
1242 | < | } |
1243 | < | } |
1244 | < | } |
1245 | < | } |
1246 | < | } |
1247 | < | |
1248 | < | if (simParams_->haveElectrostaticScreeningMethod()) { |
1249 | < | std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1250 | < | toUpper(myScreen); |
1251 | < | if (myScreen == "UNDAMPED") { |
1252 | < | sm = UNDAMPED; |
1253 | < | } else { |
1254 | < | if (myScreen == "DAMPED") { |
1255 | < | sm = DAMPED; |
1256 | < | if (!simParams_->haveDampingAlpha()) { |
1257 | < | // first set a cutoff dependent alpha value |
1258 | < | // we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1259 | < | alphaVal = 0.5125 - rcut_* 0.025; |
1260 | < | // for values rcut > 20.5, alpha is zero |
1261 | < | if (alphaVal < 0) alphaVal = 0; |
1262 | < | |
1263 | < | // throw warning |
1264 | < | sprintf( painCave.errMsg, |
1265 | < | "SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1266 | < | "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1267 | < | painCave.isFatal = 0; |
1268 | < | simError(); |
1269 | < | } else { |
1270 | < | alphaVal = simParams_->getDampingAlpha(); |
1271 | < | } |
1272 | < | |
1273 | < | } else { |
1274 | < | // throw error |
1275 | < | sprintf( painCave.errMsg, |
1276 | < | "SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1277 | < | "\t(Input file specified %s .)\n" |
1278 | < | "\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1279 | < | "or \"damped\".\n", myScreen.c_str() ); |
1280 | < | painCave.isFatal = 1; |
1281 | < | simError(); |
1282 | < | } |
1283 | < | } |
1284 | < | } |
1285 | < | |
1286 | < | // let's pass some summation method variables to fortran |
1287 | < | setElectrostaticSummationMethod( &esm ); |
1288 | < | setFortranElectrostaticMethod( &esm ); |
1289 | < | setScreeningMethod( &sm ); |
1290 | < | setDampingAlpha( &alphaVal ); |
1291 | < | setReactionFieldDielectric( &dielectric ); |
1292 | < | initFortranFF( &errorOut ); |
1293 | < | } |
1294 | < | |
1295 | < | void SimInfo::setupSwitchingFunction() { |
1296 | < | int ft = CUBIC; |
1297 | < | |
1298 | < | if (simParams_->haveSwitchingFunctionType()) { |
1299 | < | std::string funcType = simParams_->getSwitchingFunctionType(); |
1300 | < | toUpper(funcType); |
1301 | < | if (funcType == "CUBIC") { |
1302 | < | ft = CUBIC; |
1303 | < | } else { |
1304 | < | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1305 | < | ft = FIFTH_ORDER_POLY; |
1306 | < | } else { |
1307 | < | // throw error |
1308 | < | sprintf( painCave.errMsg, |
1309 | < | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1310 | < | painCave.isFatal = 1; |
1311 | < | simError(); |
1312 | < | } |
1313 | < | } |
1314 | < | } |
1315 | < | |
1316 | < | // send switching function notification to switcheroo |
1317 | < | setFunctionType(&ft); |
1318 | < | |
932 | > | topologyDone_ = true; |
933 | } | |
934 | ||
1321 | – | void SimInfo::setupAccumulateBoxDipole() { |
1322 | – | |
1323 | – | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1324 | – | if ( simParams_->haveAccumulateBoxDipole() ) |
1325 | – | if ( simParams_->getAccumulateBoxDipole() ) { |
1326 | – | setAccumulateBoxDipole(); |
1327 | – | calcBoxDipole_ = true; |
1328 | – | } |
1329 | – | |
1330 | – | } |
1331 | – | |
935 | void SimInfo::addProperty(GenericData* genData) { | |
936 | properties_.addProperty(genData); | |
937 | } | |
938 | ||
939 | < | void SimInfo::removeProperty(const std::string& propName) { |
939 | > | void SimInfo::removeProperty(const string& propName) { |
940 | properties_.removeProperty(propName); | |
941 | } | |
942 | ||
# | Line 1341 | Line 944 | namespace OpenMD { | |
944 | properties_.clearProperties(); | |
945 | } | |
946 | ||
947 | < | std::vector<std::string> SimInfo::getPropertyNames() { |
947 | > | vector<string> SimInfo::getPropertyNames() { |
948 | return properties_.getPropertyNames(); | |
949 | } | |
950 | ||
951 | < | std::vector<GenericData*> SimInfo::getProperties() { |
951 | > | vector<GenericData*> SimInfo::getProperties() { |
952 | return properties_.getProperties(); | |
953 | } | |
954 | ||
955 | < | GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
955 | > | GenericData* SimInfo::getPropertyByName(const string& propName) { |
956 | return properties_.getPropertyByName(propName); | |
957 | } | |
958 | ||
# | Line 1363 | Line 966 | namespace OpenMD { | |
966 | Molecule* mol; | |
967 | RigidBody* rb; | |
968 | Atom* atom; | |
969 | + | CutoffGroup* cg; |
970 | SimInfo::MoleculeIterator mi; | |
971 | Molecule::RigidBodyIterator rbIter; | |
972 | < | Molecule::AtomIterator atomIter;; |
972 | > | Molecule::AtomIterator atomIter; |
973 | > | Molecule::CutoffGroupIterator cgIter; |
974 | ||
975 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
976 | ||
# | Line 1375 | Line 980 | namespace OpenMD { | |
980 | ||
981 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | |
982 | rb->setSnapshotManager(sman_); | |
983 | + | } |
984 | + | |
985 | + | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
986 | + | cg->setSnapshotManager(sman_); |
987 | } | |
988 | } | |
989 | ||
# | Line 1432 | Line 1041 | namespace OpenMD { | |
1041 | ||
1042 | } | |
1043 | ||
1044 | < | std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1044 | > | ostream& operator <<(ostream& o, SimInfo& info) { |
1045 | ||
1046 | return o; | |
1047 | } | |
# | Line 1475 | Line 1084 | namespace OpenMD { | |
1084 | ||
1085 | ||
1086 | [ Ixx -Ixy -Ixz ] | |
1087 | < | J =| -Iyx Iyy -Iyz | |
1087 | > | J =| -Iyx Iyy -Iyz | |
1088 | [ -Izx -Iyz Izz ] | |
1089 | */ | |
1090 | ||
# | Line 1582 | Line 1191 | namespace OpenMD { | |
1191 | return IOIndexToIntegrableObject.at(index); | |
1192 | } | |
1193 | ||
1194 | < | void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1194 | > | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1195 | IOIndexToIntegrableObject= v; | |
1196 | } | |
1197 | ||
# | Line 1604 | Line 1213 | namespace OpenMD { | |
1213 | ||
1214 | det = intTensor.determinant(); | |
1215 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1216 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1216 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1217 | return; | |
1218 | } | |
1219 | ||
# | Line 1620 | Line 1229 | namespace OpenMD { | |
1229 | ||
1230 | detI = intTensor.determinant(); | |
1231 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1232 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1232 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1233 | return; | |
1234 | } | |
1235 | /* | |
1236 | < | void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1236 | > | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1237 | assert( v.size() == nAtoms_ + nRigidBodies_); | |
1238 | sdByGlobalIndex_ = v; | |
1239 | } | |
# | Line 1634 | Line 1243 | namespace OpenMD { | |
1243 | return sdByGlobalIndex_.at(index); | |
1244 | } | |
1245 | */ | |
1246 | + | int SimInfo::getNGlobalConstraints() { |
1247 | + | int nGlobalConstraints; |
1248 | + | #ifdef IS_MPI |
1249 | + | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1250 | + | MPI_COMM_WORLD); |
1251 | + | #else |
1252 | + | nGlobalConstraints = nConstraints_; |
1253 | + | #endif |
1254 | + | return nGlobalConstraints; |
1255 | + | } |
1256 | + | |
1257 | }//end namespace OpenMD | |
1258 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |