# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | ||
43 | /** | |
# | Line 60 | Line 61 | |
61 | #include "io/ForceFieldOptions.hpp" | |
62 | #include "UseTheForce/ForceField.hpp" | |
63 | #include "nonbonded/SwitchingFunction.hpp" | |
64 | + | #ifdef IS_MPI |
65 | + | #include <mpi.h> |
66 | + | #endif |
67 | ||
68 | using namespace std; | |
69 | namespace OpenMD { | |
# | Line 125 | Line 129 | namespace OpenMD { | |
129 | //equal to the total number of atoms minus number of atoms belong to | |
130 | //cutoff group defined in meta-data file plus the number of cutoff | |
131 | //groups defined in meta-data file | |
128 | – | std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 | – | std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 | – | std::cerr << "nG = " << nGroups << "\n"; |
132 | ||
133 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | |
133 | – | |
134 | – | std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
134 | ||
135 | //every free atom (atom does not belong to rigid bodies) is an | |
136 | //integrable object therefore the total number of integrable objects | |
# | Line 274 | Line 273 | namespace OpenMD { | |
273 | #endif | |
274 | return fdf_; | |
275 | } | |
276 | + | |
277 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ |
278 | + | int nLocalCutoffAtoms = 0; |
279 | + | Molecule* mol; |
280 | + | MoleculeIterator mi; |
281 | + | CutoffGroup* cg; |
282 | + | Molecule::CutoffGroupIterator ci; |
283 | ||
284 | + | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
285 | + | |
286 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
287 | + | cg = mol->nextCutoffGroup(ci)) { |
288 | + | nLocalCutoffAtoms += cg->getNumAtom(); |
289 | + | |
290 | + | } |
291 | + | } |
292 | + | |
293 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
294 | + | } |
295 | + | |
296 | void SimInfo::calcNdfRaw() { | |
297 | int ndfRaw_local; | |
298 | ||
# | Line 680 | Line 698 | namespace OpenMD { | |
698 | Atom* atom; | |
699 | set<AtomType*> atomTypes; | |
700 | ||
701 | < | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
702 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
701 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
702 | > | for(atom = mol->beginAtom(ai); atom != NULL; |
703 | > | atom = mol->nextAtom(ai)) { |
704 | atomTypes.insert(atom->getAtomType()); | |
705 | } | |
706 | } | |
707 | < | |
707 | > | |
708 | #ifdef IS_MPI | |
709 | ||
710 | // loop over the found atom types on this processor, and add their | |
711 | // numerical idents to a vector: | |
712 | < | |
712 | > | |
713 | vector<int> foundTypes; | |
714 | set<AtomType*>::iterator i; | |
715 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | |
# | Line 699 | Line 718 | namespace OpenMD { | |
718 | // count_local holds the number of found types on this processor | |
719 | int count_local = foundTypes.size(); | |
720 | ||
721 | < | // count holds the total number of found types on all processors |
703 | < | // (some will be redundant with the ones found locally): |
704 | < | int count; |
705 | < | MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
721 | > | int nproc = MPI::COMM_WORLD.Get_size(); |
722 | ||
723 | < | // create a vector to hold the globally found types, and resize it: |
724 | < | vector<int> ftGlobal; |
725 | < | ftGlobal.resize(count); |
726 | < | vector<int> counts; |
723 | > | // we need arrays to hold the counts and displacement vectors for |
724 | > | // all processors |
725 | > | vector<int> counts(nproc, 0); |
726 | > | vector<int> disps(nproc, 0); |
727 | ||
728 | < | int nproc = MPI::COMM_WORLD.Get_size(); |
729 | < | counts.resize(nproc); |
730 | < | vector<int> disps; |
731 | < | disps.resize(nproc); |
728 | > | // fill the counts array |
729 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
730 | > | 1, MPI::INT); |
731 | > | |
732 | > | // use the processor counts to compute the displacement array |
733 | > | disps[0] = 0; |
734 | > | int totalCount = counts[0]; |
735 | > | for (int iproc = 1; iproc < nproc; iproc++) { |
736 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
737 | > | totalCount += counts[iproc]; |
738 | > | } |
739 | ||
740 | < | // now spray out the foundTypes to all the other processors: |
740 | > | // we need a (possibly redundant) set of all found types: |
741 | > | vector<int> ftGlobal(totalCount); |
742 | ||
743 | + | // now spray out the foundTypes to all the other processors: |
744 | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | |
745 | < | &ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
745 | > | &ftGlobal[0], &counts[0], &disps[0], |
746 | > | MPI::INT); |
747 | ||
748 | + | vector<int>::iterator j; |
749 | + | |
750 | // foundIdents is a stl set, so inserting an already found ident | |
751 | // will have no effect. | |
752 | set<int> foundIdents; | |
753 | < | vector<int>::iterator j; |
753 | > | |
754 | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | |
755 | foundIdents.insert((*j)); | |
756 | ||
757 | // now iterate over the foundIdents and get the actual atom types | |
758 | // that correspond to these: | |
759 | set<int>::iterator it; | |
760 | < | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
760 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
761 | atomTypes.insert( forceField_->getAtomType((*it)) ); | |
762 | ||
763 | #endif | |
764 | < | |
764 | > | |
765 | return atomTypes; | |
766 | } | |
767 | ||
# | Line 745 | Line 773 | namespace OpenMD { | |
773 | if ( simParams_->getAccumulateBoxDipole() ) { | |
774 | calcBoxDipole_ = true; | |
775 | } | |
776 | < | |
776 | > | |
777 | set<AtomType*>::iterator i; | |
778 | set<AtomType*> atomTypes; | |
779 | atomTypes = getSimulatedAtomTypes(); | |
# | Line 758 | Line 786 | namespace OpenMD { | |
786 | usesMetallic |= (*i)->isMetal(); | |
787 | usesDirectional |= (*i)->isDirectional(); | |
788 | } | |
789 | < | |
789 | > | |
790 | #ifdef IS_MPI | |
791 | int temp; | |
792 | temp = usesDirectional; | |
793 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
794 | < | |
794 | > | |
795 | temp = usesMetallic; | |
796 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
797 | < | |
797 | > | |
798 | temp = usesElectrostatic; | |
799 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
800 | + | #else |
801 | + | |
802 | + | usesDirectionalAtoms_ = usesDirectional; |
803 | + | usesMetallicAtoms_ = usesMetallic; |
804 | + | usesElectrostaticAtoms_ = usesElectrostatic; |
805 | + | |
806 | #endif | |
807 | + | |
808 | + | requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
809 | + | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
810 | + | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
811 | } | |
812 | ||
813 | ||
# | Line 824 | Line 862 | namespace OpenMD { | |
862 | Atom* atom; | |
863 | RealType totalMass; | |
864 | ||
865 | < | //to avoid memory reallocation, reserve enough space for massFactors_ |
865 | > | /** |
866 | > | * The mass factor is the relative mass of an atom to the total |
867 | > | * mass of the cutoff group it belongs to. By default, all atoms |
868 | > | * are their own cutoff groups, and therefore have mass factors of |
869 | > | * 1. We need some special handling for massless atoms, which |
870 | > | * will be treated as carrying the entire mass of the cutoff |
871 | > | * group. |
872 | > | */ |
873 | massFactors_.clear(); | |
874 | < | massFactors_.reserve(getNCutoffGroups()); |
874 | > | massFactors_.resize(getNAtoms(), 1.0); |
875 | ||
876 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
877 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | |
# | Line 835 | Line 880 | namespace OpenMD { | |
880 | totalMass = cg->getMass(); | |
881 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
882 | // Check for massless groups - set mfact to 1 if true | |
883 | < | if (totalMass != 0) |
884 | < | massFactors_.push_back(atom->getMass()/totalMass); |
883 | > | if (totalMass != 0) |
884 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
885 | else | |
886 | < | massFactors_.push_back( 1.0 ); |
886 | > | massFactors_[atom->getLocalIndex()] = 1.0; |
887 | } | |
888 | } | |
889 | } | |
# | Line 865 | Line 910 | namespace OpenMD { | |
910 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
911 | int* oneFourList = oneFourInteractions_.getPairList(); | |
912 | ||
868 | – | //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 | – | // &nExclude, excludeList, |
870 | – | // &nOneTwo, oneTwoList, |
871 | – | // &nOneThree, oneThreeList, |
872 | – | // &nOneFour, oneFourList, |
873 | – | // &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 | – | // &fortranGlobalGroupMembership[0], &isError); |
875 | – | |
913 | topologyDone_ = true; | |
914 | } | |
915 | ||
# | Line 1157 | Line 1194 | namespace OpenMD { | |
1194 | ||
1195 | det = intTensor.determinant(); | |
1196 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1197 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1197 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1198 | return; | |
1199 | } | |
1200 | ||
# | Line 1173 | Line 1210 | namespace OpenMD { | |
1210 | ||
1211 | detI = intTensor.determinant(); | |
1212 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1213 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1213 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1214 | return; | |
1215 | } | |
1216 | /* |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |