# | Line 125 | Line 125 | namespace OpenMD { | |
---|---|---|
125 | //equal to the total number of atoms minus number of atoms belong to | |
126 | //cutoff group defined in meta-data file plus the number of cutoff | |
127 | //groups defined in meta-data file | |
128 | – | std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 | – | std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 | – | std::cerr << "nG = " << nGroups << "\n"; |
128 | ||
129 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | |
133 | – | |
134 | – | std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
130 | ||
131 | //every free atom (atom does not belong to rigid bodies) is an | |
132 | //integrable object therefore the total number of integrable objects | |
# | Line 274 | Line 269 | namespace OpenMD { | |
269 | #endif | |
270 | return fdf_; | |
271 | } | |
272 | + | |
273 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ |
274 | + | int nLocalCutoffAtoms = 0; |
275 | + | Molecule* mol; |
276 | + | MoleculeIterator mi; |
277 | + | CutoffGroup* cg; |
278 | + | Molecule::CutoffGroupIterator ci; |
279 | ||
280 | + | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
281 | + | |
282 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
283 | + | cg = mol->nextCutoffGroup(ci)) { |
284 | + | nLocalCutoffAtoms += cg->getNumAtom(); |
285 | + | |
286 | + | } |
287 | + | } |
288 | + | |
289 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
290 | + | } |
291 | + | |
292 | void SimInfo::calcNdfRaw() { | |
293 | int ndfRaw_local; | |
294 | ||
# | Line 680 | Line 694 | namespace OpenMD { | |
694 | Atom* atom; | |
695 | set<AtomType*> atomTypes; | |
696 | ||
697 | < | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
698 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
697 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
698 | > | for(atom = mol->beginAtom(ai); atom != NULL; |
699 | > | atom = mol->nextAtom(ai)) { |
700 | atomTypes.insert(atom->getAtomType()); | |
701 | } | |
702 | } | |
703 | < | |
703 | > | |
704 | #ifdef IS_MPI | |
705 | ||
706 | // loop over the found atom types on this processor, and add their | |
707 | // numerical idents to a vector: | |
708 | < | |
708 | > | |
709 | vector<int> foundTypes; | |
710 | set<AtomType*>::iterator i; | |
711 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | |
# | Line 699 | Line 714 | namespace OpenMD { | |
714 | // count_local holds the number of found types on this processor | |
715 | int count_local = foundTypes.size(); | |
716 | ||
717 | < | // count holds the total number of found types on all processors |
703 | < | // (some will be redundant with the ones found locally): |
704 | < | int count; |
705 | < | MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
717 | > | int nproc = MPI::COMM_WORLD.Get_size(); |
718 | ||
719 | < | // create a vector to hold the globally found types, and resize it: |
720 | < | vector<int> ftGlobal; |
721 | < | ftGlobal.resize(count); |
722 | < | vector<int> counts; |
719 | > | // we need arrays to hold the counts and displacement vectors for |
720 | > | // all processors |
721 | > | vector<int> counts(nproc, 0); |
722 | > | vector<int> disps(nproc, 0); |
723 | ||
724 | < | int nproc = MPI::COMM_WORLD.Get_size(); |
725 | < | counts.resize(nproc); |
726 | < | vector<int> disps; |
727 | < | disps.resize(nproc); |
724 | > | // fill the counts array |
725 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
726 | > | 1, MPI::INT); |
727 | > | |
728 | > | // use the processor counts to compute the displacement array |
729 | > | disps[0] = 0; |
730 | > | int totalCount = counts[0]; |
731 | > | for (int iproc = 1; iproc < nproc; iproc++) { |
732 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
733 | > | totalCount += counts[iproc]; |
734 | > | } |
735 | ||
736 | < | // now spray out the foundTypes to all the other processors: |
736 | > | // we need a (possibly redundant) set of all found types: |
737 | > | vector<int> ftGlobal(totalCount); |
738 | ||
739 | + | // now spray out the foundTypes to all the other processors: |
740 | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | |
741 | < | &ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
741 | > | &ftGlobal[0], &counts[0], &disps[0], |
742 | > | MPI::INT); |
743 | ||
744 | + | vector<int>::iterator j; |
745 | + | |
746 | // foundIdents is a stl set, so inserting an already found ident | |
747 | // will have no effect. | |
748 | set<int> foundIdents; | |
749 | < | vector<int>::iterator j; |
749 | > | |
750 | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | |
751 | foundIdents.insert((*j)); | |
752 | ||
753 | // now iterate over the foundIdents and get the actual atom types | |
754 | // that correspond to these: | |
755 | set<int>::iterator it; | |
756 | < | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
756 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
757 | atomTypes.insert( forceField_->getAtomType((*it)) ); | |
758 | ||
759 | #endif | |
760 | < | |
760 | > | |
761 | return atomTypes; | |
762 | } | |
763 | ||
# | Line 745 | Line 769 | namespace OpenMD { | |
769 | if ( simParams_->getAccumulateBoxDipole() ) { | |
770 | calcBoxDipole_ = true; | |
771 | } | |
772 | < | |
772 | > | |
773 | set<AtomType*>::iterator i; | |
774 | set<AtomType*> atomTypes; | |
775 | atomTypes = getSimulatedAtomTypes(); | |
# | Line 758 | Line 782 | namespace OpenMD { | |
782 | usesMetallic |= (*i)->isMetal(); | |
783 | usesDirectional |= (*i)->isDirectional(); | |
784 | } | |
785 | < | |
785 | > | |
786 | #ifdef IS_MPI | |
787 | int temp; | |
788 | temp = usesDirectional; | |
789 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
790 | < | |
790 | > | |
791 | temp = usesMetallic; | |
792 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
793 | < | |
793 | > | |
794 | temp = usesElectrostatic; | |
795 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
796 | + | #else |
797 | + | |
798 | + | usesDirectionalAtoms_ = usesDirectional; |
799 | + | usesMetallicAtoms_ = usesMetallic; |
800 | + | usesElectrostaticAtoms_ = usesElectrostatic; |
801 | + | |
802 | #endif | |
803 | + | |
804 | + | requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
805 | + | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
806 | + | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
807 | } | |
808 | ||
809 | ||
# | Line 824 | Line 858 | namespace OpenMD { | |
858 | Atom* atom; | |
859 | RealType totalMass; | |
860 | ||
861 | < | //to avoid memory reallocation, reserve enough space for massFactors_ |
861 | > | /** |
862 | > | * The mass factor is the relative mass of an atom to the total |
863 | > | * mass of the cutoff group it belongs to. By default, all atoms |
864 | > | * are their own cutoff groups, and therefore have mass factors of |
865 | > | * 1. We need some special handling for massless atoms, which |
866 | > | * will be treated as carrying the entire mass of the cutoff |
867 | > | * group. |
868 | > | */ |
869 | massFactors_.clear(); | |
870 | < | massFactors_.reserve(getNCutoffGroups()); |
870 | > | massFactors_.resize(getNAtoms(), 1.0); |
871 | ||
872 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
873 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | |
# | Line 835 | Line 876 | namespace OpenMD { | |
876 | totalMass = cg->getMass(); | |
877 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
878 | // Check for massless groups - set mfact to 1 if true | |
879 | < | if (totalMass != 0) |
880 | < | massFactors_.push_back(atom->getMass()/totalMass); |
879 | > | if (totalMass != 0) |
880 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
881 | else | |
882 | < | massFactors_.push_back( 1.0 ); |
882 | > | massFactors_[atom->getLocalIndex()] = 1.0; |
883 | } | |
884 | } | |
885 | } | |
# | Line 865 | Line 906 | namespace OpenMD { | |
906 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
907 | int* oneFourList = oneFourInteractions_.getPairList(); | |
908 | ||
868 | – | //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 | – | // &nExclude, excludeList, |
870 | – | // &nOneTwo, oneTwoList, |
871 | – | // &nOneThree, oneThreeList, |
872 | – | // &nOneFour, oneFourList, |
873 | – | // &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 | – | // &fortranGlobalGroupMembership[0], &isError); |
875 | – | |
909 | topologyDone_ = true; | |
910 | } | |
911 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |