# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <stdlib.h> |
2 | < | #include <string.h> |
3 | < | #include <math.h> |
1 | > | /* |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | > | * |
4 | > | * The University of Notre Dame grants you ("Licensee") a |
5 | > | * non-exclusive, royalty free, license to use, modify and |
6 | > | * redistribute this software in source and binary code form, provided |
7 | > | * that the following conditions are met: |
8 | > | * |
9 | > | * 1. Acknowledgement of the program authors must be made in any |
10 | > | * publication of scientific results based in part on use of the |
11 | > | * program. An acceptable form of acknowledgement is citation of |
12 | > | * the article in which the program was described (Matthew |
13 | > | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | > | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | > | * Parallel Simulation Engine for Molecular Dynamics," |
16 | > | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | > | * |
18 | > | * 2. Redistributions of source code must retain the above copyright |
19 | > | * notice, this list of conditions and the following disclaimer. |
20 | > | * |
21 | > | * 3. Redistributions in binary form must reproduce the above copyright |
22 | > | * notice, this list of conditions and the following disclaimer in the |
23 | > | * documentation and/or other materials provided with the |
24 | > | * distribution. |
25 | > | * |
26 | > | * This software is provided "AS IS," without a warranty of any |
27 | > | * kind. All express or implied conditions, representations and |
28 | > | * warranties, including any implied warranty of merchantability, |
29 | > | * fitness for a particular purpose or non-infringement, are hereby |
30 | > | * excluded. The University of Notre Dame and its licensors shall not |
31 | > | * be liable for any damages suffered by licensee as a result of |
32 | > | * using, modifying or distributing the software or its |
33 | > | * derivatives. In no event will the University of Notre Dame or its |
34 | > | * licensors be liable for any lost revenue, profit or data, or for |
35 | > | * direct, indirect, special, consequential, incidental or punitive |
36 | > | * damages, however caused and regardless of the theory of liability, |
37 | > | * arising out of the use of or inability to use software, even if the |
38 | > | * University of Notre Dame has been advised of the possibility of |
39 | > | * such damages. |
40 | > | */ |
41 | > | |
42 | > | /** |
43 | > | * @file SimInfo.cpp |
44 | > | * @author tlin |
45 | > | * @date 11/02/2004 |
46 | > | * @version 1.0 |
47 | > | */ |
48 | ||
49 | < | #include <iostream> |
50 | < | using namespace std; |
49 | > | #include <algorithm> |
50 | > | #include <set> |
51 | ||
52 | < | #include "SimInfo.hpp" |
53 | < | #define __C |
54 | < | #include "fSimulation.h" |
55 | < | #include "simError.h" |
52 | > | #include "brains/SimInfo.hpp" |
53 | > | #include "math/Vector3.hpp" |
54 | > | #include "primitives/Molecule.hpp" |
55 | > | #include "UseTheForce/fCutoffPolicy.h" |
56 | > | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
57 | > | #include "UseTheForce/doForces_interface.h" |
58 | > | #include "UseTheForce/DarkSide/electrostatic_interface.h" |
59 | > | #include "UseTheForce/notifyCutoffs_interface.h" |
60 | > | #include "utils/MemoryUtils.hpp" |
61 | > | #include "utils/simError.h" |
62 | > | #include "selection/SelectionManager.hpp" |
63 | ||
13 | – | #include "fortranWrappers.hpp" |
14 | – | |
15 | – | #include "MatVec3.h" |
16 | – | |
64 | #ifdef IS_MPI | |
65 | < | #include "mpiSimulation.hpp" |
66 | < | #endif |
65 | > | #include "UseTheForce/mpiComponentPlan.h" |
66 | > | #include "UseTheForce/DarkSide/simParallel_interface.h" |
67 | > | #endif |
68 | ||
69 | < | inline double roundMe( double x ){ |
22 | < | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 | < | } |
24 | < | |
25 | < | inline double min( double a, double b ){ |
26 | < | return (a < b ) ? a : b; |
27 | < | } |
69 | > | namespace oopse { |
70 | ||
71 | < | SimInfo* currentInfo; |
71 | > | SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
72 | > | ForceField* ff, Globals* simParams) : |
73 | > | stamps_(stamps), forceField_(ff), simParams_(simParams), |
74 | > | ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
75 | > | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
76 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
77 | > | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
78 | > | nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
79 | > | sman_(NULL), fortranInitialized_(false) { |
80 | ||
81 | < | SimInfo::SimInfo(){ |
81 | > | |
82 | > | std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
83 | > | MoleculeStamp* molStamp; |
84 | > | int nMolWithSameStamp; |
85 | > | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
86 | > | int nGroups = 0; //total cutoff groups defined in meta-data file |
87 | > | CutoffGroupStamp* cgStamp; |
88 | > | RigidBodyStamp* rbStamp; |
89 | > | int nRigidAtoms = 0; |
90 | > | |
91 | > | for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
92 | > | molStamp = i->first; |
93 | > | nMolWithSameStamp = i->second; |
94 | > | |
95 | > | addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 | ||
97 | < | n_constraints = 0; |
98 | < | nZconstraints = 0; |
35 | < | n_oriented = 0; |
36 | < | n_dipoles = 0; |
37 | < | ndf = 0; |
38 | < | ndfRaw = 0; |
39 | < | nZconstraints = 0; |
40 | < | the_integrator = NULL; |
41 | < | setTemp = 0; |
42 | < | thermalTime = 0.0; |
43 | < | currentTime = 0.0; |
44 | < | rCut = 0.0; |
45 | < | rSw = 0.0; |
97 | > | //calculate atoms in molecules |
98 | > | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 | ||
47 | – | haveRcut = 0; |
48 | – | haveRsw = 0; |
49 | – | boxIsInit = 0; |
50 | – | |
51 | – | resetTime = 1e99; |
100 | ||
101 | < | orthoRhombic = 0; |
102 | < | orthoTolerance = 1E-6; |
103 | < | useInitXSstate = true; |
101 | > | //calculate atoms in cutoff groups |
102 | > | int nAtomsInGroups = 0; |
103 | > | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
104 | > | |
105 | > | for (int j=0; j < nCutoffGroupsInStamp; j++) { |
106 | > | cgStamp = molStamp->getCutoffGroup(j); |
107 | > | nAtomsInGroups += cgStamp->getNMembers(); |
108 | > | } |
109 | ||
110 | < | usePBC = 0; |
58 | < | useLJ = 0; |
59 | < | useSticky = 0; |
60 | < | useCharges = 0; |
61 | < | useDipoles = 0; |
62 | < | useReactionField = 0; |
63 | < | useGB = 0; |
64 | < | useEAM = 0; |
65 | < | useSolidThermInt = 0; |
66 | < | useLiquidThermInt = 0; |
110 | > | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
111 | ||
112 | < | haveCutoffGroups = false; |
112 | > | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
113 | ||
114 | < | excludes = Exclude::Instance(); |
114 | > | //calculate atoms in rigid bodies |
115 | > | int nAtomsInRigidBodies = 0; |
116 | > | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
117 | > | |
118 | > | for (int j=0; j < nRigidBodiesInStamp; j++) { |
119 | > | rbStamp = molStamp->getRigidBody(j); |
120 | > | nAtomsInRigidBodies += rbStamp->getNMembers(); |
121 | > | } |
122 | ||
123 | < | myConfiguration = new SimState(); |
123 | > | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
124 | > | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
125 | > | |
126 | > | } |
127 | ||
128 | < | has_minimizer = false; |
129 | < | the_minimizer =NULL; |
128 | > | //every free atom (atom does not belong to cutoff groups) is a cutoff |
129 | > | //group therefore the total number of cutoff groups in the system is |
130 | > | //equal to the total number of atoms minus number of atoms belong to |
131 | > | //cutoff group defined in meta-data file plus the number of cutoff |
132 | > | //groups defined in meta-data file |
133 | > | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 | ||
135 | < | ngroup = 0; |
136 | < | |
137 | < | wrapMeSimInfo( this ); |
138 | < | } |
139 | < | |
140 | < | |
141 | < | SimInfo::~SimInfo(){ |
84 | < | |
85 | < | delete myConfiguration; |
86 | < | |
87 | < | map<string, GenericData*>::iterator i; |
135 | > | //every free atom (atom does not belong to rigid bodies) is an |
136 | > | //integrable object therefore the total number of integrable objects |
137 | > | //in the system is equal to the total number of atoms minus number of |
138 | > | //atoms belong to rigid body defined in meta-data file plus the number |
139 | > | //of rigid bodies defined in meta-data file |
140 | > | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
141 | > | + nGlobalRigidBodies_; |
142 | ||
143 | < | for(i = properties.begin(); i != properties.end(); i++) |
90 | < | delete (*i).second; |
143 | > | nGlobalMols_ = molStampIds_.size(); |
144 | ||
145 | < | } |
145 | > | #ifdef IS_MPI |
146 | > | molToProcMap_.resize(nGlobalMols_); |
147 | > | #endif |
148 | ||
149 | < | void SimInfo::setBox(double newBox[3]) { |
95 | < | |
96 | < | int i, j; |
97 | < | double tempMat[3][3]; |
149 | > | } |
150 | ||
151 | < | for(i=0; i<3; i++) |
152 | < | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
151 | > | SimInfo::~SimInfo() { |
152 | > | std::map<int, Molecule*>::iterator i; |
153 | > | for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
154 | > | delete i->second; |
155 | > | } |
156 | > | molecules_.clear(); |
157 | > | |
158 | > | delete stamps_; |
159 | > | delete sman_; |
160 | > | delete simParams_; |
161 | > | delete forceField_; |
162 | > | } |
163 | ||
164 | < | tempMat[0][0] = newBox[0]; |
165 | < | tempMat[1][1] = newBox[1]; |
166 | < | tempMat[2][2] = newBox[2]; |
164 | > | int SimInfo::getNGlobalConstraints() { |
165 | > | int nGlobalConstraints; |
166 | > | #ifdef IS_MPI |
167 | > | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
168 | > | MPI_COMM_WORLD); |
169 | > | #else |
170 | > | nGlobalConstraints = nConstraints_; |
171 | > | #endif |
172 | > | return nGlobalConstraints; |
173 | > | } |
174 | ||
175 | < | setBoxM( tempMat ); |
175 | > | bool SimInfo::addMolecule(Molecule* mol) { |
176 | > | MoleculeIterator i; |
177 | ||
178 | < | } |
178 | > | i = molecules_.find(mol->getGlobalIndex()); |
179 | > | if (i == molecules_.end() ) { |
180 | ||
181 | < | void SimInfo::setBoxM( double theBox[3][3] ){ |
182 | < | |
183 | < | int i, j; |
184 | < | double FortranHmat[9]; // to preserve compatibility with Fortran the |
185 | < | // ordering in the array is as follows: |
186 | < | // [ 0 3 6 ] |
187 | < | // [ 1 4 7 ] |
188 | < | // [ 2 5 8 ] |
189 | < | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
181 | > | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
182 | > | |
183 | > | nAtoms_ += mol->getNAtoms(); |
184 | > | nBonds_ += mol->getNBonds(); |
185 | > | nBends_ += mol->getNBends(); |
186 | > | nTorsions_ += mol->getNTorsions(); |
187 | > | nRigidBodies_ += mol->getNRigidBodies(); |
188 | > | nIntegrableObjects_ += mol->getNIntegrableObjects(); |
189 | > | nCutoffGroups_ += mol->getNCutoffGroups(); |
190 | > | nConstraints_ += mol->getNConstraintPairs(); |
191 | ||
192 | < | if( !boxIsInit ) boxIsInit = 1; |
193 | < | |
194 | < | for(i=0; i < 3; i++) |
195 | < | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
196 | < | |
125 | < | calcBoxL(); |
126 | < | calcHmatInv(); |
127 | < | |
128 | < | for(i=0; i < 3; i++) { |
129 | < | for (j=0; j < 3; j++) { |
130 | < | FortranHmat[3*j + i] = Hmat[i][j]; |
131 | < | FortranHmatInv[3*j + i] = HmatInv[i][j]; |
192 | > | addExcludePairs(mol); |
193 | > | |
194 | > | return true; |
195 | > | } else { |
196 | > | return false; |
197 | } | |
198 | } | |
199 | ||
200 | < | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
201 | < | |
202 | < | } |
138 | < | |
200 | > | bool SimInfo::removeMolecule(Molecule* mol) { |
201 | > | MoleculeIterator i; |
202 | > | i = molecules_.find(mol->getGlobalIndex()); |
203 | ||
204 | < | void SimInfo::getBoxM (double theBox[3][3]) { |
204 | > | if (i != molecules_.end() ) { |
205 | ||
206 | < | int i, j; |
207 | < | for(i=0; i<3; i++) |
208 | < | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
209 | < | } |
206 | > | assert(mol == i->second); |
207 | > | |
208 | > | nAtoms_ -= mol->getNAtoms(); |
209 | > | nBonds_ -= mol->getNBonds(); |
210 | > | nBends_ -= mol->getNBends(); |
211 | > | nTorsions_ -= mol->getNTorsions(); |
212 | > | nRigidBodies_ -= mol->getNRigidBodies(); |
213 | > | nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
214 | > | nCutoffGroups_ -= mol->getNCutoffGroups(); |
215 | > | nConstraints_ -= mol->getNConstraintPairs(); |
216 | ||
217 | + | removeExcludePairs(mol); |
218 | + | molecules_.erase(mol->getGlobalIndex()); |
219 | ||
220 | < | void SimInfo::scaleBox(double scale) { |
221 | < | double theBox[3][3]; |
222 | < | int i, j; |
220 | > | delete mol; |
221 | > | |
222 | > | return true; |
223 | > | } else { |
224 | > | return false; |
225 | > | } |
226 | ||
152 | – | // cerr << "Scaling box by " << scale << "\n"; |
227 | ||
228 | < | for(i=0; i<3; i++) |
155 | < | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
228 | > | } |
229 | ||
230 | < | setBoxM(theBox); |
230 | > | |
231 | > | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
232 | > | i = molecules_.begin(); |
233 | > | return i == molecules_.end() ? NULL : i->second; |
234 | > | } |
235 | ||
236 | < | } |
236 | > | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
237 | > | ++i; |
238 | > | return i == molecules_.end() ? NULL : i->second; |
239 | > | } |
240 | ||
161 | – | void SimInfo::calcHmatInv( void ) { |
162 | – | |
163 | – | int oldOrtho; |
164 | – | int i,j; |
165 | – | double smallDiag; |
166 | – | double tol; |
167 | – | double sanity[3][3]; |
241 | ||
242 | < | invertMat3( Hmat, HmatInv ); |
242 | > | void SimInfo::calcNdf() { |
243 | > | int ndf_local; |
244 | > | MoleculeIterator i; |
245 | > | std::vector<StuntDouble*>::iterator j; |
246 | > | Molecule* mol; |
247 | > | StuntDouble* integrableObject; |
248 | ||
249 | < | // check to see if Hmat is orthorhombic |
250 | < | |
251 | < | oldOrtho = orthoRhombic; |
249 | > | ndf_local = 0; |
250 | > | |
251 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
252 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
253 | > | integrableObject = mol->nextIntegrableObject(j)) { |
254 | ||
255 | < | smallDiag = fabs(Hmat[0][0]); |
176 | < | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
177 | < | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
178 | < | tol = smallDiag * orthoTolerance; |
255 | > | ndf_local += 3; |
256 | ||
257 | < | orthoRhombic = 1; |
258 | < | |
259 | < | for (i = 0; i < 3; i++ ) { |
260 | < | for (j = 0 ; j < 3; j++) { |
261 | < | if (i != j) { |
262 | < | if (orthoRhombic) { |
263 | < | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
264 | < | } |
265 | < | } |
266 | < | } |
190 | < | } |
191 | < | |
192 | < | if( oldOrtho != orthoRhombic ){ |
257 | > | if (integrableObject->isDirectional()) { |
258 | > | if (integrableObject->isLinear()) { |
259 | > | ndf_local += 2; |
260 | > | } else { |
261 | > | ndf_local += 3; |
262 | > | } |
263 | > | } |
264 | > | |
265 | > | }//end for (integrableObject) |
266 | > | }// end for (mol) |
267 | ||
268 | < | if( orthoRhombic ) { |
269 | < | sprintf( painCave.errMsg, |
196 | < | "OOPSE is switching from the default Non-Orthorhombic\n" |
197 | < | "\tto the faster Orthorhombic periodic boundary computations.\n" |
198 | < | "\tThis is usually a good thing, but if you wan't the\n" |
199 | < | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
200 | < | "\tvariable ( currently set to %G ) smaller.\n", |
201 | < | orthoTolerance); |
202 | < | painCave.severity = OOPSE_INFO; |
203 | < | simError(); |
204 | < | } |
205 | < | else { |
206 | < | sprintf( painCave.errMsg, |
207 | < | "OOPSE is switching from the faster Orthorhombic to the more\n" |
208 | < | "\tflexible Non-Orthorhombic periodic boundary computations.\n" |
209 | < | "\tThis is usually because the box has deformed under\n" |
210 | < | "\tNPTf integration. If you wan't to live on the edge with\n" |
211 | < | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
212 | < | "\tvariable ( currently set to %G ) larger.\n", |
213 | < | orthoTolerance); |
214 | < | painCave.severity = OOPSE_WARNING; |
215 | < | simError(); |
216 | < | } |
217 | < | } |
218 | < | } |
268 | > | // n_constraints is local, so subtract them on each processor |
269 | > | ndf_local -= nConstraints_; |
270 | ||
271 | < | void SimInfo::calcBoxL( void ){ |
271 | > | #ifdef IS_MPI |
272 | > | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
273 | > | #else |
274 | > | ndf_ = ndf_local; |
275 | > | #endif |
276 | ||
277 | < | double dx, dy, dz, dsq; |
277 | > | // nZconstraints_ is global, as are the 3 COM translations for the |
278 | > | // entire system: |
279 | > | ndf_ = ndf_ - 3 - nZconstraint_; |
280 | ||
281 | < | // boxVol = Determinant of Hmat |
281 | > | } |
282 | ||
283 | < | boxVol = matDet3( Hmat ); |
283 | > | void SimInfo::calcNdfRaw() { |
284 | > | int ndfRaw_local; |
285 | ||
286 | < | // boxLx |
287 | < | |
288 | < | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
289 | < | dsq = dx*dx + dy*dy + dz*dz; |
232 | < | boxL[0] = sqrt( dsq ); |
233 | < | //maxCutoff = 0.5 * boxL[0]; |
286 | > | MoleculeIterator i; |
287 | > | std::vector<StuntDouble*>::iterator j; |
288 | > | Molecule* mol; |
289 | > | StuntDouble* integrableObject; |
290 | ||
291 | < | // boxLy |
292 | < | |
293 | < | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
294 | < | dsq = dx*dx + dy*dy + dz*dz; |
295 | < | boxL[1] = sqrt( dsq ); |
296 | < | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
291 | > | // Raw degrees of freedom that we have to set |
292 | > | ndfRaw_local = 0; |
293 | > | |
294 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
295 | > | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
296 | > | integrableObject = mol->nextIntegrableObject(j)) { |
297 | ||
298 | + | ndfRaw_local += 3; |
299 | ||
300 | < | // boxLz |
301 | < | |
302 | < | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
303 | < | dsq = dx*dx + dy*dy + dz*dz; |
304 | < | boxL[2] = sqrt( dsq ); |
305 | < | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
300 | > | if (integrableObject->isDirectional()) { |
301 | > | if (integrableObject->isLinear()) { |
302 | > | ndfRaw_local += 2; |
303 | > | } else { |
304 | > | ndfRaw_local += 3; |
305 | > | } |
306 | > | } |
307 | > | |
308 | > | } |
309 | > | } |
310 | > | |
311 | > | #ifdef IS_MPI |
312 | > | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
313 | > | #else |
314 | > | ndfRaw_ = ndfRaw_local; |
315 | > | #endif |
316 | > | } |
317 | ||
318 | < | //calculate the max cutoff |
319 | < | maxCutoff = calcMaxCutOff(); |
252 | < | |
253 | < | checkCutOffs(); |
318 | > | void SimInfo::calcNdfTrans() { |
319 | > | int ndfTrans_local; |
320 | ||
321 | < | } |
321 | > | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
322 | ||
323 | ||
324 | < | double SimInfo::calcMaxCutOff(){ |
324 | > | #ifdef IS_MPI |
325 | > | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
326 | > | #else |
327 | > | ndfTrans_ = ndfTrans_local; |
328 | > | #endif |
329 | ||
330 | < | double ri[3], rj[3], rk[3]; |
331 | < | double rij[3], rjk[3], rki[3]; |
332 | < | double minDist; |
330 | > | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
331 | > | |
332 | > | } |
333 | ||
334 | < | ri[0] = Hmat[0][0]; |
335 | < | ri[1] = Hmat[1][0]; |
336 | < | ri[2] = Hmat[2][0]; |
337 | < | |
338 | < | rj[0] = Hmat[0][1]; |
339 | < | rj[1] = Hmat[1][1]; |
340 | < | rj[2] = Hmat[2][1]; |
341 | < | |
342 | < | rk[0] = Hmat[0][2]; |
343 | < | rk[1] = Hmat[1][2]; |
344 | < | rk[2] = Hmat[2][2]; |
334 | > | void SimInfo::addExcludePairs(Molecule* mol) { |
335 | > | std::vector<Bond*>::iterator bondIter; |
336 | > | std::vector<Bend*>::iterator bendIter; |
337 | > | std::vector<Torsion*>::iterator torsionIter; |
338 | > | Bond* bond; |
339 | > | Bend* bend; |
340 | > | Torsion* torsion; |
341 | > | int a; |
342 | > | int b; |
343 | > | int c; |
344 | > | int d; |
345 | ||
346 | < | crossProduct3(ri, rj, rij); |
347 | < | distXY = dotProduct3(rk,rij) / norm3(rij); |
346 | > | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
347 | > | a = bond->getAtomA()->getGlobalIndex(); |
348 | > | b = bond->getAtomB()->getGlobalIndex(); |
349 | > | exclude_.addPair(a, b); |
350 | > | } |
351 | ||
352 | < | crossProduct3(rj,rk, rjk); |
353 | < | distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
352 | > | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
353 | > | a = bend->getAtomA()->getGlobalIndex(); |
354 | > | b = bend->getAtomB()->getGlobalIndex(); |
355 | > | c = bend->getAtomC()->getGlobalIndex(); |
356 | ||
357 | < | crossProduct3(rk,ri, rki); |
358 | < | distZX = dotProduct3(rj,rki) / norm3(rki); |
357 | > | exclude_.addPair(a, b); |
358 | > | exclude_.addPair(a, c); |
359 | > | exclude_.addPair(b, c); |
360 | > | } |
361 | ||
362 | < | minDist = min(min(distXY, distYZ), distZX); |
363 | < | return minDist/2; |
364 | < | |
365 | < | } |
362 | > | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
363 | > | a = torsion->getAtomA()->getGlobalIndex(); |
364 | > | b = torsion->getAtomB()->getGlobalIndex(); |
365 | > | c = torsion->getAtomC()->getGlobalIndex(); |
366 | > | d = torsion->getAtomD()->getGlobalIndex(); |
367 | ||
368 | < | void SimInfo::wrapVector( double thePos[3] ){ |
368 | > | exclude_.addPair(a, b); |
369 | > | exclude_.addPair(a, c); |
370 | > | exclude_.addPair(a, d); |
371 | > | exclude_.addPair(b, c); |
372 | > | exclude_.addPair(b, d); |
373 | > | exclude_.addPair(c, d); |
374 | > | } |
375 | ||
376 | < | int i; |
377 | < | double scaled[3]; |
376 | > | Molecule::RigidBodyIterator rbIter; |
377 | > | RigidBody* rb; |
378 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
379 | > | std::vector<Atom*> atoms = rb->getAtoms(); |
380 | > | for (int i = 0; i < atoms.size() -1 ; ++i) { |
381 | > | for (int j = i + 1; j < atoms.size(); ++j) { |
382 | > | a = atoms[i]->getGlobalIndex(); |
383 | > | b = atoms[j]->getGlobalIndex(); |
384 | > | exclude_.addPair(a, b); |
385 | > | } |
386 | > | } |
387 | > | } |
388 | ||
389 | < | if( !orthoRhombic ){ |
296 | < | // calc the scaled coordinates. |
297 | < | |
389 | > | } |
390 | ||
391 | < | matVecMul3(HmatInv, thePos, scaled); |
391 | > | void SimInfo::removeExcludePairs(Molecule* mol) { |
392 | > | std::vector<Bond*>::iterator bondIter; |
393 | > | std::vector<Bend*>::iterator bendIter; |
394 | > | std::vector<Torsion*>::iterator torsionIter; |
395 | > | Bond* bond; |
396 | > | Bend* bend; |
397 | > | Torsion* torsion; |
398 | > | int a; |
399 | > | int b; |
400 | > | int c; |
401 | > | int d; |
402 | ||
403 | < | for(i=0; i<3; i++) |
404 | < | scaled[i] -= roundMe(scaled[i]); |
405 | < | |
406 | < | // calc the wrapped real coordinates from the wrapped scaled coordinates |
407 | < | |
306 | < | matVecMul3(Hmat, scaled, thePos); |
403 | > | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
404 | > | a = bond->getAtomA()->getGlobalIndex(); |
405 | > | b = bond->getAtomB()->getGlobalIndex(); |
406 | > | exclude_.removePair(a, b); |
407 | > | } |
408 | ||
409 | < | } |
410 | < | else{ |
411 | < | // calc the scaled coordinates. |
412 | < | |
312 | < | for(i=0; i<3; i++) |
313 | < | scaled[i] = thePos[i]*HmatInv[i][i]; |
314 | < | |
315 | < | // wrap the scaled coordinates |
316 | < | |
317 | < | for(i=0; i<3; i++) |
318 | < | scaled[i] -= roundMe(scaled[i]); |
319 | < | |
320 | < | // calc the wrapped real coordinates from the wrapped scaled coordinates |
321 | < | |
322 | < | for(i=0; i<3; i++) |
323 | < | thePos[i] = scaled[i]*Hmat[i][i]; |
324 | < | } |
325 | < | |
326 | < | } |
409 | > | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
410 | > | a = bend->getAtomA()->getGlobalIndex(); |
411 | > | b = bend->getAtomB()->getGlobalIndex(); |
412 | > | c = bend->getAtomC()->getGlobalIndex(); |
413 | ||
414 | + | exclude_.removePair(a, b); |
415 | + | exclude_.removePair(a, c); |
416 | + | exclude_.removePair(b, c); |
417 | + | } |
418 | ||
419 | < | int SimInfo::getNDF(){ |
420 | < | int ndf_local; |
419 | > | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
420 | > | a = torsion->getAtomA()->getGlobalIndex(); |
421 | > | b = torsion->getAtomB()->getGlobalIndex(); |
422 | > | c = torsion->getAtomC()->getGlobalIndex(); |
423 | > | d = torsion->getAtomD()->getGlobalIndex(); |
424 | ||
425 | < | ndf_local = 0; |
426 | < | |
427 | < | for(int i = 0; i < integrableObjects.size(); i++){ |
428 | < | ndf_local += 3; |
429 | < | if (integrableObjects[i]->isDirectional()) { |
430 | < | if (integrableObjects[i]->isLinear()) |
338 | < | ndf_local += 2; |
339 | < | else |
340 | < | ndf_local += 3; |
425 | > | exclude_.removePair(a, b); |
426 | > | exclude_.removePair(a, c); |
427 | > | exclude_.removePair(a, d); |
428 | > | exclude_.removePair(b, c); |
429 | > | exclude_.removePair(b, d); |
430 | > | exclude_.removePair(c, d); |
431 | } | |
432 | + | |
433 | + | Molecule::RigidBodyIterator rbIter; |
434 | + | RigidBody* rb; |
435 | + | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
436 | + | std::vector<Atom*> atoms = rb->getAtoms(); |
437 | + | for (int i = 0; i < atoms.size() -1 ; ++i) { |
438 | + | for (int j = i + 1; j < atoms.size(); ++j) { |
439 | + | a = atoms[i]->getGlobalIndex(); |
440 | + | b = atoms[j]->getGlobalIndex(); |
441 | + | exclude_.removePair(a, b); |
442 | + | } |
443 | + | } |
444 | + | } |
445 | + | |
446 | } | |
447 | ||
344 | – | // n_constraints is local, so subtract them on each processor: |
448 | ||
449 | < | ndf_local -= n_constraints; |
449 | > | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
450 | > | int curStampId; |
451 | ||
452 | < | #ifdef IS_MPI |
453 | < | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
350 | < | #else |
351 | < | ndf = ndf_local; |
352 | < | #endif |
452 | > | //index from 0 |
453 | > | curStampId = moleculeStamps_.size(); |
454 | ||
455 | < | // nZconstraints is global, as are the 3 COM translations for the |
456 | < | // entire system: |
455 | > | moleculeStamps_.push_back(molStamp); |
456 | > | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
457 | > | } |
458 | ||
459 | < | ndf = ndf - 3 - nZconstraints; |
459 | > | void SimInfo::update() { |
460 | ||
461 | < | return ndf; |
360 | < | } |
461 | > | setupSimType(); |
462 | ||
463 | < | int SimInfo::getNDFraw() { |
464 | < | int ndfRaw_local; |
463 | > | #ifdef IS_MPI |
464 | > | setupFortranParallel(); |
465 | > | #endif |
466 | ||
467 | < | // Raw degrees of freedom that we have to set |
366 | < | ndfRaw_local = 0; |
467 | > | setupFortranSim(); |
468 | ||
469 | < | for(int i = 0; i < integrableObjects.size(); i++){ |
470 | < | ndfRaw_local += 3; |
471 | < | if (integrableObjects[i]->isDirectional()) { |
472 | < | if (integrableObjects[i]->isLinear()) |
473 | < | ndfRaw_local += 2; |
474 | < | else |
475 | < | ndfRaw_local += 3; |
469 | > | //setup fortran force field |
470 | > | /** @deprecate */ |
471 | > | int isError = 0; |
472 | > | |
473 | > | setupElectrostaticSummationMethod( isError ); |
474 | > | |
475 | > | if(isError){ |
476 | > | sprintf( painCave.errMsg, |
477 | > | "ForceField error: There was an error initializing the forceField in fortran.\n" ); |
478 | > | painCave.isFatal = 1; |
479 | > | simError(); |
480 | } | |
481 | < | } |
481 | > | |
482 | ||
483 | < | #ifdef IS_MPI |
379 | < | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
380 | < | #else |
381 | < | ndfRaw = ndfRaw_local; |
382 | < | #endif |
483 | > | setupCutoff(); |
484 | ||
485 | < | return ndfRaw; |
486 | < | } |
485 | > | calcNdf(); |
486 | > | calcNdfRaw(); |
487 | > | calcNdfTrans(); |
488 | ||
489 | < | int SimInfo::getNDFtranslational() { |
490 | < | int ndfTrans_local; |
489 | > | fortranInitialized_ = true; |
490 | > | } |
491 | ||
492 | < | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
492 | > | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
493 | > | SimInfo::MoleculeIterator mi; |
494 | > | Molecule* mol; |
495 | > | Molecule::AtomIterator ai; |
496 | > | Atom* atom; |
497 | > | std::set<AtomType*> atomTypes; |
498 | ||
499 | + | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
500 | ||
501 | < | #ifdef IS_MPI |
502 | < | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
503 | < | #else |
504 | < | ndfTrans = ndfTrans_local; |
505 | < | #endif |
501 | > | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
502 | > | atomTypes.insert(atom->getAtomType()); |
503 | > | } |
504 | > | |
505 | > | } |
506 | ||
507 | < | ndfTrans = ndfTrans - 3 - nZconstraints; |
507 | > | return atomTypes; |
508 | > | } |
509 | ||
510 | < | return ndfTrans; |
511 | < | } |
510 | > | void SimInfo::setupSimType() { |
511 | > | std::set<AtomType*>::iterator i; |
512 | > | std::set<AtomType*> atomTypes; |
513 | > | atomTypes = getUniqueAtomTypes(); |
514 | > | |
515 | > | int useLennardJones = 0; |
516 | > | int useElectrostatic = 0; |
517 | > | int useEAM = 0; |
518 | > | int useCharge = 0; |
519 | > | int useDirectional = 0; |
520 | > | int useDipole = 0; |
521 | > | int useGayBerne = 0; |
522 | > | int useSticky = 0; |
523 | > | int useStickyPower = 0; |
524 | > | int useShape = 0; |
525 | > | int useFLARB = 0; //it is not in AtomType yet |
526 | > | int useDirectionalAtom = 0; |
527 | > | int useElectrostatics = 0; |
528 | > | //usePBC and useRF are from simParams |
529 | > | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
530 | > | int useRF; |
531 | > | std::string myMethod; |
532 | ||
533 | < | int SimInfo::getTotIntegrableObjects() { |
534 | < | int nObjs_local; |
406 | < | int nObjs; |
533 | > | // set the useRF logical |
534 | > | useRF = 0; |
535 | ||
408 | – | nObjs_local = integrableObjects.size(); |
536 | ||
537 | + | if (simParams_->haveElectrostaticSummationMethod()) { |
538 | + | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
539 | + | toUpper(myMethod); |
540 | + | if (myMethod == "REACTION_FIELD") { |
541 | + | useRF=1; |
542 | + | } |
543 | + | } |
544 | ||
545 | < | #ifdef IS_MPI |
546 | < | MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
547 | < | #else |
548 | < | nObjs = nObjs_local; |
549 | < | #endif |
545 | > | //loop over all of the atom types |
546 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
547 | > | useLennardJones |= (*i)->isLennardJones(); |
548 | > | useElectrostatic |= (*i)->isElectrostatic(); |
549 | > | useEAM |= (*i)->isEAM(); |
550 | > | useCharge |= (*i)->isCharge(); |
551 | > | useDirectional |= (*i)->isDirectional(); |
552 | > | useDipole |= (*i)->isDipole(); |
553 | > | useGayBerne |= (*i)->isGayBerne(); |
554 | > | useSticky |= (*i)->isSticky(); |
555 | > | useStickyPower |= (*i)->isStickyPower(); |
556 | > | useShape |= (*i)->isShape(); |
557 | > | } |
558 | ||
559 | + | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
560 | + | useDirectionalAtom = 1; |
561 | + | } |
562 | ||
563 | < | return nObjs; |
564 | < | } |
563 | > | if (useCharge || useDipole) { |
564 | > | useElectrostatics = 1; |
565 | > | } |
566 | ||
567 | < | void SimInfo::refreshSim(){ |
567 | > | #ifdef IS_MPI |
568 | > | int temp; |
569 | ||
570 | < | simtype fInfo; |
571 | < | int isError; |
425 | < | int n_global; |
426 | < | int* excl; |
570 | > | temp = usePBC; |
571 | > | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
572 | ||
573 | < | fInfo.dielect = 0.0; |
573 | > | temp = useDirectionalAtom; |
574 | > | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
575 | > | |
576 | > | temp = useLennardJones; |
577 | > | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
578 | > | |
579 | > | temp = useElectrostatics; |
580 | > | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
581 | ||
582 | < | if( useDipoles ){ |
583 | < | if( useReactionField )fInfo.dielect = dielectric; |
432 | < | } |
582 | > | temp = useCharge; |
583 | > | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
584 | ||
585 | < | fInfo.SIM_uses_PBC = usePBC; |
586 | < | //fInfo.SIM_uses_LJ = 0; |
436 | < | fInfo.SIM_uses_LJ = useLJ; |
437 | < | fInfo.SIM_uses_sticky = useSticky; |
438 | < | //fInfo.SIM_uses_sticky = 0; |
439 | < | fInfo.SIM_uses_charges = useCharges; |
440 | < | fInfo.SIM_uses_dipoles = useDipoles; |
441 | < | //fInfo.SIM_uses_dipoles = 0; |
442 | < | fInfo.SIM_uses_RF = useReactionField; |
443 | < | //fInfo.SIM_uses_RF = 0; |
444 | < | fInfo.SIM_uses_GB = useGB; |
445 | < | fInfo.SIM_uses_EAM = useEAM; |
585 | > | temp = useDipole; |
586 | > | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
587 | ||
588 | < | n_exclude = excludes->getSize(); |
589 | < | excl = excludes->getFortranArray(); |
449 | < | |
450 | < | #ifdef IS_MPI |
451 | < | n_global = mpiSim->getNAtomsGlobal(); |
452 | < | #else |
453 | < | n_global = n_atoms; |
454 | < | #endif |
455 | < | |
456 | < | isError = 0; |
457 | < | |
458 | < | getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
459 | < | //it may not be a good idea to pass the address of first element in vector |
460 | < | //since c++ standard does not require vector to be stored continuously in meomory |
461 | < | //Most of the compilers will organize the memory of vector continuously |
462 | < | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
463 | < | &nGlobalExcludes, globalExcludes, molMembershipArray, |
464 | < | &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
588 | > | temp = useSticky; |
589 | > | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
590 | ||
591 | < | if( isError ){ |
591 | > | temp = useStickyPower; |
592 | > | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
593 | ||
594 | < | sprintf( painCave.errMsg, |
595 | < | "There was an error setting the simulation information in fortran.\n" ); |
596 | < | painCave.isFatal = 1; |
597 | < | painCave.severity = OOPSE_ERROR; |
598 | < | simError(); |
594 | > | temp = useGayBerne; |
595 | > | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
596 | > | |
597 | > | temp = useEAM; |
598 | > | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
599 | > | |
600 | > | temp = useShape; |
601 | > | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
602 | > | |
603 | > | temp = useFLARB; |
604 | > | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
605 | > | |
606 | > | temp = useRF; |
607 | > | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
608 | > | |
609 | > | #endif |
610 | > | |
611 | > | fInfo_.SIM_uses_PBC = usePBC; |
612 | > | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
613 | > | fInfo_.SIM_uses_LennardJones = useLennardJones; |
614 | > | fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
615 | > | fInfo_.SIM_uses_Charges = useCharge; |
616 | > | fInfo_.SIM_uses_Dipoles = useDipole; |
617 | > | fInfo_.SIM_uses_Sticky = useSticky; |
618 | > | fInfo_.SIM_uses_StickyPower = useStickyPower; |
619 | > | fInfo_.SIM_uses_GayBerne = useGayBerne; |
620 | > | fInfo_.SIM_uses_EAM = useEAM; |
621 | > | fInfo_.SIM_uses_Shapes = useShape; |
622 | > | fInfo_.SIM_uses_FLARB = useFLARB; |
623 | > | fInfo_.SIM_uses_RF = useRF; |
624 | > | |
625 | > | if( myMethod == "REACTION_FIELD") { |
626 | > | |
627 | > | if (simParams_->haveDielectric()) { |
628 | > | fInfo_.dielect = simParams_->getDielectric(); |
629 | > | } else { |
630 | > | sprintf(painCave.errMsg, |
631 | > | "SimSetup Error: No Dielectric constant was set.\n" |
632 | > | "\tYou are trying to use Reaction Field without" |
633 | > | "\tsetting a dielectric constant!\n"); |
634 | > | painCave.isFatal = 1; |
635 | > | simError(); |
636 | > | } |
637 | > | } |
638 | } | |
474 | – | |
475 | – | #ifdef IS_MPI |
476 | – | sprintf( checkPointMsg, |
477 | – | "succesfully sent the simulation information to fortran.\n"); |
478 | – | MPIcheckPoint(); |
479 | – | #endif // is_mpi |
480 | – | |
481 | – | this->ndf = this->getNDF(); |
482 | – | this->ndfRaw = this->getNDFraw(); |
483 | – | this->ndfTrans = this->getNDFtranslational(); |
484 | – | } |
639 | ||
640 | < | void SimInfo::setDefaultRcut( double theRcut ){ |
641 | < | |
642 | < | haveRcut = 1; |
643 | < | rCut = theRcut; |
644 | < | rList = rCut + 1.0; |
645 | < | |
646 | < | notifyFortranCutOffs( &rCut, &rSw, &rList ); |
493 | < | } |
640 | > | void SimInfo::setupFortranSim() { |
641 | > | int isError; |
642 | > | int nExclude; |
643 | > | std::vector<int> fortranGlobalGroupMembership; |
644 | > | |
645 | > | nExclude = exclude_.getSize(); |
646 | > | isError = 0; |
647 | ||
648 | < | void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
648 | > | //globalGroupMembership_ is filled by SimCreator |
649 | > | for (int i = 0; i < nGlobalAtoms_; i++) { |
650 | > | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
651 | > | } |
652 | ||
653 | < | rSw = theRsw; |
654 | < | setDefaultRcut( theRcut ); |
655 | < | } |
653 | > | //calculate mass ratio of cutoff group |
654 | > | std::vector<double> mfact; |
655 | > | SimInfo::MoleculeIterator mi; |
656 | > | Molecule* mol; |
657 | > | Molecule::CutoffGroupIterator ci; |
658 | > | CutoffGroup* cg; |
659 | > | Molecule::AtomIterator ai; |
660 | > | Atom* atom; |
661 | > | double totalMass; |
662 | ||
663 | + | //to avoid memory reallocation, reserve enough space for mfact |
664 | + | mfact.reserve(getNCutoffGroups()); |
665 | + | |
666 | + | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
667 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
668 | ||
669 | < | void SimInfo::checkCutOffs( void ){ |
670 | < | |
671 | < | if( boxIsInit ){ |
669 | > | totalMass = cg->getMass(); |
670 | > | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
671 | > | // Check for massless groups - set mfact to 1 if true |
672 | > | if (totalMass != 0) |
673 | > | mfact.push_back(atom->getMass()/totalMass); |
674 | > | else |
675 | > | mfact.push_back( 1.0 ); |
676 | > | } |
677 | > | |
678 | > | } |
679 | > | } |
680 | > | |
681 | > | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
682 | > | std::vector<int> identArray; |
683 | > | |
684 | > | //to avoid memory reallocation, reserve enough space identArray |
685 | > | identArray.reserve(getNAtoms()); |
686 | ||
687 | < | //we need to check cutOffs against the box |
687 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
688 | > | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
689 | > | identArray.push_back(atom->getIdent()); |
690 | > | } |
691 | > | } |
692 | > | |
693 | > | //fill molMembershipArray |
694 | > | //molMembershipArray is filled by SimCreator |
695 | > | std::vector<int> molMembershipArray(nGlobalAtoms_); |
696 | > | for (int i = 0; i < nGlobalAtoms_; i++) { |
697 | > | molMembershipArray[i] = globalMolMembership_[i] + 1; |
698 | > | } |
699 | ||
700 | < | if( rCut > maxCutoff ){ |
700 | > | //setup fortran simulation |
701 | > | int nGlobalExcludes = 0; |
702 | > | int* globalExcludes = NULL; |
703 | > | int* excludeList = exclude_.getExcludeList(); |
704 | > | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
705 | > | &nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
706 | > | &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
707 | > | |
708 | > | if( isError ){ |
709 | > | |
710 | sprintf( painCave.errMsg, | |
711 | < | "cutoffRadius is too large for the current periodic box.\n" |
511 | < | "\tCurrent Value of cutoffRadius = %G at time %G\n " |
512 | < | "\tThis is larger than half of at least one of the\n" |
513 | < | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
514 | < | "\n" |
515 | < | "\t[ %G %G %G ]\n" |
516 | < | "\t[ %G %G %G ]\n" |
517 | < | "\t[ %G %G %G ]\n", |
518 | < | rCut, currentTime, |
519 | < | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
520 | < | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
521 | < | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
522 | < | painCave.severity = OOPSE_ERROR; |
711 | > | "There was an error setting the simulation information in fortran.\n" ); |
712 | painCave.isFatal = 1; | |
713 | + | painCave.severity = OOPSE_ERROR; |
714 | simError(); | |
715 | < | } |
716 | < | } else { |
717 | < | // initialize this stuff before using it, OK? |
718 | < | sprintf( painCave.errMsg, |
719 | < | "Trying to check cutoffs without a box.\n" |
720 | < | "\tOOPSE should have better programmers than that.\n" ); |
721 | < | painCave.severity = OOPSE_ERROR; |
532 | < | painCave.isFatal = 1; |
533 | < | simError(); |
715 | > | } |
716 | > | |
717 | > | #ifdef IS_MPI |
718 | > | sprintf( checkPointMsg, |
719 | > | "succesfully sent the simulation information to fortran.\n"); |
720 | > | MPIcheckPoint(); |
721 | > | #endif // is_mpi |
722 | } | |
535 | – | |
536 | – | } |
723 | ||
538 | – | void SimInfo::addProperty(GenericData* prop){ |
724 | ||
725 | < | map<string, GenericData*>::iterator result; |
726 | < | result = properties.find(prop->getID()); |
542 | < | |
543 | < | //we can't simply use properties[prop->getID()] = prop, |
544 | < | //it will cause memory leak if we already contain a propery which has the same name of prop |
545 | < | |
546 | < | if(result != properties.end()){ |
725 | > | #ifdef IS_MPI |
726 | > | void SimInfo::setupFortranParallel() { |
727 | ||
728 | < | delete (*result).second; |
729 | < | (*result).second = prop; |
730 | < | |
731 | < | } |
732 | < | else{ |
728 | > | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
729 | > | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
730 | > | std::vector<int> localToGlobalCutoffGroupIndex; |
731 | > | SimInfo::MoleculeIterator mi; |
732 | > | Molecule::AtomIterator ai; |
733 | > | Molecule::CutoffGroupIterator ci; |
734 | > | Molecule* mol; |
735 | > | Atom* atom; |
736 | > | CutoffGroup* cg; |
737 | > | mpiSimData parallelData; |
738 | > | int isError; |
739 | ||
740 | < | properties[prop->getID()] = prop; |
740 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
741 | ||
742 | + | //local index(index in DataStorge) of atom is important |
743 | + | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
744 | + | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
745 | + | } |
746 | + | |
747 | + | //local index of cutoff group is trivial, it only depends on the order of travesing |
748 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
749 | + | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
750 | + | } |
751 | + | |
752 | + | } |
753 | + | |
754 | + | //fill up mpiSimData struct |
755 | + | parallelData.nMolGlobal = getNGlobalMolecules(); |
756 | + | parallelData.nMolLocal = getNMolecules(); |
757 | + | parallelData.nAtomsGlobal = getNGlobalAtoms(); |
758 | + | parallelData.nAtomsLocal = getNAtoms(); |
759 | + | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
760 | + | parallelData.nGroupsLocal = getNCutoffGroups(); |
761 | + | parallelData.myNode = worldRank; |
762 | + | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
763 | + | |
764 | + | //pass mpiSimData struct and index arrays to fortran |
765 | + | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
766 | + | &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
767 | + | &localToGlobalCutoffGroupIndex[0], &isError); |
768 | + | |
769 | + | if (isError) { |
770 | + | sprintf(painCave.errMsg, |
771 | + | "mpiRefresh errror: fortran didn't like something we gave it.\n"); |
772 | + | painCave.isFatal = 1; |
773 | + | simError(); |
774 | + | } |
775 | + | |
776 | + | sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
777 | + | MPIcheckPoint(); |
778 | + | |
779 | + | |
780 | } | |
557 | – | |
558 | – | } |
781 | ||
782 | < | GenericData* SimInfo::getProperty(const string& propName){ |
561 | < | |
562 | < | map<string, GenericData*>::iterator result; |
563 | < | |
564 | < | //string lowerCaseName = (); |
565 | < | |
566 | < | result = properties.find(propName); |
567 | < | |
568 | < | if(result != properties.end()) |
569 | < | return (*result).second; |
570 | < | else |
571 | < | return NULL; |
572 | < | } |
782 | > | #endif |
783 | ||
784 | + | double SimInfo::calcMaxCutoffRadius() { |
785 | ||
575 | – | void SimInfo::getFortranGroupArrays(SimInfo* info, |
576 | – | vector<int>& FglobalGroupMembership, |
577 | – | vector<double>& mfact){ |
578 | – | |
579 | – | Molecule* myMols; |
580 | – | Atom** myAtoms; |
581 | – | int numAtom; |
582 | – | double mtot; |
583 | – | int numMol; |
584 | – | int numCutoffGroups; |
585 | – | CutoffGroup* myCutoffGroup; |
586 | – | vector<CutoffGroup*>::iterator iterCutoff; |
587 | – | Atom* cutoffAtom; |
588 | – | vector<Atom*>::iterator iterAtom; |
589 | – | int atomIndex; |
590 | – | double totalMass; |
591 | – | |
592 | – | mfact.clear(); |
593 | – | FglobalGroupMembership.clear(); |
594 | – | |
786 | ||
787 | < | // Fix the silly fortran indexing problem |
787 | > | std::set<AtomType*> atomTypes; |
788 | > | std::set<AtomType*>::iterator i; |
789 | > | std::vector<double> cutoffRadius; |
790 | > | |
791 | > | //get the unique atom types |
792 | > | atomTypes = getUniqueAtomTypes(); |
793 | > | |
794 | > | //query the max cutoff radius among these atom types |
795 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
796 | > | cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
797 | > | } |
798 | > | |
799 | > | double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
800 | #ifdef IS_MPI | |
801 | < | numAtom = mpiSim->getNAtomsGlobal(); |
599 | < | #else |
600 | < | numAtom = n_atoms; |
801 | > | //pick the max cutoff radius among the processors |
802 | #endif | |
602 | – | for (int i = 0; i < numAtom; i++) |
603 | – | FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
604 | – | |
803 | ||
804 | < | myMols = info->molecules; |
805 | < | numMol = info->n_mol; |
608 | < | for(int i = 0; i < numMol; i++){ |
609 | < | numCutoffGroups = myMols[i].getNCutoffGroups(); |
610 | < | for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
611 | < | myCutoffGroup != NULL; |
612 | < | myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
804 | > | return maxCutoffRadius; |
805 | > | } |
806 | ||
807 | < | totalMass = myCutoffGroup->getMass(); |
808 | < | |
809 | < | for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
810 | < | cutoffAtom != NULL; |
811 | < | cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
812 | < | mfact.push_back(cutoffAtom->getMass()/totalMass); |
813 | < | } |
807 | > | void SimInfo::getCutoff(double& rcut, double& rsw) { |
808 | > | |
809 | > | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
810 | > | |
811 | > | if (!simParams_->haveCutoffRadius()){ |
812 | > | sprintf(painCave.errMsg, |
813 | > | "SimCreator Warning: No value was set for the cutoffRadius.\n" |
814 | > | "\tOOPSE will use a default value of 15.0 angstroms" |
815 | > | "\tfor the cutoffRadius.\n"); |
816 | > | painCave.isFatal = 0; |
817 | > | simError(); |
818 | > | rcut = 15.0; |
819 | > | } else{ |
820 | > | rcut = simParams_->getCutoffRadius(); |
821 | > | } |
822 | > | |
823 | > | if (!simParams_->haveSwitchingRadius()){ |
824 | > | sprintf(painCave.errMsg, |
825 | > | "SimCreator Warning: No value was set for switchingRadius.\n" |
826 | > | "\tOOPSE will use a default value of\n" |
827 | > | "\t0.85 * cutoffRadius for the switchingRadius\n"); |
828 | > | painCave.isFatal = 0; |
829 | > | simError(); |
830 | > | rsw = 0.85 * rcut; |
831 | > | } else{ |
832 | > | rsw = simParams_->getSwitchingRadius(); |
833 | > | } |
834 | > | |
835 | > | } else { |
836 | > | // if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
837 | > | //meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
838 | > | |
839 | > | if (simParams_->haveCutoffRadius()) { |
840 | > | rcut = simParams_->getCutoffRadius(); |
841 | > | } else { |
842 | > | //set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
843 | > | rcut = calcMaxCutoffRadius(); |
844 | > | } |
845 | > | |
846 | > | if (simParams_->haveSwitchingRadius()) { |
847 | > | rsw = simParams_->getSwitchingRadius(); |
848 | > | } else { |
849 | > | rsw = rcut; |
850 | > | } |
851 | > | |
852 | } | |
853 | } | |
854 | ||
855 | < | } |
855 | > | void SimInfo::setupCutoff() { |
856 | > | getCutoff(rcut_, rsw_); |
857 | > | double rnblist = rcut_ + 1; // skin of neighbor list |
858 | > | |
859 | > | //Pass these cutoff radius etc. to fortran. This function should be called once and only once |
860 | > | |
861 | > | int cp = TRADITIONAL_CUTOFF_POLICY; |
862 | > | if (simParams_->haveCutoffPolicy()) { |
863 | > | std::string myPolicy = simParams_->getCutoffPolicy(); |
864 | > | toUpper(myPolicy); |
865 | > | if (myPolicy == "MIX") { |
866 | > | cp = MIX_CUTOFF_POLICY; |
867 | > | } else { |
868 | > | if (myPolicy == "MAX") { |
869 | > | cp = MAX_CUTOFF_POLICY; |
870 | > | } else { |
871 | > | if (myPolicy == "TRADITIONAL") { |
872 | > | cp = TRADITIONAL_CUTOFF_POLICY; |
873 | > | } else { |
874 | > | // throw error |
875 | > | sprintf( painCave.errMsg, |
876 | > | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
877 | > | painCave.isFatal = 1; |
878 | > | simError(); |
879 | > | } |
880 | > | } |
881 | > | } |
882 | > | } |
883 | > | |
884 | > | |
885 | > | if (simParams_->haveSkinThickness()) { |
886 | > | double skinThickness = simParams_->getSkinThickness(); |
887 | > | } |
888 | > | |
889 | > | notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); |
890 | > | // also send cutoff notification to electrostatics |
891 | > | setElectrostaticCutoffRadius(&rcut_, &rsw_); |
892 | > | } |
893 | > | |
894 | > | void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
895 | > | |
896 | > | int errorOut; |
897 | > | int esm = NONE; |
898 | > | double alphaVal; |
899 | > | double dielectric; |
900 | > | |
901 | > | errorOut = isError; |
902 | > | alphaVal = simParams_->getDampingAlpha(); |
903 | > | dielectric = simParams_->getDielectric(); |
904 | > | |
905 | > | if (simParams_->haveElectrostaticSummationMethod()) { |
906 | > | std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
907 | > | toUpper(myMethod); |
908 | > | if (myMethod == "NONE") { |
909 | > | esm = NONE; |
910 | > | } else { |
911 | > | if (myMethod == "UNDAMPED_WOLF") { |
912 | > | esm = UNDAMPED_WOLF; |
913 | > | } else { |
914 | > | if (myMethod == "DAMPED_WOLF") { |
915 | > | esm = DAMPED_WOLF; |
916 | > | if (!simParams_->haveDampingAlpha()) { |
917 | > | //throw error |
918 | > | sprintf( painCave.errMsg, |
919 | > | "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal); |
920 | > | painCave.isFatal = 0; |
921 | > | simError(); |
922 | > | } |
923 | > | } else { |
924 | > | if (myMethod == "REACTION_FIELD") { |
925 | > | esm = REACTION_FIELD; |
926 | > | } else { |
927 | > | // throw error |
928 | > | sprintf( painCave.errMsg, |
929 | > | "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() ); |
930 | > | painCave.isFatal = 1; |
931 | > | simError(); |
932 | > | } |
933 | > | } |
934 | > | } |
935 | > | } |
936 | > | } |
937 | > | // let's pass some summation method variables to fortran |
938 | > | setElectrostaticSummationMethod( &esm ); |
939 | > | setDampedWolfAlpha( &alphaVal ); |
940 | > | setReactionFieldDielectric( &dielectric ); |
941 | > | initFortranFF( &esm, &errorOut ); |
942 | > | } |
943 | > | |
944 | > | void SimInfo::addProperty(GenericData* genData) { |
945 | > | properties_.addProperty(genData); |
946 | > | } |
947 | > | |
948 | > | void SimInfo::removeProperty(const std::string& propName) { |
949 | > | properties_.removeProperty(propName); |
950 | > | } |
951 | > | |
952 | > | void SimInfo::clearProperties() { |
953 | > | properties_.clearProperties(); |
954 | > | } |
955 | > | |
956 | > | std::vector<std::string> SimInfo::getPropertyNames() { |
957 | > | return properties_.getPropertyNames(); |
958 | > | } |
959 | > | |
960 | > | std::vector<GenericData*> SimInfo::getProperties() { |
961 | > | return properties_.getProperties(); |
962 | > | } |
963 | > | |
964 | > | GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
965 | > | return properties_.getPropertyByName(propName); |
966 | > | } |
967 | > | |
968 | > | void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
969 | > | if (sman_ == sman) { |
970 | > | return; |
971 | > | } |
972 | > | delete sman_; |
973 | > | sman_ = sman; |
974 | > | |
975 | > | Molecule* mol; |
976 | > | RigidBody* rb; |
977 | > | Atom* atom; |
978 | > | SimInfo::MoleculeIterator mi; |
979 | > | Molecule::RigidBodyIterator rbIter; |
980 | > | Molecule::AtomIterator atomIter;; |
981 | > | |
982 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
983 | > | |
984 | > | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
985 | > | atom->setSnapshotManager(sman_); |
986 | > | } |
987 | > | |
988 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
989 | > | rb->setSnapshotManager(sman_); |
990 | > | } |
991 | > | } |
992 | > | |
993 | > | } |
994 | > | |
995 | > | Vector3d SimInfo::getComVel(){ |
996 | > | SimInfo::MoleculeIterator i; |
997 | > | Molecule* mol; |
998 | > | |
999 | > | Vector3d comVel(0.0); |
1000 | > | double totalMass = 0.0; |
1001 | > | |
1002 | > | |
1003 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1004 | > | double mass = mol->getMass(); |
1005 | > | totalMass += mass; |
1006 | > | comVel += mass * mol->getComVel(); |
1007 | > | } |
1008 | > | |
1009 | > | #ifdef IS_MPI |
1010 | > | double tmpMass = totalMass; |
1011 | > | Vector3d tmpComVel(comVel); |
1012 | > | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1013 | > | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1014 | > | #endif |
1015 | > | |
1016 | > | comVel /= totalMass; |
1017 | > | |
1018 | > | return comVel; |
1019 | > | } |
1020 | > | |
1021 | > | Vector3d SimInfo::getCom(){ |
1022 | > | SimInfo::MoleculeIterator i; |
1023 | > | Molecule* mol; |
1024 | > | |
1025 | > | Vector3d com(0.0); |
1026 | > | double totalMass = 0.0; |
1027 | > | |
1028 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1029 | > | double mass = mol->getMass(); |
1030 | > | totalMass += mass; |
1031 | > | com += mass * mol->getCom(); |
1032 | > | } |
1033 | > | |
1034 | > | #ifdef IS_MPI |
1035 | > | double tmpMass = totalMass; |
1036 | > | Vector3d tmpCom(com); |
1037 | > | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1038 | > | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1039 | > | #endif |
1040 | > | |
1041 | > | com /= totalMass; |
1042 | > | |
1043 | > | return com; |
1044 | > | |
1045 | > | } |
1046 | > | |
1047 | > | std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1048 | > | |
1049 | > | return o; |
1050 | > | } |
1051 | > | |
1052 | > | |
1053 | > | /* |
1054 | > | Returns center of mass and center of mass velocity in one function call. |
1055 | > | */ |
1056 | > | |
1057 | > | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1058 | > | SimInfo::MoleculeIterator i; |
1059 | > | Molecule* mol; |
1060 | > | |
1061 | > | |
1062 | > | double totalMass = 0.0; |
1063 | > | |
1064 | > | |
1065 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1066 | > | double mass = mol->getMass(); |
1067 | > | totalMass += mass; |
1068 | > | com += mass * mol->getCom(); |
1069 | > | comVel += mass * mol->getComVel(); |
1070 | > | } |
1071 | > | |
1072 | > | #ifdef IS_MPI |
1073 | > | double tmpMass = totalMass; |
1074 | > | Vector3d tmpCom(com); |
1075 | > | Vector3d tmpComVel(comVel); |
1076 | > | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1077 | > | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1078 | > | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1079 | > | #endif |
1080 | > | |
1081 | > | com /= totalMass; |
1082 | > | comVel /= totalMass; |
1083 | > | } |
1084 | > | |
1085 | > | /* |
1086 | > | Return intertia tensor for entire system and angular momentum Vector. |
1087 | > | |
1088 | > | |
1089 | > | [ Ixx -Ixy -Ixz ] |
1090 | > | J =| -Iyx Iyy -Iyz | |
1091 | > | [ -Izx -Iyz Izz ] |
1092 | > | */ |
1093 | > | |
1094 | > | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1095 | > | |
1096 | > | |
1097 | > | double xx = 0.0; |
1098 | > | double yy = 0.0; |
1099 | > | double zz = 0.0; |
1100 | > | double xy = 0.0; |
1101 | > | double xz = 0.0; |
1102 | > | double yz = 0.0; |
1103 | > | Vector3d com(0.0); |
1104 | > | Vector3d comVel(0.0); |
1105 | > | |
1106 | > | getComAll(com, comVel); |
1107 | > | |
1108 | > | SimInfo::MoleculeIterator i; |
1109 | > | Molecule* mol; |
1110 | > | |
1111 | > | Vector3d thisq(0.0); |
1112 | > | Vector3d thisv(0.0); |
1113 | > | |
1114 | > | double thisMass = 0.0; |
1115 | > | |
1116 | > | |
1117 | > | |
1118 | > | |
1119 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1120 | > | |
1121 | > | thisq = mol->getCom()-com; |
1122 | > | thisv = mol->getComVel()-comVel; |
1123 | > | thisMass = mol->getMass(); |
1124 | > | // Compute moment of intertia coefficients. |
1125 | > | xx += thisq[0]*thisq[0]*thisMass; |
1126 | > | yy += thisq[1]*thisq[1]*thisMass; |
1127 | > | zz += thisq[2]*thisq[2]*thisMass; |
1128 | > | |
1129 | > | // compute products of intertia |
1130 | > | xy += thisq[0]*thisq[1]*thisMass; |
1131 | > | xz += thisq[0]*thisq[2]*thisMass; |
1132 | > | yz += thisq[1]*thisq[2]*thisMass; |
1133 | > | |
1134 | > | angularMomentum += cross( thisq, thisv ) * thisMass; |
1135 | > | |
1136 | > | } |
1137 | > | |
1138 | > | |
1139 | > | inertiaTensor(0,0) = yy + zz; |
1140 | > | inertiaTensor(0,1) = -xy; |
1141 | > | inertiaTensor(0,2) = -xz; |
1142 | > | inertiaTensor(1,0) = -xy; |
1143 | > | inertiaTensor(1,1) = xx + zz; |
1144 | > | inertiaTensor(1,2) = -yz; |
1145 | > | inertiaTensor(2,0) = -xz; |
1146 | > | inertiaTensor(2,1) = -yz; |
1147 | > | inertiaTensor(2,2) = xx + yy; |
1148 | > | |
1149 | > | #ifdef IS_MPI |
1150 | > | Mat3x3d tmpI(inertiaTensor); |
1151 | > | Vector3d tmpAngMom; |
1152 | > | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1153 | > | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1154 | > | #endif |
1155 | > | |
1156 | > | return; |
1157 | > | } |
1158 | > | |
1159 | > | //Returns the angular momentum of the system |
1160 | > | Vector3d SimInfo::getAngularMomentum(){ |
1161 | > | |
1162 | > | Vector3d com(0.0); |
1163 | > | Vector3d comVel(0.0); |
1164 | > | Vector3d angularMomentum(0.0); |
1165 | > | |
1166 | > | getComAll(com,comVel); |
1167 | > | |
1168 | > | SimInfo::MoleculeIterator i; |
1169 | > | Molecule* mol; |
1170 | > | |
1171 | > | Vector3d thisr(0.0); |
1172 | > | Vector3d thisp(0.0); |
1173 | > | |
1174 | > | double thisMass; |
1175 | > | |
1176 | > | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1177 | > | thisMass = mol->getMass(); |
1178 | > | thisr = mol->getCom()-com; |
1179 | > | thisp = (mol->getComVel()-comVel)*thisMass; |
1180 | > | |
1181 | > | angularMomentum += cross( thisr, thisp ); |
1182 | > | |
1183 | > | } |
1184 | > | |
1185 | > | #ifdef IS_MPI |
1186 | > | Vector3d tmpAngMom; |
1187 | > | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1188 | > | #endif |
1189 | > | |
1190 | > | return angularMomentum; |
1191 | > | } |
1192 | > | |
1193 | > | |
1194 | > | }//end namespace oopse |
1195 | > |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |