# | Line 36 | Line 36 | |
---|---|---|
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | ||
43 | /** | |
# | Line 54 | Line 55 | |
55 | #include "math/Vector3.hpp" | |
56 | #include "primitives/Molecule.hpp" | |
57 | #include "primitives/StuntDouble.hpp" | |
57 | – | #include "UseTheForce/doForces_interface.h" |
58 | – | #include "UseTheForce/DarkSide/neighborLists_interface.h" |
58 | #include "utils/MemoryUtils.hpp" | |
59 | #include "utils/simError.h" | |
60 | #include "selection/SelectionManager.hpp" | |
61 | #include "io/ForceFieldOptions.hpp" | |
62 | < | #include "UseTheForce/ForceField.hpp" |
62 | > | #include "brains/ForceField.hpp" |
63 | #include "nonbonded/SwitchingFunction.hpp" | |
65 | – | |
66 | – | |
64 | #ifdef IS_MPI | |
65 | < | #include "UseTheForce/mpiComponentPlan.h" |
66 | < | #include "UseTheForce/DarkSide/simParallel_interface.h" |
70 | < | #endif |
65 | > | #include <mpi.h> |
66 | > | #endif |
67 | ||
68 | using namespace std; | |
69 | namespace OpenMD { | |
# | Line 76 | Line 72 | namespace OpenMD { | |
72 | forceField_(ff), simParams_(simParams), | |
73 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | |
74 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | |
75 | < | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), | |
77 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | |
78 | < | nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
78 | > | nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 | calcBoxDipole_(false), useAtomicVirial_(true) { | |
80 | ||
81 | MoleculeStamp* molStamp; | |
# | Line 133 | Line 129 | namespace OpenMD { | |
129 | //equal to the total number of atoms minus number of atoms belong to | |
130 | //cutoff group defined in meta-data file plus the number of cutoff | |
131 | //groups defined in meta-data file | |
132 | + | |
133 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | |
134 | ||
135 | //every free atom (atom does not belong to rigid bodies) is an | |
# | Line 228 | Line 225 | namespace OpenMD { | |
225 | ||
226 | ||
227 | void SimInfo::calcNdf() { | |
228 | < | int ndf_local; |
228 | > | int ndf_local, nfq_local; |
229 | MoleculeIterator i; | |
230 | vector<StuntDouble*>::iterator j; | |
231 | + | vector<Atom*>::iterator k; |
232 | + | |
233 | Molecule* mol; | |
234 | StuntDouble* integrableObject; | |
235 | + | Atom* atom; |
236 | ||
237 | ndf_local = 0; | |
238 | + | nfq_local = 0; |
239 | ||
240 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | |
241 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | |
# | Line 249 | Line 250 | namespace OpenMD { | |
250 | ndf_local += 3; | |
251 | } | |
252 | } | |
252 | – | |
253 | } | |
254 | + | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 | + | atom = mol->nextFluctuatingCharge(k)) { |
256 | + | if (atom->isFluctuatingCharge()) { |
257 | + | nfq_local++; |
258 | + | } |
259 | + | } |
260 | } | |
261 | ||
262 | + | ndfLocal_ = ndf_local; |
263 | + | |
264 | // n_constraints is local, so subtract them on each processor | |
265 | ndf_local -= nConstraints_; | |
266 | ||
267 | #ifdef IS_MPI | |
268 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
269 | + | MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
270 | #else | |
271 | ndf_ = ndf_local; | |
272 | + | nGlobalFluctuatingCharges_ = nfq_local; |
273 | #endif | |
274 | ||
275 | // nZconstraints_ is global, as are the 3 COM translations for the | |
# | Line 276 | Line 286 | namespace OpenMD { | |
286 | #endif | |
287 | return fdf_; | |
288 | } | |
289 | + | |
290 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ |
291 | + | int nLocalCutoffAtoms = 0; |
292 | + | Molecule* mol; |
293 | + | MoleculeIterator mi; |
294 | + | CutoffGroup* cg; |
295 | + | Molecule::CutoffGroupIterator ci; |
296 | + | |
297 | + | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
298 | + | |
299 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
300 | + | cg = mol->nextCutoffGroup(ci)) { |
301 | + | nLocalCutoffAtoms += cg->getNumAtom(); |
302 | + | |
303 | + | } |
304 | + | } |
305 | + | |
306 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
307 | + | } |
308 | ||
309 | void SimInfo::calcNdfRaw() { | |
310 | int ndfRaw_local; | |
# | Line 657 | Line 686 | namespace OpenMD { | |
686 | /** | |
687 | * update | |
688 | * | |
689 | < | * Performs the global checks and variable settings after the objects have been |
690 | < | * created. |
689 | > | * Performs the global checks and variable settings after the |
690 | > | * objects have been created. |
691 | * | |
692 | */ | |
693 | < | void SimInfo::update() { |
665 | < | |
693 | > | void SimInfo::update() { |
694 | setupSimVariables(); | |
667 | – | setupCutoffs(); |
668 | – | setupSwitching(); |
669 | – | setupElectrostatics(); |
670 | – | setupNeighborlists(); |
671 | – | |
672 | – | #ifdef IS_MPI |
673 | – | setupFortranParallel(); |
674 | – | #endif |
675 | – | setupFortranSim(); |
676 | – | fortranInitialized_ = true; |
677 | – | |
695 | calcNdf(); | |
696 | calcNdfRaw(); | |
697 | calcNdfTrans(); | |
698 | } | |
699 | ||
700 | + | /** |
701 | + | * getSimulatedAtomTypes |
702 | + | * |
703 | + | * Returns an STL set of AtomType* that are actually present in this |
704 | + | * simulation. Must query all processors to assemble this information. |
705 | + | * |
706 | + | */ |
707 | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | |
708 | SimInfo::MoleculeIterator mi; | |
709 | Molecule* mol; | |
# | Line 687 | Line 711 | namespace OpenMD { | |
711 | Atom* atom; | |
712 | set<AtomType*> atomTypes; | |
713 | ||
714 | < | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
715 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
714 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
715 | > | for(atom = mol->beginAtom(ai); atom != NULL; |
716 | > | atom = mol->nextAtom(ai)) { |
717 | atomTypes.insert(atom->getAtomType()); | |
718 | } | |
719 | } | |
695 | – | return atomTypes; |
696 | – | } |
697 | – | |
698 | – | /** |
699 | – | * setupCutoffs |
700 | – | * |
701 | – | * Sets the values of cutoffRadius and cutoffMethod |
702 | – | * |
703 | – | * cutoffRadius : realType |
704 | – | * If the cutoffRadius was explicitly set, use that value. |
705 | – | * If the cutoffRadius was not explicitly set: |
706 | – | * Are there electrostatic atoms? Use 12.0 Angstroms. |
707 | – | * No electrostatic atoms? Poll the atom types present in the |
708 | – | * simulation for suggested cutoff values (e.g. 2.5 * sigma). |
709 | – | * Use the maximum suggested value that was found. |
710 | – | * |
711 | – | * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
712 | – | * If cutoffMethod was explicitly set, use that choice. |
713 | – | * If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
714 | – | */ |
715 | – | void SimInfo::setupCutoffs() { |
720 | ||
721 | < | if (simParams_->haveCutoffRadius()) { |
718 | < | cutoffRadius_ = simParams_->getCutoffRadius(); |
719 | < | } else { |
720 | < | if (usesElectrostaticAtoms_) { |
721 | < | sprintf(painCave.errMsg, |
722 | < | "SimInfo: No value was set for the cutoffRadius.\n" |
723 | < | "\tOpenMD will use a default value of 12.0 angstroms" |
724 | < | "\tfor the cutoffRadius.\n"); |
725 | < | painCave.isFatal = 0; |
726 | < | painCave.severity = OPENMD_INFO; |
727 | < | simError(); |
728 | < | cutoffRadius_ = 12.0; |
729 | < | } else { |
730 | < | RealType thisCut; |
731 | < | set<AtomType*>::iterator i; |
732 | < | set<AtomType*> atomTypes; |
733 | < | atomTypes = getSimulatedAtomTypes(); |
734 | < | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
735 | < | thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
736 | < | cutoffRadius_ = max(thisCut, cutoffRadius_); |
737 | < | } |
738 | < | sprintf(painCave.errMsg, |
739 | < | "SimInfo: No value was set for the cutoffRadius.\n" |
740 | < | "\tOpenMD will use %lf angstroms.\n", |
741 | < | cutoffRadius_); |
742 | < | painCave.isFatal = 0; |
743 | < | painCave.severity = OPENMD_INFO; |
744 | < | simError(); |
745 | < | } |
746 | < | } |
721 | > | #ifdef IS_MPI |
722 | ||
723 | < | InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
723 | > | // loop over the found atom types on this processor, and add their |
724 | > | // numerical idents to a vector: |
725 | > | |
726 | > | vector<int> foundTypes; |
727 | > | set<AtomType*>::iterator i; |
728 | > | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
729 | > | foundTypes.push_back( (*i)->getIdent() ); |
730 | ||
731 | < | map<string, CutoffMethod> stringToCutoffMethod; |
732 | < | stringToCutoffMethod["HARD"] = HARD; |
733 | < | stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION; |
734 | < | stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
735 | < | stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
731 | > | // count_local holds the number of found types on this processor |
732 | > | int count_local = foundTypes.size(); |
733 | > | |
734 | > | int nproc = MPI::COMM_WORLD.Get_size(); |
735 | > | |
736 | > | // we need arrays to hold the counts and displacement vectors for |
737 | > | // all processors |
738 | > | vector<int> counts(nproc, 0); |
739 | > | vector<int> disps(nproc, 0); |
740 | > | |
741 | > | // fill the counts array |
742 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
743 | > | 1, MPI::INT); |
744 | ||
745 | < | if (simParams_->haveCutoffMethod()) { |
746 | < | string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
747 | < | map<string, CutoffMethod>::iterator i; |
748 | < | i = stringToCutoffMethod.find(cutMeth); |
749 | < | if (i == stringToCutoffMethod.end()) { |
750 | < | sprintf(painCave.errMsg, |
762 | < | "SimInfo: Could not find chosen cutoffMethod %s\n" |
763 | < | "\tShould be one of: " |
764 | < | "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
765 | < | cutMeth.c_str()); |
766 | < | painCave.isFatal = 1; |
767 | < | painCave.severity = OPENMD_ERROR; |
768 | < | simError(); |
769 | < | } else { |
770 | < | cutoffMethod_ = i->second; |
771 | < | } |
772 | < | } else { |
773 | < | sprintf(painCave.errMsg, |
774 | < | "SimInfo: No value was set for the cutoffMethod.\n" |
775 | < | "\tOpenMD will use SHIFTED_FORCE.\n"); |
776 | < | painCave.isFatal = 0; |
777 | < | painCave.severity = OPENMD_INFO; |
778 | < | simError(); |
779 | < | cutoffMethod_ = SHIFTED_FORCE; |
745 | > | // use the processor counts to compute the displacement array |
746 | > | disps[0] = 0; |
747 | > | int totalCount = counts[0]; |
748 | > | for (int iproc = 1; iproc < nproc; iproc++) { |
749 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
750 | > | totalCount += counts[iproc]; |
751 | } | |
752 | ||
753 | < | InteractionManager::Instance()->setCutoffMethod(cutoffMethod_); |
754 | < | } |
784 | < | |
785 | < | /** |
786 | < | * setupSwitching |
787 | < | * |
788 | < | * Sets the values of switchingRadius and |
789 | < | * If the switchingRadius was explicitly set, use that value (but check it) |
790 | < | * If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
791 | < | */ |
792 | < | void SimInfo::setupSwitching() { |
753 | > | // we need a (possibly redundant) set of all found types: |
754 | > | vector<int> ftGlobal(totalCount); |
755 | ||
756 | < | if (simParams_->haveSwitchingRadius()) { |
757 | < | switchingRadius_ = simParams_->getSwitchingRadius(); |
758 | < | if (switchingRadius_ > cutoffRadius_) { |
759 | < | sprintf(painCave.errMsg, |
798 | < | "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
799 | < | switchingRadius_, cutoffRadius_); |
800 | < | painCave.isFatal = 1; |
801 | < | painCave.severity = OPENMD_ERROR; |
802 | < | simError(); |
803 | < | } |
804 | < | } else { |
805 | < | switchingRadius_ = 0.85 * cutoffRadius_; |
806 | < | sprintf(painCave.errMsg, |
807 | < | "SimInfo: No value was set for the switchingRadius.\n" |
808 | < | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
809 | < | "\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
810 | < | painCave.isFatal = 0; |
811 | < | painCave.severity = OPENMD_WARNING; |
812 | < | simError(); |
813 | < | } |
814 | < | |
815 | < | InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
756 | > | // now spray out the foundTypes to all the other processors: |
757 | > | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
758 | > | &ftGlobal[0], &counts[0], &disps[0], |
759 | > | MPI::INT); |
760 | ||
761 | < | SwitchingFunctionType ft; |
818 | < | |
819 | < | if (simParams_->haveSwitchingFunctionType()) { |
820 | < | string funcType = simParams_->getSwitchingFunctionType(); |
821 | < | toUpper(funcType); |
822 | < | if (funcType == "CUBIC") { |
823 | < | ft = cubic; |
824 | < | } else { |
825 | < | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
826 | < | ft = fifth_order_poly; |
827 | < | } else { |
828 | < | // throw error |
829 | < | sprintf( painCave.errMsg, |
830 | < | "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n" |
831 | < | "\tswitchingFunctionType must be one of: " |
832 | < | "\"cubic\" or \"fifth_order_polynomial\".", |
833 | < | funcType.c_str() ); |
834 | < | painCave.isFatal = 1; |
835 | < | painCave.severity = OPENMD_ERROR; |
836 | < | simError(); |
837 | < | } |
838 | < | } |
839 | < | } |
761 | > | vector<int>::iterator j; |
762 | ||
763 | < | InteractionManager::Instance()->setSwitchingFunctionType(ft); |
764 | < | } |
763 | > | // foundIdents is a stl set, so inserting an already found ident |
764 | > | // will have no effect. |
765 | > | set<int> foundIdents; |
766 | ||
767 | < | /** |
768 | < | * setupSkinThickness |
769 | < | * |
770 | < | * If the skinThickness was explicitly set, use that value (but check it) |
771 | < | * If the skinThickness was not explicitly set: use 1.0 angstroms |
772 | < | */ |
773 | < | void SimInfo::setupSkinThickness() { |
774 | < | if (simParams_->haveSkinThickness()) { |
775 | < | skinThickness_ = simParams_->getSkinThickness(); |
776 | < | } else { |
777 | < | skinThickness_ = 1.0; |
778 | < | sprintf(painCave.errMsg, |
856 | < | "SimInfo Warning: No value was set for the skinThickness.\n" |
857 | < | "\tOpenMD will use a default value of %f Angstroms\n" |
858 | < | "\tfor this simulation\n", skinThickness_); |
859 | < | painCave.isFatal = 0; |
860 | < | simError(); |
861 | < | } |
767 | > | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
768 | > | foundIdents.insert((*j)); |
769 | > | |
770 | > | // now iterate over the foundIdents and get the actual atom types |
771 | > | // that correspond to these: |
772 | > | set<int>::iterator it; |
773 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
774 | > | atomTypes.insert( forceField_->getAtomType((*it)) ); |
775 | > | |
776 | > | #endif |
777 | > | |
778 | > | return atomTypes; |
779 | } | |
780 | ||
781 | < | void SimInfo::setupSimType() { |
781 | > | void SimInfo::setupSimVariables() { |
782 | > | useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
783 | > | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
784 | > | calcBoxDipole_ = false; |
785 | > | if ( simParams_->haveAccumulateBoxDipole() ) |
786 | > | if ( simParams_->getAccumulateBoxDipole() ) { |
787 | > | calcBoxDipole_ = true; |
788 | > | } |
789 | > | |
790 | set<AtomType*>::iterator i; | |
791 | set<AtomType*> atomTypes; | |
792 | < | atomTypes = getSimulatedAtomTypes(); |
868 | < | |
869 | < | useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
870 | < | |
792 | > | atomTypes = getSimulatedAtomTypes(); |
793 | int usesElectrostatic = 0; | |
794 | int usesMetallic = 0; | |
795 | int usesDirectional = 0; | |
796 | + | int usesFluctuatingCharges = 0; |
797 | //loop over all of the atom types | |
798 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | |
799 | usesElectrostatic |= (*i)->isElectrostatic(); | |
800 | usesMetallic |= (*i)->isMetal(); | |
801 | usesDirectional |= (*i)->isDirectional(); | |
802 | + | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
803 | } | |
804 | < | |
804 | > | |
805 | #ifdef IS_MPI | |
806 | int temp; | |
807 | temp = usesDirectional; | |
808 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
809 | < | |
809 | > | |
810 | temp = usesMetallic; | |
811 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
812 | < | |
812 | > | |
813 | temp = usesElectrostatic; | |
814 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
815 | + | |
816 | + | temp = usesFluctuatingCharges; |
817 | + | MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
818 | + | #else |
819 | + | |
820 | + | usesDirectionalAtoms_ = usesDirectional; |
821 | + | usesMetallicAtoms_ = usesMetallic; |
822 | + | usesElectrostaticAtoms_ = usesElectrostatic; |
823 | + | usesFluctuatingCharges_ = usesFluctuatingCharges; |
824 | + | |
825 | #endif | |
826 | < | fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
827 | < | fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
828 | < | fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
829 | < | fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
896 | < | fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
897 | < | fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
826 | > | |
827 | > | requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
828 | > | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
829 | > | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
830 | } | |
831 | ||
832 | < | void SimInfo::setupFortranSim() { |
833 | < | int isError; |
834 | < | int nExclude, nOneTwo, nOneThree, nOneFour; |
835 | < | vector<int> fortranGlobalGroupMembership; |
832 | > | |
833 | > | vector<int> SimInfo::getGlobalAtomIndices() { |
834 | > | SimInfo::MoleculeIterator mi; |
835 | > | Molecule* mol; |
836 | > | Molecule::AtomIterator ai; |
837 | > | Atom* atom; |
838 | > | |
839 | > | vector<int> GlobalAtomIndices(getNAtoms(), 0); |
840 | ||
841 | < | notifyFortranSkinThickness(&skinThickness_); |
841 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
842 | > | |
843 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
844 | > | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
845 | > | } |
846 | > | } |
847 | > | return GlobalAtomIndices; |
848 | > | } |
849 | ||
907 | – | int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
908 | – | int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
909 | – | notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
850 | ||
851 | < | isError = 0; |
851 | > | vector<int> SimInfo::getGlobalGroupIndices() { |
852 | > | SimInfo::MoleculeIterator mi; |
853 | > | Molecule* mol; |
854 | > | Molecule::CutoffGroupIterator ci; |
855 | > | CutoffGroup* cg; |
856 | ||
857 | < | //globalGroupMembership_ is filled by SimCreator |
858 | < | for (int i = 0; i < nGlobalAtoms_; i++) { |
859 | < | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
857 | > | vector<int> GlobalGroupIndices; |
858 | > | |
859 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
860 | > | |
861 | > | //local index of cutoff group is trivial, it only depends on the |
862 | > | //order of travesing |
863 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
864 | > | cg = mol->nextCutoffGroup(ci)) { |
865 | > | GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
866 | > | } |
867 | } | |
868 | + | return GlobalGroupIndices; |
869 | + | } |
870 | ||
871 | + | |
872 | + | void SimInfo::prepareTopology() { |
873 | + | int nExclude, nOneTwo, nOneThree, nOneFour; |
874 | + | |
875 | //calculate mass ratio of cutoff group | |
919 | – | vector<RealType> mfact; |
876 | SimInfo::MoleculeIterator mi; | |
877 | Molecule* mol; | |
878 | Molecule::CutoffGroupIterator ci; | |
# | Line 925 | Line 881 | namespace OpenMD { | |
881 | Atom* atom; | |
882 | RealType totalMass; | |
883 | ||
884 | < | //to avoid memory reallocation, reserve enough space for mfact |
885 | < | mfact.reserve(getNCutoffGroups()); |
884 | > | /** |
885 | > | * The mass factor is the relative mass of an atom to the total |
886 | > | * mass of the cutoff group it belongs to. By default, all atoms |
887 | > | * are their own cutoff groups, and therefore have mass factors of |
888 | > | * 1. We need some special handling for massless atoms, which |
889 | > | * will be treated as carrying the entire mass of the cutoff |
890 | > | * group. |
891 | > | */ |
892 | > | massFactors_.clear(); |
893 | > | massFactors_.resize(getNAtoms(), 1.0); |
894 | ||
895 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
896 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
896 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
897 | > | cg = mol->nextCutoffGroup(ci)) { |
898 | ||
899 | totalMass = cg->getMass(); | |
900 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
901 | // Check for massless groups - set mfact to 1 if true | |
902 | < | if (totalMass != 0) |
903 | < | mfact.push_back(atom->getMass()/totalMass); |
902 | > | if (totalMass != 0) |
903 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
904 | else | |
905 | < | mfact.push_back( 1.0 ); |
905 | > | massFactors_[atom->getLocalIndex()] = 1.0; |
906 | } | |
907 | } | |
908 | } | |
909 | ||
910 | < | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
946 | < | vector<int> identArray; |
910 | > | // Build the identArray_ |
911 | ||
912 | < | //to avoid memory reallocation, reserve enough space identArray |
913 | < | identArray.reserve(getNAtoms()); |
950 | < | |
912 | > | identArray_.clear(); |
913 | > | identArray_.reserve(getNAtoms()); |
914 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
915 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | |
916 | < | identArray.push_back(atom->getIdent()); |
916 | > | identArray_.push_back(atom->getIdent()); |
917 | } | |
918 | } | |
956 | – | |
957 | – | //fill molMembershipArray |
958 | – | //molMembershipArray is filled by SimCreator |
959 | – | vector<int> molMembershipArray(nGlobalAtoms_); |
960 | – | for (int i = 0; i < nGlobalAtoms_; i++) { |
961 | – | molMembershipArray[i] = globalMolMembership_[i] + 1; |
962 | – | } |
919 | ||
920 | < | //setup fortran simulation |
920 | > | //scan topology |
921 | ||
922 | nExclude = excludedInteractions_.getSize(); | |
923 | nOneTwo = oneTwoInteractions_.getSize(); | |
# | Line 973 | Line 929 | namespace OpenMD { | |
929 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
930 | int* oneFourList = oneFourInteractions_.getPairList(); | |
931 | ||
932 | < | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
977 | < | &nExclude, excludeList, |
978 | < | &nOneTwo, oneTwoList, |
979 | < | &nOneThree, oneThreeList, |
980 | < | &nOneFour, oneFourList, |
981 | < | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
982 | < | &fortranGlobalGroupMembership[0], &isError); |
983 | < | |
984 | < | if( isError ){ |
985 | < | |
986 | < | sprintf( painCave.errMsg, |
987 | < | "There was an error setting the simulation information in fortran.\n" ); |
988 | < | painCave.isFatal = 1; |
989 | < | painCave.severity = OPENMD_ERROR; |
990 | < | simError(); |
991 | < | } |
992 | < | |
993 | < | |
994 | < | sprintf( checkPointMsg, |
995 | < | "succesfully sent the simulation information to fortran.\n"); |
996 | < | |
997 | < | errorCheckPoint(); |
998 | < | |
999 | < | // Setup number of neighbors in neighbor list if present |
1000 | < | if (simParams_->haveNeighborListNeighbors()) { |
1001 | < | int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
1002 | < | setNeighbors(&nlistNeighbors); |
1003 | < | } |
1004 | < | |
1005 | < | |
1006 | < | } |
1007 | < | |
1008 | < | |
1009 | < | void SimInfo::setupFortranParallel() { |
1010 | < | #ifdef IS_MPI |
1011 | < | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
1012 | < | vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
1013 | < | vector<int> localToGlobalCutoffGroupIndex; |
1014 | < | SimInfo::MoleculeIterator mi; |
1015 | < | Molecule::AtomIterator ai; |
1016 | < | Molecule::CutoffGroupIterator ci; |
1017 | < | Molecule* mol; |
1018 | < | Atom* atom; |
1019 | < | CutoffGroup* cg; |
1020 | < | mpiSimData parallelData; |
1021 | < | int isError; |
1022 | < | |
1023 | < | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1024 | < | |
1025 | < | //local index(index in DataStorge) of atom is important |
1026 | < | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1027 | < | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1028 | < | } |
1029 | < | |
1030 | < | //local index of cutoff group is trivial, it only depends on the order of travesing |
1031 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1032 | < | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1033 | < | } |
1034 | < | |
1035 | < | } |
1036 | < | |
1037 | < | //fill up mpiSimData struct |
1038 | < | parallelData.nMolGlobal = getNGlobalMolecules(); |
1039 | < | parallelData.nMolLocal = getNMolecules(); |
1040 | < | parallelData.nAtomsGlobal = getNGlobalAtoms(); |
1041 | < | parallelData.nAtomsLocal = getNAtoms(); |
1042 | < | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
1043 | < | parallelData.nGroupsLocal = getNCutoffGroups(); |
1044 | < | parallelData.myNode = worldRank; |
1045 | < | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
1046 | < | |
1047 | < | //pass mpiSimData struct and index arrays to fortran |
1048 | < | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
1049 | < | &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
1050 | < | &localToGlobalCutoffGroupIndex[0], &isError); |
1051 | < | |
1052 | < | if (isError) { |
1053 | < | sprintf(painCave.errMsg, |
1054 | < | "mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1055 | < | painCave.isFatal = 1; |
1056 | < | simError(); |
1057 | < | } |
1058 | < | |
1059 | < | sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1060 | < | errorCheckPoint(); |
1061 | < | |
1062 | < | #endif |
932 | > | topologyDone_ = true; |
933 | } | |
934 | ||
1065 | – | |
1066 | – | void SimInfo::setupSwitchingFunction() { |
1067 | – | |
1068 | – | } |
1069 | – | |
1070 | – | void SimInfo::setupAccumulateBoxDipole() { |
1071 | – | |
1072 | – | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1073 | – | if ( simParams_->haveAccumulateBoxDipole() ) |
1074 | – | if ( simParams_->getAccumulateBoxDipole() ) { |
1075 | – | calcBoxDipole_ = true; |
1076 | – | } |
1077 | – | |
1078 | – | } |
1079 | – | |
935 | void SimInfo::addProperty(GenericData* genData) { | |
936 | properties_.addProperty(genData); | |
937 | } | |
# | Line 1111 | Line 966 | namespace OpenMD { | |
966 | Molecule* mol; | |
967 | RigidBody* rb; | |
968 | Atom* atom; | |
969 | + | CutoffGroup* cg; |
970 | SimInfo::MoleculeIterator mi; | |
971 | Molecule::RigidBodyIterator rbIter; | |
972 | < | Molecule::AtomIterator atomIter;; |
972 | > | Molecule::AtomIterator atomIter; |
973 | > | Molecule::CutoffGroupIterator cgIter; |
974 | ||
975 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
976 | ||
# | Line 1124 | Line 981 | namespace OpenMD { | |
981 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | |
982 | rb->setSnapshotManager(sman_); | |
983 | } | |
984 | + | |
985 | + | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
986 | + | cg->setSnapshotManager(sman_); |
987 | + | } |
988 | } | |
989 | ||
990 | } | |
# | Line 1352 | Line 1213 | namespace OpenMD { | |
1213 | ||
1214 | det = intTensor.determinant(); | |
1215 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1216 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1216 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1217 | return; | |
1218 | } | |
1219 | ||
# | Line 1368 | Line 1229 | namespace OpenMD { | |
1229 | ||
1230 | detI = intTensor.determinant(); | |
1231 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | |
1232 | < | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1232 | > | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1233 | return; | |
1234 | } | |
1235 | /* |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |