# | Line 54 | Line 54 | |
---|---|---|
54 | #include "math/Vector3.hpp" | |
55 | #include "primitives/Molecule.hpp" | |
56 | #include "primitives/StuntDouble.hpp" | |
57 | – | #include "UseTheForce/DarkSide/neighborLists_interface.h" |
57 | #include "utils/MemoryUtils.hpp" | |
58 | #include "utils/simError.h" | |
59 | #include "selection/SelectionManager.hpp" | |
60 | #include "io/ForceFieldOptions.hpp" | |
61 | #include "UseTheForce/ForceField.hpp" | |
62 | #include "nonbonded/SwitchingFunction.hpp" | |
64 | – | |
63 | #ifdef IS_MPI | |
64 | < | #include "UseTheForce/mpiComponentPlan.h" |
65 | < | #include "UseTheForce/DarkSide/simParallel_interface.h" |
68 | < | #endif |
64 | > | #include <mpi.h> |
65 | > | #endif |
66 | ||
67 | using namespace std; | |
68 | namespace OpenMD { | |
# | Line 77 | Line 74 | namespace OpenMD { | |
74 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | |
75 | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), | |
76 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | |
77 | < | nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
77 | > | nConstraints_(0), sman_(NULL), topologyDone_(false), |
78 | calcBoxDipole_(false), useAtomicVirial_(true) { | |
79 | ||
80 | MoleculeStamp* molStamp; | |
# | Line 131 | Line 128 | namespace OpenMD { | |
128 | //equal to the total number of atoms minus number of atoms belong to | |
129 | //cutoff group defined in meta-data file plus the number of cutoff | |
130 | //groups defined in meta-data file | |
131 | + | |
132 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | |
133 | ||
134 | //every free atom (atom does not belong to rigid bodies) is an | |
# | Line 274 | Line 272 | namespace OpenMD { | |
272 | #endif | |
273 | return fdf_; | |
274 | } | |
275 | + | |
276 | + | unsigned int SimInfo::getNLocalCutoffGroups(){ |
277 | + | int nLocalCutoffAtoms = 0; |
278 | + | Molecule* mol; |
279 | + | MoleculeIterator mi; |
280 | + | CutoffGroup* cg; |
281 | + | Molecule::CutoffGroupIterator ci; |
282 | ||
283 | + | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
284 | + | |
285 | + | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
286 | + | cg = mol->nextCutoffGroup(ci)) { |
287 | + | nLocalCutoffAtoms += cg->getNumAtom(); |
288 | + | |
289 | + | } |
290 | + | } |
291 | + | |
292 | + | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
293 | + | } |
294 | + | |
295 | void SimInfo::calcNdfRaw() { | |
296 | int ndfRaw_local; | |
297 | ||
# | Line 680 | Line 697 | namespace OpenMD { | |
697 | Atom* atom; | |
698 | set<AtomType*> atomTypes; | |
699 | ||
700 | < | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
701 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
700 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
701 | > | for(atom = mol->beginAtom(ai); atom != NULL; |
702 | > | atom = mol->nextAtom(ai)) { |
703 | atomTypes.insert(atom->getAtomType()); | |
704 | } | |
705 | } | |
706 | < | |
706 | > | |
707 | #ifdef IS_MPI | |
708 | ||
709 | // loop over the found atom types on this processor, and add their | |
710 | // numerical idents to a vector: | |
711 | < | |
711 | > | |
712 | vector<int> foundTypes; | |
713 | set<AtomType*>::iterator i; | |
714 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | |
# | Line 699 | Line 717 | namespace OpenMD { | |
717 | // count_local holds the number of found types on this processor | |
718 | int count_local = foundTypes.size(); | |
719 | ||
720 | < | // count holds the total number of found types on all processors |
703 | < | // (some will be redundant with the ones found locally): |
704 | < | int count; |
705 | < | MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
720 | > | int nproc = MPI::COMM_WORLD.Get_size(); |
721 | ||
722 | < | // create a vector to hold the globally found types, and resize it: |
723 | < | vector<int> ftGlobal; |
724 | < | ftGlobal.resize(count); |
725 | < | vector<int> counts; |
722 | > | // we need arrays to hold the counts and displacement vectors for |
723 | > | // all processors |
724 | > | vector<int> counts(nproc, 0); |
725 | > | vector<int> disps(nproc, 0); |
726 | ||
727 | < | int nproc = MPI::COMM_WORLD.Get_size(); |
728 | < | counts.resize(nproc); |
729 | < | vector<int> disps; |
730 | < | disps.resize(nproc); |
727 | > | // fill the counts array |
728 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
729 | > | 1, MPI::INT); |
730 | > | |
731 | > | // use the processor counts to compute the displacement array |
732 | > | disps[0] = 0; |
733 | > | int totalCount = counts[0]; |
734 | > | for (int iproc = 1; iproc < nproc; iproc++) { |
735 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
736 | > | totalCount += counts[iproc]; |
737 | > | } |
738 | ||
739 | < | // now spray out the foundTypes to all the other processors: |
739 | > | // we need a (possibly redundant) set of all found types: |
740 | > | vector<int> ftGlobal(totalCount); |
741 | ||
742 | + | // now spray out the foundTypes to all the other processors: |
743 | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | |
744 | < | &ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
744 | > | &ftGlobal[0], &counts[0], &disps[0], |
745 | > | MPI::INT); |
746 | > | |
747 | > | vector<int>::iterator j; |
748 | ||
749 | // foundIdents is a stl set, so inserting an already found ident | |
750 | // will have no effect. | |
751 | set<int> foundIdents; | |
752 | < | vector<int>::iterator j; |
752 | > | |
753 | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | |
754 | foundIdents.insert((*j)); | |
755 | ||
756 | // now iterate over the foundIdents and get the actual atom types | |
757 | // that correspond to these: | |
758 | set<int>::iterator it; | |
759 | < | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
759 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
760 | atomTypes.insert( forceField_->getAtomType((*it)) ); | |
761 | ||
762 | #endif | |
763 | < | |
763 | > | |
764 | return atomTypes; | |
765 | } | |
766 | ||
# | Line 745 | Line 772 | namespace OpenMD { | |
772 | if ( simParams_->getAccumulateBoxDipole() ) { | |
773 | calcBoxDipole_ = true; | |
774 | } | |
775 | < | |
775 | > | |
776 | set<AtomType*>::iterator i; | |
777 | set<AtomType*> atomTypes; | |
778 | atomTypes = getSimulatedAtomTypes(); | |
# | Line 758 | Line 785 | namespace OpenMD { | |
785 | usesMetallic |= (*i)->isMetal(); | |
786 | usesDirectional |= (*i)->isDirectional(); | |
787 | } | |
788 | < | |
788 | > | |
789 | #ifdef IS_MPI | |
790 | int temp; | |
791 | temp = usesDirectional; | |
792 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
793 | < | |
793 | > | |
794 | temp = usesMetallic; | |
795 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
796 | < | |
796 | > | |
797 | temp = usesElectrostatic; | |
798 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | |
799 | + | #else |
800 | + | |
801 | + | usesDirectionalAtoms_ = usesDirectional; |
802 | + | usesMetallicAtoms_ = usesMetallic; |
803 | + | usesElectrostaticAtoms_ = usesElectrostatic; |
804 | + | |
805 | #endif | |
806 | < | fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
807 | < | fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
808 | < | fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
809 | < | fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
777 | < | fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
778 | < | fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
806 | > | |
807 | > | requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
808 | > | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
809 | > | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
810 | } | |
811 | ||
812 | < | void SimInfo::setupFortran() { |
813 | < | int isError; |
814 | < | int nExclude, nOneTwo, nOneThree, nOneFour; |
815 | < | vector<int> fortranGlobalGroupMembership; |
812 | > | |
813 | > | vector<int> SimInfo::getGlobalAtomIndices() { |
814 | > | SimInfo::MoleculeIterator mi; |
815 | > | Molecule* mol; |
816 | > | Molecule::AtomIterator ai; |
817 | > | Atom* atom; |
818 | > | |
819 | > | vector<int> GlobalAtomIndices(getNAtoms(), 0); |
820 | ||
821 | < | isError = 0; |
821 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
822 | > | |
823 | > | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
824 | > | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
825 | > | } |
826 | > | } |
827 | > | return GlobalAtomIndices; |
828 | > | } |
829 | ||
830 | < | //globalGroupMembership_ is filled by SimCreator |
831 | < | for (int i = 0; i < nGlobalAtoms_; i++) { |
832 | < | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
830 | > | |
831 | > | vector<int> SimInfo::getGlobalGroupIndices() { |
832 | > | SimInfo::MoleculeIterator mi; |
833 | > | Molecule* mol; |
834 | > | Molecule::CutoffGroupIterator ci; |
835 | > | CutoffGroup* cg; |
836 | > | |
837 | > | vector<int> GlobalGroupIndices; |
838 | > | |
839 | > | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
840 | > | |
841 | > | //local index of cutoff group is trivial, it only depends on the |
842 | > | //order of travesing |
843 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
844 | > | cg = mol->nextCutoffGroup(ci)) { |
845 | > | GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
846 | > | } |
847 | } | |
848 | + | return GlobalGroupIndices; |
849 | + | } |
850 | ||
851 | + | |
852 | + | void SimInfo::prepareTopology() { |
853 | + | int nExclude, nOneTwo, nOneThree, nOneFour; |
854 | + | |
855 | //calculate mass ratio of cutoff group | |
794 | – | vector<RealType> mfact; |
856 | SimInfo::MoleculeIterator mi; | |
857 | Molecule* mol; | |
858 | Molecule::CutoffGroupIterator ci; | |
# | Line 800 | Line 861 | namespace OpenMD { | |
861 | Atom* atom; | |
862 | RealType totalMass; | |
863 | ||
864 | < | //to avoid memory reallocation, reserve enough space for mfact |
865 | < | mfact.reserve(getNCutoffGroups()); |
864 | > | /** |
865 | > | * The mass factor is the relative mass of an atom to the total |
866 | > | * mass of the cutoff group it belongs to. By default, all atoms |
867 | > | * are their own cutoff groups, and therefore have mass factors of |
868 | > | * 1. We need some special handling for massless atoms, which |
869 | > | * will be treated as carrying the entire mass of the cutoff |
870 | > | * group. |
871 | > | */ |
872 | > | massFactors_.clear(); |
873 | > | massFactors_.resize(getNAtoms(), 1.0); |
874 | ||
875 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
876 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
876 | > | for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
877 | > | cg = mol->nextCutoffGroup(ci)) { |
878 | ||
879 | totalMass = cg->getMass(); | |
880 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
881 | // Check for massless groups - set mfact to 1 if true | |
882 | < | if (totalMass != 0) |
883 | < | mfact.push_back(atom->getMass()/totalMass); |
882 | > | if (totalMass != 0) |
883 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
884 | else | |
885 | < | mfact.push_back( 1.0 ); |
885 | > | massFactors_[atom->getLocalIndex()] = 1.0; |
886 | } | |
887 | } | |
888 | } | |
889 | ||
890 | < | //fill ident array of local atoms (it is actually ident of |
821 | < | //AtomType, it is so confusing !!!) |
822 | < | vector<int> identArray; |
890 | > | // Build the identArray_ |
891 | ||
892 | < | //to avoid memory reallocation, reserve enough space identArray |
893 | < | identArray.reserve(getNAtoms()); |
826 | < | |
892 | > | identArray_.clear(); |
893 | > | identArray_.reserve(getNAtoms()); |
894 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
895 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | |
896 | < | identArray.push_back(atom->getIdent()); |
896 | > | identArray_.push_back(atom->getIdent()); |
897 | } | |
898 | } | |
832 | – | |
833 | – | //fill molMembershipArray |
834 | – | //molMembershipArray is filled by SimCreator |
835 | – | vector<int> molMembershipArray(nGlobalAtoms_); |
836 | – | for (int i = 0; i < nGlobalAtoms_; i++) { |
837 | – | molMembershipArray[i] = globalMolMembership_[i] + 1; |
838 | – | } |
899 | ||
900 | < | //setup fortran simulation |
900 | > | //scan topology |
901 | ||
902 | nExclude = excludedInteractions_.getSize(); | |
903 | nOneTwo = oneTwoInteractions_.getSize(); | |
# | Line 849 | Line 909 | namespace OpenMD { | |
909 | int* oneThreeList = oneThreeInteractions_.getPairList(); | |
910 | int* oneFourList = oneFourInteractions_.getPairList(); | |
911 | ||
912 | < | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
853 | < | &nExclude, excludeList, |
854 | < | &nOneTwo, oneTwoList, |
855 | < | &nOneThree, oneThreeList, |
856 | < | &nOneFour, oneFourList, |
857 | < | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
858 | < | &fortranGlobalGroupMembership[0], &isError); |
859 | < | |
860 | < | if( isError ){ |
861 | < | |
862 | < | sprintf( painCave.errMsg, |
863 | < | "There was an error setting the simulation information in fortran.\n" ); |
864 | < | painCave.isFatal = 1; |
865 | < | painCave.severity = OPENMD_ERROR; |
866 | < | simError(); |
867 | < | } |
868 | < | |
869 | < | |
870 | < | sprintf( checkPointMsg, |
871 | < | "succesfully sent the simulation information to fortran.\n"); |
872 | < | |
873 | < | errorCheckPoint(); |
874 | < | |
875 | < | // Setup number of neighbors in neighbor list if present |
876 | < | if (simParams_->haveNeighborListNeighbors()) { |
877 | < | int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
878 | < | setNeighbors(&nlistNeighbors); |
879 | < | } |
880 | < | |
881 | < | #ifdef IS_MPI |
882 | < | //SimInfo is responsible for creating localToGlobalAtomIndex and |
883 | < | //localToGlobalGroupIndex |
884 | < | vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
885 | < | vector<int> localToGlobalCutoffGroupIndex; |
886 | < | mpiSimData parallelData; |
887 | < | |
888 | < | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
889 | < | |
890 | < | //local index(index in DataStorge) of atom is important |
891 | < | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
892 | < | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
893 | < | } |
894 | < | |
895 | < | //local index of cutoff group is trivial, it only depends on the order of travesing |
896 | < | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
897 | < | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
898 | < | } |
899 | < | |
900 | < | } |
901 | < | |
902 | < | //fill up mpiSimData struct |
903 | < | parallelData.nMolGlobal = getNGlobalMolecules(); |
904 | < | parallelData.nMolLocal = getNMolecules(); |
905 | < | parallelData.nAtomsGlobal = getNGlobalAtoms(); |
906 | < | parallelData.nAtomsLocal = getNAtoms(); |
907 | < | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
908 | < | parallelData.nGroupsLocal = getNCutoffGroups(); |
909 | < | parallelData.myNode = worldRank; |
910 | < | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
911 | < | |
912 | < | //pass mpiSimData struct and index arrays to fortran |
913 | < | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
914 | < | &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
915 | < | &localToGlobalCutoffGroupIndex[0], &isError); |
916 | < | |
917 | < | if (isError) { |
918 | < | sprintf(painCave.errMsg, |
919 | < | "mpiRefresh errror: fortran didn't like something we gave it.\n"); |
920 | < | painCave.isFatal = 1; |
921 | < | simError(); |
922 | < | } |
923 | < | |
924 | < | sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
925 | < | errorCheckPoint(); |
926 | < | #endif |
927 | < | fortranInitialized_ = true; |
912 | > | topologyDone_ = true; |
913 | } | |
914 | ||
915 | void SimInfo::addProperty(GenericData* genData) { | |
# | Line 961 | Line 946 | namespace OpenMD { | |
946 | Molecule* mol; | |
947 | RigidBody* rb; | |
948 | Atom* atom; | |
949 | + | CutoffGroup* cg; |
950 | SimInfo::MoleculeIterator mi; | |
951 | Molecule::RigidBodyIterator rbIter; | |
952 | < | Molecule::AtomIterator atomIter;; |
952 | > | Molecule::AtomIterator atomIter; |
953 | > | Molecule::CutoffGroupIterator cgIter; |
954 | ||
955 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
956 | ||
# | Line 973 | Line 960 | namespace OpenMD { | |
960 | ||
961 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | |
962 | rb->setSnapshotManager(sman_); | |
963 | + | } |
964 | + | |
965 | + | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
966 | + | cg->setSnapshotManager(sman_); |
967 | } | |
968 | } | |
969 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |