# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | ||
43 | /** | |
# | Line 58 | Line 59 | |
59 | #include "utils/simError.h" | |
60 | #include "selection/SelectionManager.hpp" | |
61 | #include "io/ForceFieldOptions.hpp" | |
62 | < | #include "UseTheForce/ForceField.hpp" |
62 | > | #include "brains/ForceField.hpp" |
63 | #include "nonbonded/SwitchingFunction.hpp" | |
64 | + | #ifdef IS_MPI |
65 | + | #include <mpi.h> |
66 | + | #endif |
67 | ||
68 | using namespace std; | |
69 | namespace OpenMD { | |
# | Line 68 | Line 72 | namespace OpenMD { | |
72 | forceField_(ff), simParams_(simParams), | |
73 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | |
74 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | |
75 | < | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 | > | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 | nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), | |
77 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | |
78 | < | nConstraints_(0), sman_(NULL), topologyDone_(false), |
78 | > | nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 | calcBoxDipole_(false), useAtomicVirial_(true) { | |
80 | ||
81 | MoleculeStamp* molStamp; | |
# | Line 84 | Line 88 | namespace OpenMD { | |
88 | ||
89 | vector<Component*> components = simParams->getComponents(); | |
90 | ||
91 | < | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
91 | > | for (vector<Component*>::iterator i = components.begin(); |
92 | > | i !=components.end(); ++i) { |
93 | molStamp = (*i)->getMoleculeStamp(); | |
94 | nMolWithSameStamp = (*i)->getNMol(); | |
95 | ||
# | Line 221 | Line 226 | namespace OpenMD { | |
226 | ||
227 | ||
228 | void SimInfo::calcNdf() { | |
229 | < | int ndf_local; |
229 | > | int ndf_local, nfq_local; |
230 | MoleculeIterator i; | |
231 | vector<StuntDouble*>::iterator j; | |
232 | + | vector<Atom*>::iterator k; |
233 | + | |
234 | Molecule* mol; | |
235 | < | StuntDouble* integrableObject; |
235 | > | StuntDouble* sd; |
236 | > | Atom* atom; |
237 | ||
238 | ndf_local = 0; | |
239 | + | nfq_local = 0; |
240 | ||
241 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | |
233 | – | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
234 | – | integrableObject = mol->nextIntegrableObject(j)) { |
242 | ||
243 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; |
244 | + | sd = mol->nextIntegrableObject(j)) { |
245 | + | |
246 | ndf_local += 3; | |
247 | ||
248 | < | if (integrableObject->isDirectional()) { |
249 | < | if (integrableObject->isLinear()) { |
248 | > | if (sd->isDirectional()) { |
249 | > | if (sd->isLinear()) { |
250 | ndf_local += 2; | |
251 | } else { | |
252 | ndf_local += 3; | |
253 | } | |
254 | } | |
245 | – | |
255 | } | |
256 | + | |
257 | + | for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
258 | + | atom = mol->nextFluctuatingCharge(k)) { |
259 | + | if (atom->isFluctuatingCharge()) { |
260 | + | nfq_local++; |
261 | + | } |
262 | + | } |
263 | } | |
264 | ||
265 | + | ndfLocal_ = ndf_local; |
266 | + | |
267 | // n_constraints is local, so subtract them on each processor | |
268 | ndf_local -= nConstraints_; | |
269 | ||
270 | #ifdef IS_MPI | |
271 | < | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
271 | > | MPI::COMM_WORLD.Allreduce(&ndf_local, &ndf_, 1, MPI::INT,MPI::SUM); |
272 | > | MPI::COMM_WORLD.Allreduce(&nfq_local, &nGlobalFluctuatingCharges_, 1, |
273 | > | MPI::INT, MPI::SUM); |
274 | #else | |
275 | ndf_ = ndf_local; | |
276 | + | nGlobalFluctuatingCharges_ = nfq_local; |
277 | #endif | |
278 | ||
279 | // nZconstraints_ is global, as are the 3 COM translations for the | |
# | Line 263 | Line 284 | namespace OpenMD { | |
284 | ||
285 | int SimInfo::getFdf() { | |
286 | #ifdef IS_MPI | |
287 | < | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
287 | > | MPI::COMM_WORLD.Allreduce(&fdf_local, &fdf_, 1, MPI::INT, MPI::SUM); |
288 | #else | |
289 | fdf_ = fdf_local; | |
290 | #endif | |
# | Line 295 | Line 316 | namespace OpenMD { | |
316 | MoleculeIterator i; | |
317 | vector<StuntDouble*>::iterator j; | |
318 | Molecule* mol; | |
319 | < | StuntDouble* integrableObject; |
319 | > | StuntDouble* sd; |
320 | ||
321 | // Raw degrees of freedom that we have to set | |
322 | ndfRaw_local = 0; | |
323 | ||
324 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | |
304 | – | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
305 | – | integrableObject = mol->nextIntegrableObject(j)) { |
325 | ||
326 | + | for (sd = mol->beginIntegrableObject(j); sd != NULL; |
327 | + | sd = mol->nextIntegrableObject(j)) { |
328 | + | |
329 | ndfRaw_local += 3; | |
330 | ||
331 | < | if (integrableObject->isDirectional()) { |
332 | < | if (integrableObject->isLinear()) { |
331 | > | if (sd->isDirectional()) { |
332 | > | if (sd->isLinear()) { |
333 | ndfRaw_local += 2; | |
334 | } else { | |
335 | ndfRaw_local += 3; | |
# | Line 318 | Line 340 | namespace OpenMD { | |
340 | } | |
341 | ||
342 | #ifdef IS_MPI | |
343 | < | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
343 | > | MPI::COMM_WORLD.Allreduce(&ndfRaw_local, &ndfRaw_, 1, MPI::INT, MPI::SUM); |
344 | #else | |
345 | ndfRaw_ = ndfRaw_local; | |
346 | #endif | |
# | Line 331 | Line 353 | namespace OpenMD { | |
353 | ||
354 | ||
355 | #ifdef IS_MPI | |
356 | < | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
356 | > | MPI::COMM_WORLD.Allreduce(&ndfTrans_local, &ndfTrans_, 1, |
357 | > | MPI::INT, MPI::SUM); |
358 | #else | |
359 | ndfTrans_ = ndfTrans_local; | |
360 | #endif | |
# | Line 367 | Line 390 | namespace OpenMD { | |
390 | Molecule::RigidBodyIterator rbIter; | |
391 | RigidBody* rb; | |
392 | Molecule::IntegrableObjectIterator ii; | |
393 | < | StuntDouble* integrableObject; |
393 | > | StuntDouble* sd; |
394 | ||
395 | < | for (integrableObject = mol->beginIntegrableObject(ii); |
396 | < | integrableObject != NULL; |
374 | < | integrableObject = mol->nextIntegrableObject(ii)) { |
395 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
396 | > | sd = mol->nextIntegrableObject(ii)) { |
397 | ||
398 | < | if (integrableObject->isRigidBody()) { |
399 | < | rb = static_cast<RigidBody*>(integrableObject); |
398 | > | if (sd->isRigidBody()) { |
399 | > | rb = static_cast<RigidBody*>(sd); |
400 | vector<Atom*> atoms = rb->getAtoms(); | |
401 | set<int> rigidAtoms; | |
402 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
# | Line 385 | Line 407 | namespace OpenMD { | |
407 | } | |
408 | } else { | |
409 | set<int> oneAtomSet; | |
410 | < | oneAtomSet.insert(integrableObject->getGlobalIndex()); |
411 | < | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
410 | > | oneAtomSet.insert(sd->getGlobalIndex()); |
411 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
412 | } | |
413 | } | |
414 | ||
# | Line 520 | Line 542 | namespace OpenMD { | |
542 | Molecule::RigidBodyIterator rbIter; | |
543 | RigidBody* rb; | |
544 | Molecule::IntegrableObjectIterator ii; | |
545 | < | StuntDouble* integrableObject; |
545 | > | StuntDouble* sd; |
546 | ||
547 | < | for (integrableObject = mol->beginIntegrableObject(ii); |
548 | < | integrableObject != NULL; |
527 | < | integrableObject = mol->nextIntegrableObject(ii)) { |
547 | > | for (sd = mol->beginIntegrableObject(ii); sd != NULL; |
548 | > | sd = mol->nextIntegrableObject(ii)) { |
549 | ||
550 | < | if (integrableObject->isRigidBody()) { |
551 | < | rb = static_cast<RigidBody*>(integrableObject); |
550 | > | if (sd->isRigidBody()) { |
551 | > | rb = static_cast<RigidBody*>(sd); |
552 | vector<Atom*> atoms = rb->getAtoms(); | |
553 | set<int> rigidAtoms; | |
554 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | |
# | Line 538 | Line 559 | namespace OpenMD { | |
559 | } | |
560 | } else { | |
561 | set<int> oneAtomSet; | |
562 | < | oneAtomSet.insert(integrableObject->getGlobalIndex()); |
563 | < | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
562 | > | oneAtomSet.insert(sd->getGlobalIndex()); |
563 | > | atomGroups.insert(map<int, set<int> >::value_type(sd->getGlobalIndex(), oneAtomSet)); |
564 | } | |
565 | } | |
566 | ||
# | Line 694 | Line 715 | namespace OpenMD { | |
715 | Atom* atom; | |
716 | set<AtomType*> atomTypes; | |
717 | ||
718 | < | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
719 | < | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
718 | > | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
719 | > | for(atom = mol->beginAtom(ai); atom != NULL; |
720 | > | atom = mol->nextAtom(ai)) { |
721 | atomTypes.insert(atom->getAtomType()); | |
722 | } | |
723 | } | |
724 | < | |
724 | > | |
725 | #ifdef IS_MPI | |
726 | ||
727 | // loop over the found atom types on this processor, and add their | |
728 | // numerical idents to a vector: | |
729 | < | |
729 | > | |
730 | vector<int> foundTypes; | |
731 | set<AtomType*>::iterator i; | |
732 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | |
# | Line 713 | Line 735 | namespace OpenMD { | |
735 | // count_local holds the number of found types on this processor | |
736 | int count_local = foundTypes.size(); | |
737 | ||
738 | < | // count holds the total number of found types on all processors |
717 | < | // (some will be redundant with the ones found locally): |
718 | < | int count; |
719 | < | MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
738 | > | int nproc = MPI::COMM_WORLD.Get_size(); |
739 | ||
740 | < | // create a vector to hold the globally found types, and resize it: |
741 | < | vector<int> ftGlobal; |
742 | < | ftGlobal.resize(count); |
743 | < | vector<int> counts; |
740 | > | // we need arrays to hold the counts and displacement vectors for |
741 | > | // all processors |
742 | > | vector<int> counts(nproc, 0); |
743 | > | vector<int> disps(nproc, 0); |
744 | ||
745 | < | int nproc = MPI::COMM_WORLD.Get_size(); |
746 | < | counts.resize(nproc); |
747 | < | vector<int> disps; |
748 | < | disps.resize(nproc); |
745 | > | // fill the counts array |
746 | > | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
747 | > | 1, MPI::INT); |
748 | > | |
749 | > | // use the processor counts to compute the displacement array |
750 | > | disps[0] = 0; |
751 | > | int totalCount = counts[0]; |
752 | > | for (int iproc = 1; iproc < nproc; iproc++) { |
753 | > | disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
754 | > | totalCount += counts[iproc]; |
755 | > | } |
756 | ||
757 | < | // now spray out the foundTypes to all the other processors: |
757 | > | // we need a (possibly redundant) set of all found types: |
758 | > | vector<int> ftGlobal(totalCount); |
759 | ||
760 | + | // now spray out the foundTypes to all the other processors: |
761 | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | |
762 | < | &ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
762 | > | &ftGlobal[0], &counts[0], &disps[0], |
763 | > | MPI::INT); |
764 | ||
765 | + | vector<int>::iterator j; |
766 | + | |
767 | // foundIdents is a stl set, so inserting an already found ident | |
768 | // will have no effect. | |
769 | set<int> foundIdents; | |
770 | < | vector<int>::iterator j; |
770 | > | |
771 | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | |
772 | foundIdents.insert((*j)); | |
773 | ||
774 | // now iterate over the foundIdents and get the actual atom types | |
775 | // that correspond to these: | |
776 | set<int>::iterator it; | |
777 | < | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
777 | > | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
778 | atomTypes.insert( forceField_->getAtomType((*it)) ); | |
779 | ||
780 | #endif | |
781 | < | |
781 | > | |
782 | return atomTypes; | |
783 | } | |
784 | ||
785 | + | |
786 | + | int getGlobalCountOfType(AtomType* atype) { |
787 | + | /* |
788 | + | set<AtomType*> atypes = getSimulatedAtomTypes(); |
789 | + | map<AtomType*, int> counts_; |
790 | + | |
791 | + | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
792 | + | for(atom = mol->beginAtom(ai); atom != NULL; |
793 | + | atom = mol->nextAtom(ai)) { |
794 | + | atom->getAtomType(); |
795 | + | } |
796 | + | } |
797 | + | */ |
798 | + | return 0; |
799 | + | } |
800 | + | |
801 | void SimInfo::setupSimVariables() { | |
802 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | |
803 | < | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
803 | > | // we only call setAccumulateBoxDipole if the accumulateBoxDipole |
804 | > | // parameter is true |
805 | calcBoxDipole_ = false; | |
806 | if ( simParams_->haveAccumulateBoxDipole() ) | |
807 | if ( simParams_->getAccumulateBoxDipole() ) { | |
808 | calcBoxDipole_ = true; | |
809 | } | |
810 | < | |
810 | > | |
811 | set<AtomType*>::iterator i; | |
812 | set<AtomType*> atomTypes; | |
813 | atomTypes = getSimulatedAtomTypes(); | |
814 | < | int usesElectrostatic = 0; |
815 | < | int usesMetallic = 0; |
816 | < | int usesDirectional = 0; |
814 | > | bool usesElectrostatic = false; |
815 | > | bool usesMetallic = false; |
816 | > | bool usesDirectional = false; |
817 | > | bool usesFluctuatingCharges = false; |
818 | //loop over all of the atom types | |
819 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | |
820 | usesElectrostatic |= (*i)->isElectrostatic(); | |
821 | usesMetallic |= (*i)->isMetal(); | |
822 | usesDirectional |= (*i)->isDirectional(); | |
823 | + | usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
824 | } | |
825 | ||
826 | < | #ifdef IS_MPI |
827 | < | int temp; |
826 | > | #ifdef IS_MPI |
827 | > | bool temp; |
828 | temp = usesDirectional; | |
829 | < | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 | < | |
829 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI::BOOL, |
830 | > | MPI::LOR); |
831 | > | |
832 | temp = usesMetallic; | |
833 | < | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
834 | < | |
833 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesMetallicAtoms_, 1, MPI::BOOL, |
834 | > | MPI::LOR); |
835 | > | |
836 | temp = usesElectrostatic; | |
837 | < | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
837 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI::BOOL, |
838 | > | MPI::LOR); |
839 | > | |
840 | > | temp = usesFluctuatingCharges; |
841 | > | MPI::COMM_WORLD.Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI::BOOL, |
842 | > | MPI::LOR); |
843 | > | #else |
844 | > | |
845 | > | usesDirectionalAtoms_ = usesDirectional; |
846 | > | usesMetallicAtoms_ = usesMetallic; |
847 | > | usesElectrostaticAtoms_ = usesElectrostatic; |
848 | > | usesFluctuatingCharges_ = usesFluctuatingCharges; |
849 | > | |
850 | #endif | |
851 | + | |
852 | + | requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
853 | + | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
854 | + | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
855 | } | |
856 | ||
857 | ||
# | Line 827 | Line 895 | namespace OpenMD { | |
895 | ||
896 | ||
897 | void SimInfo::prepareTopology() { | |
830 | – | int nExclude, nOneTwo, nOneThree, nOneFour; |
898 | ||
899 | //calculate mass ratio of cutoff group | |
900 | SimInfo::MoleculeIterator mi; | |
# | Line 838 | Line 905 | namespace OpenMD { | |
905 | Atom* atom; | |
906 | RealType totalMass; | |
907 | ||
908 | < | //to avoid memory reallocation, reserve enough space for massFactors_ |
908 | > | /** |
909 | > | * The mass factor is the relative mass of an atom to the total |
910 | > | * mass of the cutoff group it belongs to. By default, all atoms |
911 | > | * are their own cutoff groups, and therefore have mass factors of |
912 | > | * 1. We need some special handling for massless atoms, which |
913 | > | * will be treated as carrying the entire mass of the cutoff |
914 | > | * group. |
915 | > | */ |
916 | massFactors_.clear(); | |
917 | < | massFactors_.reserve(getNCutoffGroups()); |
917 | > | massFactors_.resize(getNAtoms(), 1.0); |
918 | ||
919 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
920 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | |
# | Line 849 | Line 923 | namespace OpenMD { | |
923 | totalMass = cg->getMass(); | |
924 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | |
925 | // Check for massless groups - set mfact to 1 if true | |
926 | < | if (totalMass != 0) |
927 | < | massFactors_.push_back(atom->getMass()/totalMass); |
926 | > | if (totalMass != 0) |
927 | > | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
928 | else | |
929 | < | massFactors_.push_back( 1.0 ); |
929 | > | massFactors_[atom->getLocalIndex()] = 1.0; |
930 | } | |
931 | } | |
932 | } | |
# | Line 867 | Line 941 | namespace OpenMD { | |
941 | } | |
942 | } | |
943 | ||
870 | – | //scan topology |
871 | – | |
872 | – | nExclude = excludedInteractions_.getSize(); |
873 | – | nOneTwo = oneTwoInteractions_.getSize(); |
874 | – | nOneThree = oneThreeInteractions_.getSize(); |
875 | – | nOneFour = oneFourInteractions_.getSize(); |
876 | – | |
877 | – | int* excludeList = excludedInteractions_.getPairList(); |
878 | – | int* oneTwoList = oneTwoInteractions_.getPairList(); |
879 | – | int* oneThreeList = oneThreeInteractions_.getPairList(); |
880 | – | int* oneFourList = oneFourInteractions_.getPairList(); |
881 | – | |
882 | – | //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
883 | – | // &nExclude, excludeList, |
884 | – | // &nOneTwo, oneTwoList, |
885 | – | // &nOneThree, oneThreeList, |
886 | – | // &nOneFour, oneFourList, |
887 | – | // &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
888 | – | // &fortranGlobalGroupMembership[0], &isError); |
889 | – | |
944 | topologyDone_ = true; | |
945 | } | |
946 | ||
# | Line 932 | Line 986 | namespace OpenMD { | |
986 | ||
987 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | |
988 | ||
989 | < | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
989 | > | for (atom = mol->beginAtom(atomIter); atom != NULL; |
990 | > | atom = mol->nextAtom(atomIter)) { |
991 | atom->setSnapshotManager(sman_); | |
992 | } | |
993 | ||
994 | < | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
994 | > | for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
995 | > | rb = mol->nextRigidBody(rbIter)) { |
996 | rb->setSnapshotManager(sman_); | |
997 | } | |
998 | ||
999 | < | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
999 | > | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; |
1000 | > | cg = mol->nextCutoffGroup(cgIter)) { |
1001 | cg->setSnapshotManager(sman_); | |
1002 | } | |
1003 | } | |
1004 | ||
1005 | } | |
1006 | ||
950 | – | Vector3d SimInfo::getComVel(){ |
951 | – | SimInfo::MoleculeIterator i; |
952 | – | Molecule* mol; |
1007 | ||
954 | – | Vector3d comVel(0.0); |
955 | – | RealType totalMass = 0.0; |
956 | – | |
957 | – | |
958 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
959 | – | RealType mass = mol->getMass(); |
960 | – | totalMass += mass; |
961 | – | comVel += mass * mol->getComVel(); |
962 | – | } |
963 | – | |
964 | – | #ifdef IS_MPI |
965 | – | RealType tmpMass = totalMass; |
966 | – | Vector3d tmpComVel(comVel); |
967 | – | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
968 | – | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
969 | – | #endif |
970 | – | |
971 | – | comVel /= totalMass; |
972 | – | |
973 | – | return comVel; |
974 | – | } |
975 | – | |
976 | – | Vector3d SimInfo::getCom(){ |
977 | – | SimInfo::MoleculeIterator i; |
978 | – | Molecule* mol; |
979 | – | |
980 | – | Vector3d com(0.0); |
981 | – | RealType totalMass = 0.0; |
982 | – | |
983 | – | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
984 | – | RealType mass = mol->getMass(); |
985 | – | totalMass += mass; |
986 | – | com += mass * mol->getCom(); |
987 | – | } |
988 | – | |
989 | – | #ifdef IS_MPI |
990 | – | RealType tmpMass = totalMass; |
991 | – | Vector3d tmpCom(com); |
992 | – | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
993 | – | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
994 | – | #endif |
995 | – | |
996 | – | com /= totalMass; |
997 | – | |
998 | – | return com; |
999 | – | |
1000 | – | } |
1001 | – | |
1008 | ostream& operator <<(ostream& o, SimInfo& info) { | |
1009 | ||
1010 | return o; | |
1011 | } | |
1012 | ||
1013 | < | |
1008 | < | /* |
1009 | < | Returns center of mass and center of mass velocity in one function call. |
1010 | < | */ |
1011 | < | |
1012 | < | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1013 | < | SimInfo::MoleculeIterator i; |
1014 | < | Molecule* mol; |
1015 | < | |
1016 | < | |
1017 | < | RealType totalMass = 0.0; |
1018 | < | |
1019 | < | |
1020 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1021 | < | RealType mass = mol->getMass(); |
1022 | < | totalMass += mass; |
1023 | < | com += mass * mol->getCom(); |
1024 | < | comVel += mass * mol->getComVel(); |
1025 | < | } |
1026 | < | |
1027 | < | #ifdef IS_MPI |
1028 | < | RealType tmpMass = totalMass; |
1029 | < | Vector3d tmpCom(com); |
1030 | < | Vector3d tmpComVel(comVel); |
1031 | < | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1032 | < | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1033 | < | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1034 | < | #endif |
1035 | < | |
1036 | < | com /= totalMass; |
1037 | < | comVel /= totalMass; |
1038 | < | } |
1039 | < | |
1040 | < | /* |
1041 | < | Return intertia tensor for entire system and angular momentum Vector. |
1042 | < | |
1043 | < | |
1044 | < | [ Ixx -Ixy -Ixz ] |
1045 | < | J =| -Iyx Iyy -Iyz | |
1046 | < | [ -Izx -Iyz Izz ] |
1047 | < | */ |
1048 | < | |
1049 | < | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1050 | < | |
1051 | < | |
1052 | < | RealType xx = 0.0; |
1053 | < | RealType yy = 0.0; |
1054 | < | RealType zz = 0.0; |
1055 | < | RealType xy = 0.0; |
1056 | < | RealType xz = 0.0; |
1057 | < | RealType yz = 0.0; |
1058 | < | Vector3d com(0.0); |
1059 | < | Vector3d comVel(0.0); |
1060 | < | |
1061 | < | getComAll(com, comVel); |
1062 | < | |
1063 | < | SimInfo::MoleculeIterator i; |
1064 | < | Molecule* mol; |
1065 | < | |
1066 | < | Vector3d thisq(0.0); |
1067 | < | Vector3d thisv(0.0); |
1068 | < | |
1069 | < | RealType thisMass = 0.0; |
1070 | < | |
1071 | < | |
1072 | < | |
1073 | < | |
1074 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1075 | < | |
1076 | < | thisq = mol->getCom()-com; |
1077 | < | thisv = mol->getComVel()-comVel; |
1078 | < | thisMass = mol->getMass(); |
1079 | < | // Compute moment of intertia coefficients. |
1080 | < | xx += thisq[0]*thisq[0]*thisMass; |
1081 | < | yy += thisq[1]*thisq[1]*thisMass; |
1082 | < | zz += thisq[2]*thisq[2]*thisMass; |
1083 | < | |
1084 | < | // compute products of intertia |
1085 | < | xy += thisq[0]*thisq[1]*thisMass; |
1086 | < | xz += thisq[0]*thisq[2]*thisMass; |
1087 | < | yz += thisq[1]*thisq[2]*thisMass; |
1088 | < | |
1089 | < | angularMomentum += cross( thisq, thisv ) * thisMass; |
1090 | < | |
1091 | < | } |
1092 | < | |
1093 | < | |
1094 | < | inertiaTensor(0,0) = yy + zz; |
1095 | < | inertiaTensor(0,1) = -xy; |
1096 | < | inertiaTensor(0,2) = -xz; |
1097 | < | inertiaTensor(1,0) = -xy; |
1098 | < | inertiaTensor(1,1) = xx + zz; |
1099 | < | inertiaTensor(1,2) = -yz; |
1100 | < | inertiaTensor(2,0) = -xz; |
1101 | < | inertiaTensor(2,1) = -yz; |
1102 | < | inertiaTensor(2,2) = xx + yy; |
1103 | < | |
1104 | < | #ifdef IS_MPI |
1105 | < | Mat3x3d tmpI(inertiaTensor); |
1106 | < | Vector3d tmpAngMom; |
1107 | < | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1108 | < | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1109 | < | #endif |
1110 | < | |
1111 | < | return; |
1112 | < | } |
1113 | < | |
1114 | < | //Returns the angular momentum of the system |
1115 | < | Vector3d SimInfo::getAngularMomentum(){ |
1116 | < | |
1117 | < | Vector3d com(0.0); |
1118 | < | Vector3d comVel(0.0); |
1119 | < | Vector3d angularMomentum(0.0); |
1120 | < | |
1121 | < | getComAll(com,comVel); |
1122 | < | |
1123 | < | SimInfo::MoleculeIterator i; |
1124 | < | Molecule* mol; |
1125 | < | |
1126 | < | Vector3d thisr(0.0); |
1127 | < | Vector3d thisp(0.0); |
1128 | < | |
1129 | < | RealType thisMass; |
1130 | < | |
1131 | < | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1132 | < | thisMass = mol->getMass(); |
1133 | < | thisr = mol->getCom()-com; |
1134 | < | thisp = (mol->getComVel()-comVel)*thisMass; |
1135 | < | |
1136 | < | angularMomentum += cross( thisr, thisp ); |
1137 | < | |
1138 | < | } |
1139 | < | |
1140 | < | #ifdef IS_MPI |
1141 | < | Vector3d tmpAngMom; |
1142 | < | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1143 | < | #endif |
1144 | < | |
1145 | < | return angularMomentum; |
1146 | < | } |
1147 | < | |
1013 | > | |
1014 | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | |
1015 | < | return IOIndexToIntegrableObject.at(index); |
1015 | > | if (index >= int(IOIndexToIntegrableObject.size())) { |
1016 | > | sprintf(painCave.errMsg, |
1017 | > | "SimInfo::getIOIndexToIntegrableObject Error: Integrable Object\n" |
1018 | > | "\tindex exceeds number of known objects!\n"); |
1019 | > | painCave.isFatal = 1; |
1020 | > | simError(); |
1021 | > | return NULL; |
1022 | > | } else |
1023 | > | return IOIndexToIntegrableObject.at(index); |
1024 | } | |
1025 | ||
1026 | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | |
1027 | IOIndexToIntegrableObject= v; | |
1028 | } | |
1029 | ||
1156 | – | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1157 | – | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1158 | – | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1159 | – | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1160 | – | */ |
1161 | – | void SimInfo::getGyrationalVolume(RealType &volume){ |
1162 | – | Mat3x3d intTensor; |
1163 | – | RealType det; |
1164 | – | Vector3d dummyAngMom; |
1165 | – | RealType sysconstants; |
1166 | – | RealType geomCnst; |
1167 | – | |
1168 | – | geomCnst = 3.0/2.0; |
1169 | – | /* Get the inertial tensor and angular momentum for free*/ |
1170 | – | getInertiaTensor(intTensor,dummyAngMom); |
1171 | – | |
1172 | – | det = intTensor.determinant(); |
1173 | – | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1174 | – | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1175 | – | return; |
1176 | – | } |
1177 | – | |
1178 | – | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1179 | – | Mat3x3d intTensor; |
1180 | – | Vector3d dummyAngMom; |
1181 | – | RealType sysconstants; |
1182 | – | RealType geomCnst; |
1183 | – | |
1184 | – | geomCnst = 3.0/2.0; |
1185 | – | /* Get the inertial tensor and angular momentum for free*/ |
1186 | – | getInertiaTensor(intTensor,dummyAngMom); |
1187 | – | |
1188 | – | detI = intTensor.determinant(); |
1189 | – | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1190 | – | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1191 | – | return; |
1192 | – | } |
1193 | – | /* |
1194 | – | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1195 | – | assert( v.size() == nAtoms_ + nRigidBodies_); |
1196 | – | sdByGlobalIndex_ = v; |
1197 | – | } |
1198 | – | |
1199 | – | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1200 | – | //assert(index < nAtoms_ + nRigidBodies_); |
1201 | – | return sdByGlobalIndex_.at(index); |
1202 | – | } |
1203 | – | */ |
1030 | int SimInfo::getNGlobalConstraints() { | |
1031 | int nGlobalConstraints; | |
1032 | #ifdef IS_MPI | |
1033 | < | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1034 | < | MPI_COMM_WORLD); |
1033 | > | MPI::COMM_WORLD.Allreduce(&nConstraints_, &nGlobalConstraints, 1, |
1034 | > | MPI::INT, MPI::SUM); |
1035 | #else | |
1036 | nGlobalConstraints = nConstraints_; | |
1037 | #endif |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |