| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
  | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
< | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 39 | 
> | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
> | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 59 | 
  | 
#include "utils/simError.h" | 
| 60 | 
  | 
#include "selection/SelectionManager.hpp" | 
| 61 | 
  | 
#include "io/ForceFieldOptions.hpp" | 
| 62 | 
< | 
#include "UseTheForce/ForceField.hpp" | 
| 62 | 
> | 
#include "brains/ForceField.hpp" | 
| 63 | 
  | 
#include "nonbonded/SwitchingFunction.hpp" | 
| 64 | 
+ | 
#ifdef IS_MPI | 
| 65 | 
+ | 
#include <mpi.h> | 
| 66 | 
+ | 
#endif | 
| 67 | 
  | 
 | 
| 68 | 
  | 
using namespace std; | 
| 69 | 
  | 
namespace OpenMD { | 
| 72 | 
  | 
    forceField_(ff), simParams_(simParams),  | 
| 73 | 
  | 
    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 74 | 
  | 
    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),  | 
| 75 | 
< | 
    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 75 | 
> | 
    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), | 
| 76 | 
  | 
    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),  | 
| 77 | 
  | 
    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),  | 
| 78 | 
< | 
    nConstraints_(0), sman_(NULL), topologyDone_(false),  | 
| 78 | 
> | 
    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),  | 
| 79 | 
  | 
    calcBoxDipole_(false), useAtomicVirial_(true) {     | 
| 80 | 
  | 
     | 
| 81 | 
  | 
    MoleculeStamp* molStamp; | 
| 129 | 
  | 
    //equal to the total number of atoms minus number of atoms belong to  | 
| 130 | 
  | 
    //cutoff group defined in meta-data file plus the number of cutoff  | 
| 131 | 
  | 
    //groups defined in meta-data file | 
| 128 | 
– | 
    std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; | 
| 129 | 
– | 
    std::cerr << "nCA = " << nCutoffAtoms << "\n"; | 
| 130 | 
– | 
    std::cerr << "nG = " << nGroups << "\n"; | 
| 132 | 
  | 
 | 
| 133 | 
  | 
    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 133 | 
– | 
 | 
| 134 | 
– | 
    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; | 
| 134 | 
  | 
     | 
| 135 | 
  | 
    //every free atom (atom does not belong to rigid bodies) is an  | 
| 136 | 
  | 
    //integrable object therefore the total number of integrable objects  | 
| 225 | 
  | 
 | 
| 226 | 
  | 
 | 
| 227 | 
  | 
  void SimInfo::calcNdf() { | 
| 228 | 
< | 
    int ndf_local; | 
| 228 | 
> | 
    int ndf_local, nfq_local; | 
| 229 | 
  | 
    MoleculeIterator i; | 
| 230 | 
  | 
    vector<StuntDouble*>::iterator j; | 
| 231 | 
+ | 
    vector<Atom*>::iterator k; | 
| 232 | 
+ | 
 | 
| 233 | 
  | 
    Molecule* mol; | 
| 234 | 
  | 
    StuntDouble* integrableObject; | 
| 235 | 
+ | 
    Atom* atom; | 
| 236 | 
  | 
 | 
| 237 | 
  | 
    ndf_local = 0; | 
| 238 | 
+ | 
    nfq_local = 0; | 
| 239 | 
  | 
     | 
| 240 | 
  | 
    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 241 | 
  | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;  | 
| 250 | 
  | 
            ndf_local += 3; | 
| 251 | 
  | 
          } | 
| 252 | 
  | 
        } | 
| 250 | 
– | 
             | 
| 253 | 
  | 
      } | 
| 254 | 
+ | 
      for (atom = mol->beginFluctuatingCharge(k); atom != NULL; | 
| 255 | 
+ | 
           atom = mol->nextFluctuatingCharge(k)) { | 
| 256 | 
+ | 
        if (atom->isFluctuatingCharge()) { | 
| 257 | 
+ | 
          nfq_local++; | 
| 258 | 
+ | 
        } | 
| 259 | 
+ | 
      } | 
| 260 | 
  | 
    } | 
| 261 | 
  | 
     | 
| 262 | 
+ | 
    ndfLocal_ = ndf_local; | 
| 263 | 
+ | 
 | 
| 264 | 
  | 
    // n_constraints is local, so subtract them on each processor | 
| 265 | 
  | 
    ndf_local -= nConstraints_; | 
| 266 | 
  | 
 | 
| 267 | 
  | 
#ifdef IS_MPI | 
| 268 | 
  | 
    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 269 | 
+ | 
    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); | 
| 270 | 
  | 
#else | 
| 271 | 
  | 
    ndf_ = ndf_local; | 
| 272 | 
+ | 
    nGlobalFluctuatingCharges_ = nfq_local; | 
| 273 | 
  | 
#endif | 
| 274 | 
  | 
 | 
| 275 | 
  | 
    // nZconstraints_ is global, as are the 3 COM translations for the  | 
| 286 | 
  | 
#endif | 
| 287 | 
  | 
    return fdf_; | 
| 288 | 
  | 
  } | 
| 289 | 
+ | 
   | 
| 290 | 
+ | 
  unsigned int SimInfo::getNLocalCutoffGroups(){ | 
| 291 | 
+ | 
    int nLocalCutoffAtoms = 0; | 
| 292 | 
+ | 
    Molecule* mol; | 
| 293 | 
+ | 
    MoleculeIterator mi; | 
| 294 | 
+ | 
    CutoffGroup* cg; | 
| 295 | 
+ | 
    Molecule::CutoffGroupIterator ci; | 
| 296 | 
  | 
     | 
| 297 | 
+ | 
    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 298 | 
+ | 
       | 
| 299 | 
+ | 
      for (cg = mol->beginCutoffGroup(ci); cg != NULL;  | 
| 300 | 
+ | 
           cg = mol->nextCutoffGroup(ci)) { | 
| 301 | 
+ | 
        nLocalCutoffAtoms += cg->getNumAtom(); | 
| 302 | 
+ | 
         | 
| 303 | 
+ | 
      }         | 
| 304 | 
+ | 
    } | 
| 305 | 
+ | 
     | 
| 306 | 
+ | 
    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; | 
| 307 | 
+ | 
  } | 
| 308 | 
+ | 
     | 
| 309 | 
  | 
  void SimInfo::calcNdfRaw() { | 
| 310 | 
  | 
    int ndfRaw_local; | 
| 311 | 
  | 
 | 
| 711 | 
  | 
    Atom* atom; | 
| 712 | 
  | 
    set<AtomType*> atomTypes; | 
| 713 | 
  | 
     | 
| 714 | 
< | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {       | 
| 715 | 
< | 
      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 714 | 
> | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 715 | 
> | 
      for(atom = mol->beginAtom(ai); atom != NULL; | 
| 716 | 
> | 
          atom = mol->nextAtom(ai)) { | 
| 717 | 
  | 
        atomTypes.insert(atom->getAtomType()); | 
| 718 | 
  | 
      }       | 
| 719 | 
  | 
    }     | 
| 720 | 
< | 
 | 
| 720 | 
> | 
     | 
| 721 | 
  | 
#ifdef IS_MPI | 
| 722 | 
  | 
 | 
| 723 | 
  | 
    // loop over the found atom types on this processor, and add their | 
| 724 | 
  | 
    // numerical idents to a vector: | 
| 725 | 
< | 
 | 
| 725 | 
> | 
     | 
| 726 | 
  | 
    vector<int> foundTypes; | 
| 727 | 
  | 
    set<AtomType*>::iterator i; | 
| 728 | 
  | 
    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)  | 
| 731 | 
  | 
    // count_local holds the number of found types on this processor | 
| 732 | 
  | 
    int count_local = foundTypes.size(); | 
| 733 | 
  | 
 | 
| 702 | 
– | 
    // count holds the total number of found types on all processors | 
| 703 | 
– | 
    // (some will be redundant with the ones found locally): | 
| 704 | 
– | 
    int count; | 
| 705 | 
– | 
    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); | 
| 706 | 
– | 
 | 
| 707 | 
– | 
    // create a vector to hold the globally found types, and resize it: | 
| 708 | 
– | 
    vector<int> ftGlobal; | 
| 709 | 
– | 
    ftGlobal.resize(count); | 
| 710 | 
– | 
    vector<int> counts; | 
| 711 | 
– | 
 | 
| 734 | 
  | 
    int nproc = MPI::COMM_WORLD.Get_size(); | 
| 713 | 
– | 
    counts.resize(nproc); | 
| 714 | 
– | 
    vector<int> disps; | 
| 715 | 
– | 
    disps.resize(nproc); | 
| 735 | 
  | 
 | 
| 736 | 
< | 
    // now spray out the foundTypes to all the other processors: | 
| 736 | 
> | 
    // we need arrays to hold the counts and displacement vectors for | 
| 737 | 
> | 
    // all processors | 
| 738 | 
> | 
    vector<int> counts(nproc, 0); | 
| 739 | 
> | 
    vector<int> disps(nproc, 0); | 
| 740 | 
> | 
 | 
| 741 | 
> | 
    // fill the counts array | 
| 742 | 
> | 
    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], | 
| 743 | 
> | 
                              1, MPI::INT); | 
| 744 | 
> | 
   | 
| 745 | 
> | 
    // use the processor counts to compute the displacement array | 
| 746 | 
> | 
    disps[0] = 0;     | 
| 747 | 
> | 
    int totalCount = counts[0]; | 
| 748 | 
> | 
    for (int iproc = 1; iproc < nproc; iproc++) { | 
| 749 | 
> | 
      disps[iproc] = disps[iproc-1] + counts[iproc-1]; | 
| 750 | 
> | 
      totalCount += counts[iproc]; | 
| 751 | 
> | 
    } | 
| 752 | 
> | 
 | 
| 753 | 
> | 
    // we need a (possibly redundant) set of all found types: | 
| 754 | 
> | 
    vector<int> ftGlobal(totalCount); | 
| 755 | 
  | 
     | 
| 756 | 
+ | 
    // now spray out the foundTypes to all the other processors:     | 
| 757 | 
  | 
    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,  | 
| 758 | 
< | 
                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT); | 
| 758 | 
> | 
                               &ftGlobal[0], &counts[0], &disps[0],  | 
| 759 | 
> | 
                               MPI::INT); | 
| 760 | 
  | 
 | 
| 761 | 
+ | 
    vector<int>::iterator j; | 
| 762 | 
+ | 
 | 
| 763 | 
  | 
    // foundIdents is a stl set, so inserting an already found ident | 
| 764 | 
  | 
    // will have no effect. | 
| 765 | 
  | 
    set<int> foundIdents; | 
| 766 | 
< | 
    vector<int>::iterator j; | 
| 766 | 
> | 
 | 
| 767 | 
  | 
    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | 
| 768 | 
  | 
      foundIdents.insert((*j)); | 
| 769 | 
  | 
     | 
| 770 | 
  | 
    // now iterate over the foundIdents and get the actual atom types  | 
| 771 | 
  | 
    // that correspond to these: | 
| 772 | 
  | 
    set<int>::iterator it; | 
| 773 | 
< | 
    for (it = foundIdents.begin(); it != foundIdents.end(); ++it) | 
| 773 | 
> | 
    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)  | 
| 774 | 
  | 
      atomTypes.insert( forceField_->getAtomType((*it)) ); | 
| 775 | 
  | 
  | 
| 776 | 
  | 
#endif | 
| 777 | 
< | 
     | 
| 777 | 
> | 
 | 
| 778 | 
  | 
    return atomTypes;         | 
| 779 | 
  | 
  } | 
| 780 | 
  | 
 | 
| 786 | 
  | 
      if ( simParams_->getAccumulateBoxDipole() ) { | 
| 787 | 
  | 
        calcBoxDipole_ = true;        | 
| 788 | 
  | 
      } | 
| 789 | 
< | 
 | 
| 789 | 
> | 
     | 
| 790 | 
  | 
    set<AtomType*>::iterator i; | 
| 791 | 
  | 
    set<AtomType*> atomTypes; | 
| 792 | 
  | 
    atomTypes = getSimulatedAtomTypes();     | 
| 793 | 
  | 
    int usesElectrostatic = 0; | 
| 794 | 
  | 
    int usesMetallic = 0; | 
| 795 | 
  | 
    int usesDirectional = 0; | 
| 796 | 
+ | 
    int usesFluctuatingCharges =  0; | 
| 797 | 
  | 
    //loop over all of the atom types | 
| 798 | 
  | 
    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 799 | 
  | 
      usesElectrostatic |= (*i)->isElectrostatic(); | 
| 800 | 
  | 
      usesMetallic |= (*i)->isMetal(); | 
| 801 | 
  | 
      usesDirectional |= (*i)->isDirectional(); | 
| 802 | 
+ | 
      usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); | 
| 803 | 
  | 
    } | 
| 804 | 
  | 
 | 
| 805 | 
  | 
#ifdef IS_MPI     | 
| 806 | 
  | 
    int temp; | 
| 807 | 
  | 
    temp = usesDirectional; | 
| 808 | 
  | 
    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 809 | 
< | 
 | 
| 809 | 
> | 
     | 
| 810 | 
  | 
    temp = usesMetallic; | 
| 811 | 
  | 
    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);     | 
| 812 | 
< | 
 | 
| 812 | 
> | 
     | 
| 813 | 
  | 
    temp = usesElectrostatic; | 
| 814 | 
  | 
    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  | 
| 815 | 
+ | 
 | 
| 816 | 
+ | 
    temp = usesFluctuatingCharges; | 
| 817 | 
+ | 
    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  | 
| 818 | 
+ | 
#else | 
| 819 | 
+ | 
 | 
| 820 | 
+ | 
    usesDirectionalAtoms_ = usesDirectional; | 
| 821 | 
+ | 
    usesMetallicAtoms_ = usesMetallic; | 
| 822 | 
+ | 
    usesElectrostaticAtoms_ = usesElectrostatic; | 
| 823 | 
+ | 
    usesFluctuatingCharges_ = usesFluctuatingCharges; | 
| 824 | 
+ | 
 | 
| 825 | 
  | 
#endif | 
| 826 | 
+ | 
     | 
| 827 | 
+ | 
    requiresPrepair_ = usesMetallicAtoms_ ? true : false;  | 
| 828 | 
+ | 
    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 829 | 
+ | 
    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;     | 
| 830 | 
  | 
  } | 
| 831 | 
  | 
 | 
| 832 | 
  | 
 | 
| 881 | 
  | 
    Atom* atom; | 
| 882 | 
  | 
    RealType totalMass; | 
| 883 | 
  | 
 | 
| 884 | 
< | 
    //to avoid memory reallocation, reserve enough space for massFactors_ | 
| 884 | 
> | 
    /** | 
| 885 | 
> | 
     * The mass factor is the relative mass of an atom to the total | 
| 886 | 
> | 
     * mass of the cutoff group it belongs to.  By default, all atoms | 
| 887 | 
> | 
     * are their own cutoff groups, and therefore have mass factors of | 
| 888 | 
> | 
     * 1.  We need some special handling for massless atoms, which | 
| 889 | 
> | 
     * will be treated as carrying the entire mass of the cutoff | 
| 890 | 
> | 
     * group. | 
| 891 | 
> | 
     */ | 
| 892 | 
  | 
    massFactors_.clear(); | 
| 893 | 
< | 
    massFactors_.reserve(getNCutoffGroups()); | 
| 893 | 
> | 
    massFactors_.resize(getNAtoms(), 1.0); | 
| 894 | 
  | 
     | 
| 895 | 
  | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {         | 
| 896 | 
  | 
      for (cg = mol->beginCutoffGroup(ci); cg != NULL;  | 
| 899 | 
  | 
        totalMass = cg->getMass(); | 
| 900 | 
  | 
        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 901 | 
  | 
          // Check for massless groups - set mfact to 1 if true | 
| 902 | 
< | 
          if (totalMass != 0) | 
| 903 | 
< | 
            massFactors_.push_back(atom->getMass()/totalMass); | 
| 902 | 
> | 
          if (totalMass != 0)  | 
| 903 | 
> | 
            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; | 
| 904 | 
  | 
          else | 
| 905 | 
< | 
            massFactors_.push_back( 1.0 ); | 
| 905 | 
> | 
            massFactors_[atom->getLocalIndex()] = 1.0; | 
| 906 | 
  | 
        } | 
| 907 | 
  | 
      }        | 
| 908 | 
  | 
    } | 
| 929 | 
  | 
    int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 930 | 
  | 
    int* oneFourList = oneFourInteractions_.getPairList(); | 
| 931 | 
  | 
 | 
| 868 | 
– | 
    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],  | 
| 869 | 
– | 
    //               &nExclude, excludeList,  | 
| 870 | 
– | 
    //               &nOneTwo, oneTwoList, | 
| 871 | 
– | 
    //               &nOneThree, oneThreeList, | 
| 872 | 
– | 
    //               &nOneFour, oneFourList, | 
| 873 | 
– | 
    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,  | 
| 874 | 
– | 
    //               &fortranGlobalGroupMembership[0], &isError);  | 
| 875 | 
– | 
     | 
| 932 | 
  | 
    topologyDone_ = true; | 
| 933 | 
  | 
  } | 
| 934 | 
  | 
 | 
| 989 | 
  | 
     | 
| 990 | 
  | 
  } | 
| 991 | 
  | 
 | 
| 936 | 
– | 
  Vector3d SimInfo::getComVel(){  | 
| 937 | 
– | 
    SimInfo::MoleculeIterator i; | 
| 938 | 
– | 
    Molecule* mol; | 
| 992 | 
  | 
 | 
| 940 | 
– | 
    Vector3d comVel(0.0); | 
| 941 | 
– | 
    RealType totalMass = 0.0; | 
| 942 | 
– | 
     | 
| 943 | 
– | 
  | 
| 944 | 
– | 
    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 945 | 
– | 
      RealType mass = mol->getMass(); | 
| 946 | 
– | 
      totalMass += mass; | 
| 947 | 
– | 
      comVel += mass * mol->getComVel(); | 
| 948 | 
– | 
    }   | 
| 949 | 
– | 
 | 
| 950 | 
– | 
#ifdef IS_MPI | 
| 951 | 
– | 
    RealType tmpMass = totalMass; | 
| 952 | 
– | 
    Vector3d tmpComVel(comVel);     | 
| 953 | 
– | 
    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 954 | 
– | 
    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 955 | 
– | 
#endif | 
| 956 | 
– | 
 | 
| 957 | 
– | 
    comVel /= totalMass; | 
| 958 | 
– | 
 | 
| 959 | 
– | 
    return comVel; | 
| 960 | 
– | 
  } | 
| 961 | 
– | 
 | 
| 962 | 
– | 
  Vector3d SimInfo::getCom(){  | 
| 963 | 
– | 
    SimInfo::MoleculeIterator i; | 
| 964 | 
– | 
    Molecule* mol; | 
| 965 | 
– | 
 | 
| 966 | 
– | 
    Vector3d com(0.0); | 
| 967 | 
– | 
    RealType totalMass = 0.0; | 
| 968 | 
– | 
      | 
| 969 | 
– | 
    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 970 | 
– | 
      RealType mass = mol->getMass(); | 
| 971 | 
– | 
      totalMass += mass; | 
| 972 | 
– | 
      com += mass * mol->getCom(); | 
| 973 | 
– | 
    }   | 
| 974 | 
– | 
 | 
| 975 | 
– | 
#ifdef IS_MPI | 
| 976 | 
– | 
    RealType tmpMass = totalMass; | 
| 977 | 
– | 
    Vector3d tmpCom(com);     | 
| 978 | 
– | 
    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 979 | 
– | 
    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 980 | 
– | 
#endif | 
| 981 | 
– | 
 | 
| 982 | 
– | 
    com /= totalMass; | 
| 983 | 
– | 
 | 
| 984 | 
– | 
    return com; | 
| 985 | 
– | 
 | 
| 986 | 
– | 
  }         | 
| 987 | 
– | 
 | 
| 993 | 
  | 
  ostream& operator <<(ostream& o, SimInfo& info) { | 
| 994 | 
  | 
 | 
| 995 | 
  | 
    return o; | 
| 996 | 
  | 
  } | 
| 997 | 
  | 
    | 
| 998 | 
< | 
    | 
| 994 | 
< | 
   /*  | 
| 995 | 
< | 
   Returns center of mass and center of mass velocity in one function call. | 
| 996 | 
< | 
   */ | 
| 997 | 
< | 
    | 
| 998 | 
< | 
   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){  | 
| 999 | 
< | 
      SimInfo::MoleculeIterator i; | 
| 1000 | 
< | 
      Molecule* mol; | 
| 1001 | 
< | 
       | 
| 1002 | 
< | 
     | 
| 1003 | 
< | 
      RealType totalMass = 0.0; | 
| 1004 | 
< | 
     | 
| 1005 | 
< | 
 | 
| 1006 | 
< | 
      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1007 | 
< | 
         RealType mass = mol->getMass(); | 
| 1008 | 
< | 
         totalMass += mass; | 
| 1009 | 
< | 
         com += mass * mol->getCom(); | 
| 1010 | 
< | 
         comVel += mass * mol->getComVel();            | 
| 1011 | 
< | 
      }   | 
| 1012 | 
< | 
       | 
| 1013 | 
< | 
#ifdef IS_MPI | 
| 1014 | 
< | 
      RealType tmpMass = totalMass; | 
| 1015 | 
< | 
      Vector3d tmpCom(com);   | 
| 1016 | 
< | 
      Vector3d tmpComVel(comVel); | 
| 1017 | 
< | 
      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1018 | 
< | 
      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1019 | 
< | 
      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1020 | 
< | 
#endif | 
| 1021 | 
< | 
       | 
| 1022 | 
< | 
      com /= totalMass; | 
| 1023 | 
< | 
      comVel /= totalMass; | 
| 1024 | 
< | 
   }         | 
| 1025 | 
< | 
    | 
| 1026 | 
< | 
   /*  | 
| 1027 | 
< | 
   Return intertia tensor for entire system and angular momentum Vector. | 
| 1028 | 
< | 
 | 
| 1029 | 
< | 
 | 
| 1030 | 
< | 
       [  Ixx -Ixy  -Ixz ] | 
| 1031 | 
< | 
    J =| -Iyx  Iyy  -Iyz | | 
| 1032 | 
< | 
       [ -Izx -Iyz   Izz ] | 
| 1033 | 
< | 
    */ | 
| 1034 | 
< | 
 | 
| 1035 | 
< | 
   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1036 | 
< | 
       | 
| 1037 | 
< | 
  | 
| 1038 | 
< | 
      RealType xx = 0.0; | 
| 1039 | 
< | 
      RealType yy = 0.0; | 
| 1040 | 
< | 
      RealType zz = 0.0; | 
| 1041 | 
< | 
      RealType xy = 0.0; | 
| 1042 | 
< | 
      RealType xz = 0.0; | 
| 1043 | 
< | 
      RealType yz = 0.0; | 
| 1044 | 
< | 
      Vector3d com(0.0); | 
| 1045 | 
< | 
      Vector3d comVel(0.0); | 
| 1046 | 
< | 
       | 
| 1047 | 
< | 
      getComAll(com, comVel); | 
| 1048 | 
< | 
       | 
| 1049 | 
< | 
      SimInfo::MoleculeIterator i; | 
| 1050 | 
< | 
      Molecule* mol; | 
| 1051 | 
< | 
       | 
| 1052 | 
< | 
      Vector3d thisq(0.0); | 
| 1053 | 
< | 
      Vector3d thisv(0.0); | 
| 1054 | 
< | 
 | 
| 1055 | 
< | 
      RealType thisMass = 0.0; | 
| 1056 | 
< | 
      | 
| 1057 | 
< | 
       | 
| 1058 | 
< | 
       | 
| 1059 | 
< | 
    | 
| 1060 | 
< | 
      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1061 | 
< | 
         | 
| 1062 | 
< | 
         thisq = mol->getCom()-com; | 
| 1063 | 
< | 
         thisv = mol->getComVel()-comVel; | 
| 1064 | 
< | 
         thisMass = mol->getMass(); | 
| 1065 | 
< | 
         // Compute moment of intertia coefficients. | 
| 1066 | 
< | 
         xx += thisq[0]*thisq[0]*thisMass; | 
| 1067 | 
< | 
         yy += thisq[1]*thisq[1]*thisMass; | 
| 1068 | 
< | 
         zz += thisq[2]*thisq[2]*thisMass; | 
| 1069 | 
< | 
          | 
| 1070 | 
< | 
         // compute products of intertia | 
| 1071 | 
< | 
         xy += thisq[0]*thisq[1]*thisMass; | 
| 1072 | 
< | 
         xz += thisq[0]*thisq[2]*thisMass; | 
| 1073 | 
< | 
         yz += thisq[1]*thisq[2]*thisMass; | 
| 1074 | 
< | 
             | 
| 1075 | 
< | 
         angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1076 | 
< | 
             | 
| 1077 | 
< | 
      }   | 
| 1078 | 
< | 
       | 
| 1079 | 
< | 
       | 
| 1080 | 
< | 
      inertiaTensor(0,0) = yy + zz; | 
| 1081 | 
< | 
      inertiaTensor(0,1) = -xy; | 
| 1082 | 
< | 
      inertiaTensor(0,2) = -xz; | 
| 1083 | 
< | 
      inertiaTensor(1,0) = -xy; | 
| 1084 | 
< | 
      inertiaTensor(1,1) = xx + zz; | 
| 1085 | 
< | 
      inertiaTensor(1,2) = -yz; | 
| 1086 | 
< | 
      inertiaTensor(2,0) = -xz; | 
| 1087 | 
< | 
      inertiaTensor(2,1) = -yz; | 
| 1088 | 
< | 
      inertiaTensor(2,2) = xx + yy; | 
| 1089 | 
< | 
       | 
| 1090 | 
< | 
#ifdef IS_MPI | 
| 1091 | 
< | 
      Mat3x3d tmpI(inertiaTensor); | 
| 1092 | 
< | 
      Vector3d tmpAngMom; | 
| 1093 | 
< | 
      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1094 | 
< | 
      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1095 | 
< | 
#endif | 
| 1096 | 
< | 
                | 
| 1097 | 
< | 
      return; | 
| 1098 | 
< | 
   } | 
| 1099 | 
< | 
 | 
| 1100 | 
< | 
   //Returns the angular momentum of the system | 
| 1101 | 
< | 
   Vector3d SimInfo::getAngularMomentum(){ | 
| 1102 | 
< | 
       | 
| 1103 | 
< | 
      Vector3d com(0.0); | 
| 1104 | 
< | 
      Vector3d comVel(0.0); | 
| 1105 | 
< | 
      Vector3d angularMomentum(0.0); | 
| 1106 | 
< | 
       | 
| 1107 | 
< | 
      getComAll(com,comVel); | 
| 1108 | 
< | 
       | 
| 1109 | 
< | 
      SimInfo::MoleculeIterator i; | 
| 1110 | 
< | 
      Molecule* mol; | 
| 1111 | 
< | 
       | 
| 1112 | 
< | 
      Vector3d thisr(0.0); | 
| 1113 | 
< | 
      Vector3d thisp(0.0); | 
| 1114 | 
< | 
       | 
| 1115 | 
< | 
      RealType thisMass; | 
| 1116 | 
< | 
       | 
| 1117 | 
< | 
      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {          | 
| 1118 | 
< | 
        thisMass = mol->getMass();  | 
| 1119 | 
< | 
        thisr = mol->getCom()-com; | 
| 1120 | 
< | 
        thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1121 | 
< | 
          | 
| 1122 | 
< | 
        angularMomentum += cross( thisr, thisp ); | 
| 1123 | 
< | 
          | 
| 1124 | 
< | 
      }   | 
| 1125 | 
< | 
        | 
| 1126 | 
< | 
#ifdef IS_MPI | 
| 1127 | 
< | 
      Vector3d tmpAngMom; | 
| 1128 | 
< | 
      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1129 | 
< | 
#endif | 
| 1130 | 
< | 
       | 
| 1131 | 
< | 
      return angularMomentum; | 
| 1132 | 
< | 
   } | 
| 1133 | 
< | 
    | 
| 998 | 
> | 
   | 
| 999 | 
  | 
  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1000 | 
  | 
    return IOIndexToIntegrableObject.at(index); | 
| 1001 | 
  | 
  } | 
| 1003 | 
  | 
  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1004 | 
  | 
    IOIndexToIntegrableObject= v; | 
| 1005 | 
  | 
  } | 
| 1141 | 
– | 
 | 
| 1142 | 
– | 
  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes  | 
| 1143 | 
– | 
     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1144 | 
– | 
     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to  | 
| 1145 | 
– | 
     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1146 | 
– | 
  */ | 
| 1147 | 
– | 
  void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1148 | 
– | 
    Mat3x3d intTensor; | 
| 1149 | 
– | 
    RealType det; | 
| 1150 | 
– | 
    Vector3d dummyAngMom;  | 
| 1151 | 
– | 
    RealType sysconstants; | 
| 1152 | 
– | 
    RealType geomCnst; | 
| 1153 | 
– | 
 | 
| 1154 | 
– | 
    geomCnst = 3.0/2.0; | 
| 1155 | 
– | 
    /* Get the inertial tensor and angular momentum for free*/ | 
| 1156 | 
– | 
    getInertiaTensor(intTensor,dummyAngMom); | 
| 1157 | 
– | 
     | 
| 1158 | 
– | 
    det = intTensor.determinant(); | 
| 1159 | 
– | 
    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1160 | 
– | 
    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1161 | 
– | 
    return; | 
| 1162 | 
– | 
  } | 
| 1163 | 
– | 
 | 
| 1164 | 
– | 
  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1165 | 
– | 
    Mat3x3d intTensor; | 
| 1166 | 
– | 
    Vector3d dummyAngMom;  | 
| 1167 | 
– | 
    RealType sysconstants; | 
| 1168 | 
– | 
    RealType geomCnst; | 
| 1169 | 
– | 
 | 
| 1170 | 
– | 
    geomCnst = 3.0/2.0; | 
| 1171 | 
– | 
    /* Get the inertial tensor and angular momentum for free*/ | 
| 1172 | 
– | 
    getInertiaTensor(intTensor,dummyAngMom); | 
| 1173 | 
– | 
     | 
| 1174 | 
– | 
    detI = intTensor.determinant(); | 
| 1175 | 
– | 
    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1176 | 
– | 
    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1177 | 
– | 
    return; | 
| 1178 | 
– | 
  } | 
| 1006 | 
  | 
/* | 
| 1007 | 
  | 
   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { | 
| 1008 | 
  | 
      assert( v.size() == nAtoms_ + nRigidBodies_); |