| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
  | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
< | 
 * [4]  Vardeman & Gezelter, in progress (2009).                         | 
| 39 | 
> | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
> | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 61 | 
  | 
#include "io/ForceFieldOptions.hpp" | 
| 62 | 
  | 
#include "UseTheForce/ForceField.hpp" | 
| 63 | 
  | 
#include "nonbonded/SwitchingFunction.hpp" | 
| 64 | 
+ | 
#ifdef IS_MPI | 
| 65 | 
+ | 
#include <mpi.h> | 
| 66 | 
+ | 
#endif | 
| 67 | 
  | 
 | 
| 68 | 
  | 
using namespace std; | 
| 69 | 
  | 
namespace OpenMD { | 
| 72 | 
  | 
    forceField_(ff), simParams_(simParams),  | 
| 73 | 
  | 
    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 74 | 
  | 
    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),  | 
| 75 | 
< | 
    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 75 | 
> | 
    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), | 
| 76 | 
  | 
    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),  | 
| 77 | 
  | 
    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),  | 
| 78 | 
< | 
    nConstraints_(0), sman_(NULL), topologyDone_(false),  | 
| 78 | 
> | 
    nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false),  | 
| 79 | 
  | 
    calcBoxDipole_(false), useAtomicVirial_(true) {     | 
| 80 | 
  | 
     | 
| 81 | 
  | 
    MoleculeStamp* molStamp; | 
| 225 | 
  | 
 | 
| 226 | 
  | 
 | 
| 227 | 
  | 
  void SimInfo::calcNdf() { | 
| 228 | 
< | 
    int ndf_local; | 
| 228 | 
> | 
    int ndf_local, nfq_local; | 
| 229 | 
  | 
    MoleculeIterator i; | 
| 230 | 
  | 
    vector<StuntDouble*>::iterator j; | 
| 231 | 
+ | 
    vector<Atom*>::iterator k; | 
| 232 | 
+ | 
 | 
| 233 | 
  | 
    Molecule* mol; | 
| 234 | 
  | 
    StuntDouble* integrableObject; | 
| 235 | 
+ | 
    Atom* atom; | 
| 236 | 
  | 
 | 
| 237 | 
  | 
    ndf_local = 0; | 
| 238 | 
+ | 
    nfq_local = 0; | 
| 239 | 
  | 
     | 
| 240 | 
  | 
    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 241 | 
  | 
      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;  | 
| 250 | 
  | 
            ndf_local += 3; | 
| 251 | 
  | 
          } | 
| 252 | 
  | 
        } | 
| 245 | 
– | 
             | 
| 253 | 
  | 
      } | 
| 254 | 
+ | 
      for (atom = mol->beginFluctuatingCharge(k); atom != NULL; | 
| 255 | 
+ | 
           atom = mol->nextFluctuatingCharge(k)) { | 
| 256 | 
+ | 
        if (atom->isFluctuatingCharge()) { | 
| 257 | 
+ | 
          nfq_local++; | 
| 258 | 
+ | 
        } | 
| 259 | 
+ | 
      } | 
| 260 | 
  | 
    } | 
| 261 | 
  | 
     | 
| 262 | 
  | 
    // n_constraints is local, so subtract them on each processor | 
| 264 | 
  | 
 | 
| 265 | 
  | 
#ifdef IS_MPI | 
| 266 | 
  | 
    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 267 | 
+ | 
    MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); | 
| 268 | 
  | 
#else | 
| 269 | 
  | 
    ndf_ = ndf_local; | 
| 270 | 
+ | 
    nGlobalFluctuatingCharges_ = nfq_local; | 
| 271 | 
  | 
#endif | 
| 272 | 
  | 
 | 
| 273 | 
  | 
    // nZconstraints_ is global, as are the 3 COM translations for the  | 
| 709 | 
  | 
    Atom* atom; | 
| 710 | 
  | 
    set<AtomType*> atomTypes; | 
| 711 | 
  | 
     | 
| 712 | 
< | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {       | 
| 713 | 
< | 
      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 712 | 
> | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 713 | 
> | 
      for(atom = mol->beginAtom(ai); atom != NULL; | 
| 714 | 
> | 
          atom = mol->nextAtom(ai)) { | 
| 715 | 
  | 
        atomTypes.insert(atom->getAtomType()); | 
| 716 | 
  | 
      }       | 
| 717 | 
  | 
    }     | 
| 718 | 
< | 
 | 
| 718 | 
> | 
     | 
| 719 | 
  | 
#ifdef IS_MPI | 
| 720 | 
  | 
 | 
| 721 | 
  | 
    // loop over the found atom types on this processor, and add their | 
| 722 | 
  | 
    // numerical idents to a vector: | 
| 723 | 
< | 
 | 
| 723 | 
> | 
     | 
| 724 | 
  | 
    vector<int> foundTypes; | 
| 725 | 
  | 
    set<AtomType*>::iterator i; | 
| 726 | 
  | 
    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)  | 
| 729 | 
  | 
    // count_local holds the number of found types on this processor | 
| 730 | 
  | 
    int count_local = foundTypes.size(); | 
| 731 | 
  | 
 | 
| 716 | 
– | 
    // count holds the total number of found types on all processors | 
| 717 | 
– | 
    // (some will be redundant with the ones found locally): | 
| 718 | 
– | 
    int count; | 
| 719 | 
– | 
    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); | 
| 720 | 
– | 
 | 
| 721 | 
– | 
    // create a vector to hold the globally found types, and resize it: | 
| 722 | 
– | 
    vector<int> ftGlobal; | 
| 723 | 
– | 
    ftGlobal.resize(count); | 
| 724 | 
– | 
    vector<int> counts; | 
| 725 | 
– | 
 | 
| 732 | 
  | 
    int nproc = MPI::COMM_WORLD.Get_size(); | 
| 733 | 
< | 
    counts.resize(nproc); | 
| 734 | 
< | 
    vector<int> disps; | 
| 735 | 
< | 
    disps.resize(nproc); | 
| 733 | 
> | 
 | 
| 734 | 
> | 
    // we need arrays to hold the counts and displacement vectors for | 
| 735 | 
> | 
    // all processors | 
| 736 | 
> | 
    vector<int> counts(nproc, 0); | 
| 737 | 
> | 
    vector<int> disps(nproc, 0); | 
| 738 | 
  | 
 | 
| 739 | 
< | 
    // now spray out the foundTypes to all the other processors: | 
| 739 | 
> | 
    // fill the counts array | 
| 740 | 
> | 
    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], | 
| 741 | 
> | 
                              1, MPI::INT); | 
| 742 | 
> | 
   | 
| 743 | 
> | 
    // use the processor counts to compute the displacement array | 
| 744 | 
> | 
    disps[0] = 0;     | 
| 745 | 
> | 
    int totalCount = counts[0]; | 
| 746 | 
> | 
    for (int iproc = 1; iproc < nproc; iproc++) { | 
| 747 | 
> | 
      disps[iproc] = disps[iproc-1] + counts[iproc-1]; | 
| 748 | 
> | 
      totalCount += counts[iproc]; | 
| 749 | 
> | 
    } | 
| 750 | 
> | 
 | 
| 751 | 
> | 
    // we need a (possibly redundant) set of all found types: | 
| 752 | 
> | 
    vector<int> ftGlobal(totalCount); | 
| 753 | 
  | 
     | 
| 754 | 
+ | 
    // now spray out the foundTypes to all the other processors:     | 
| 755 | 
  | 
    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,  | 
| 756 | 
< | 
                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT); | 
| 756 | 
> | 
                               &ftGlobal[0], &counts[0], &disps[0],  | 
| 757 | 
> | 
                               MPI::INT); | 
| 758 | 
  | 
 | 
| 759 | 
+ | 
    vector<int>::iterator j; | 
| 760 | 
+ | 
 | 
| 761 | 
  | 
    // foundIdents is a stl set, so inserting an already found ident | 
| 762 | 
  | 
    // will have no effect. | 
| 763 | 
  | 
    set<int> foundIdents; | 
| 764 | 
< | 
    vector<int>::iterator j; | 
| 764 | 
> | 
 | 
| 765 | 
  | 
    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | 
| 766 | 
  | 
      foundIdents.insert((*j)); | 
| 767 | 
  | 
     | 
| 768 | 
  | 
    // now iterate over the foundIdents and get the actual atom types  | 
| 769 | 
  | 
    // that correspond to these: | 
| 770 | 
  | 
    set<int>::iterator it; | 
| 771 | 
< | 
    for (it = foundIdents.begin(); it != foundIdents.end(); ++it) | 
| 771 | 
> | 
    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)  | 
| 772 | 
  | 
      atomTypes.insert( forceField_->getAtomType((*it)) ); | 
| 773 | 
  | 
  | 
| 774 | 
  | 
#endif | 
| 775 | 
< | 
     | 
| 775 | 
> | 
 | 
| 776 | 
  | 
    return atomTypes;         | 
| 777 | 
  | 
  } | 
| 778 | 
  | 
 | 
| 791 | 
  | 
    int usesElectrostatic = 0; | 
| 792 | 
  | 
    int usesMetallic = 0; | 
| 793 | 
  | 
    int usesDirectional = 0; | 
| 794 | 
+ | 
    int usesFluctuatingCharges =  0; | 
| 795 | 
  | 
    //loop over all of the atom types | 
| 796 | 
  | 
    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 797 | 
  | 
      usesElectrostatic |= (*i)->isElectrostatic(); | 
| 798 | 
  | 
      usesMetallic |= (*i)->isMetal(); | 
| 799 | 
  | 
      usesDirectional |= (*i)->isDirectional(); | 
| 800 | 
+ | 
      usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); | 
| 801 | 
  | 
    } | 
| 802 | 
  | 
     | 
| 803 | 
  | 
#ifdef IS_MPI     | 
| 810 | 
  | 
     | 
| 811 | 
  | 
    temp = usesElectrostatic; | 
| 812 | 
  | 
    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  | 
| 813 | 
+ | 
 | 
| 814 | 
+ | 
    temp = usesFluctuatingCharges; | 
| 815 | 
+ | 
    MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  | 
| 816 | 
  | 
#else | 
| 817 | 
  | 
 | 
| 818 | 
  | 
    usesDirectionalAtoms_ = usesDirectional; | 
| 819 | 
  | 
    usesMetallicAtoms_ = usesMetallic; | 
| 820 | 
  | 
    usesElectrostaticAtoms_ = usesElectrostatic; | 
| 821 | 
+ | 
    usesFluctuatingCharges_ = usesFluctuatingCharges; | 
| 822 | 
  | 
 | 
| 823 | 
  | 
#endif | 
| 824 | 
  | 
     | 
| 890 | 
  | 
    massFactors_.clear(); | 
| 891 | 
  | 
    massFactors_.resize(getNAtoms(), 1.0); | 
| 892 | 
  | 
     | 
| 862 | 
– | 
    cerr << "mfs in si = " << massFactors_.size() << "\n"; | 
| 893 | 
  | 
    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {         | 
| 894 | 
  | 
      for (cg = mol->beginCutoffGroup(ci); cg != NULL;  | 
| 895 | 
  | 
           cg = mol->nextCutoffGroup(ci)) { | 
| 1211 | 
  | 
     | 
| 1212 | 
  | 
    det = intTensor.determinant(); | 
| 1213 | 
  | 
    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1214 | 
< | 
    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1214 | 
> | 
    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); | 
| 1215 | 
  | 
    return; | 
| 1216 | 
  | 
  } | 
| 1217 | 
  | 
 | 
| 1227 | 
  | 
     | 
| 1228 | 
  | 
    detI = intTensor.determinant(); | 
| 1229 | 
  | 
    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1230 | 
< | 
    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1230 | 
> | 
    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); | 
| 1231 | 
  | 
    return; | 
| 1232 | 
  | 
  } | 
| 1233 | 
  | 
/* |