| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 | #include <map> | 
| 52 |  | 
| 53 | #include "brains/SimInfo.hpp" | 
| 54 | #include "math/Vector3.hpp" | 
| 55 | #include "primitives/Molecule.hpp" | 
| 56 | #include "primitives/StuntDouble.hpp" | 
| 57 | #include "UseTheForce/doForces_interface.h" | 
| 58 | #include "UseTheForce/DarkSide/neighborLists_interface.h" | 
| 59 | #include "utils/MemoryUtils.hpp" | 
| 60 | #include "utils/simError.h" | 
| 61 | #include "selection/SelectionManager.hpp" | 
| 62 | #include "io/ForceFieldOptions.hpp" | 
| 63 | #include "UseTheForce/ForceField.hpp" | 
| 64 | #include "nonbonded/SwitchingFunction.hpp" | 
| 65 |  | 
| 66 | #ifdef IS_MPI | 
| 67 | #include "UseTheForce/mpiComponentPlan.h" | 
| 68 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 69 | #endif | 
| 70 |  | 
| 71 | using namespace std; | 
| 72 | namespace OpenMD { | 
| 73 |  | 
| 74 | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 75 | forceField_(ff), simParams_(simParams), | 
| 76 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 77 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 78 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 79 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0), | 
| 80 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | 
| 81 | nConstraints_(0), sman_(NULL), fortranInitialized_(false), | 
| 82 | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 83 |  | 
| 84 | MoleculeStamp* molStamp; | 
| 85 | int nMolWithSameStamp; | 
| 86 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 87 | int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 88 | CutoffGroupStamp* cgStamp; | 
| 89 | RigidBodyStamp* rbStamp; | 
| 90 | int nRigidAtoms = 0; | 
| 91 |  | 
| 92 | vector<Component*> components = simParams->getComponents(); | 
| 93 |  | 
| 94 | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { | 
| 95 | molStamp = (*i)->getMoleculeStamp(); | 
| 96 | nMolWithSameStamp = (*i)->getNMol(); | 
| 97 |  | 
| 98 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 99 |  | 
| 100 | //calculate atoms in molecules | 
| 101 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 102 |  | 
| 103 | //calculate atoms in cutoff groups | 
| 104 | int nAtomsInGroups = 0; | 
| 105 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 106 |  | 
| 107 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 108 | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 109 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 110 | } | 
| 111 |  | 
| 112 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 113 |  | 
| 114 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 115 |  | 
| 116 | //calculate atoms in rigid bodies | 
| 117 | int nAtomsInRigidBodies = 0; | 
| 118 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 119 |  | 
| 120 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 121 | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 122 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 123 | } | 
| 124 |  | 
| 125 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 126 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 127 |  | 
| 128 | } | 
| 129 |  | 
| 130 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 131 | //group therefore the total number of cutoff groups in the system is | 
| 132 | //equal to the total number of atoms minus number of atoms belong to | 
| 133 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 134 | //groups defined in meta-data file | 
| 135 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 136 |  | 
| 137 | //every free atom (atom does not belong to rigid bodies) is an | 
| 138 | //integrable object therefore the total number of integrable objects | 
| 139 | //in the system is equal to the total number of atoms minus number of | 
| 140 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 141 | //of rigid bodies defined in meta-data file | 
| 142 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 143 | + nGlobalRigidBodies_; | 
| 144 |  | 
| 145 | nGlobalMols_ = molStampIds_.size(); | 
| 146 | molToProcMap_.resize(nGlobalMols_); | 
| 147 | } | 
| 148 |  | 
| 149 | SimInfo::~SimInfo() { | 
| 150 | map<int, Molecule*>::iterator i; | 
| 151 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 152 | delete i->second; | 
| 153 | } | 
| 154 | molecules_.clear(); | 
| 155 |  | 
| 156 | delete sman_; | 
| 157 | delete simParams_; | 
| 158 | delete forceField_; | 
| 159 | } | 
| 160 |  | 
| 161 |  | 
| 162 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 163 | MoleculeIterator i; | 
| 164 |  | 
| 165 | i = molecules_.find(mol->getGlobalIndex()); | 
| 166 | if (i == molecules_.end() ) { | 
| 167 |  | 
| 168 | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 169 |  | 
| 170 | nAtoms_ += mol->getNAtoms(); | 
| 171 | nBonds_ += mol->getNBonds(); | 
| 172 | nBends_ += mol->getNBends(); | 
| 173 | nTorsions_ += mol->getNTorsions(); | 
| 174 | nInversions_ += mol->getNInversions(); | 
| 175 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 176 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 177 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 178 | nConstraints_ += mol->getNConstraintPairs(); | 
| 179 |  | 
| 180 | addInteractionPairs(mol); | 
| 181 |  | 
| 182 | return true; | 
| 183 | } else { | 
| 184 | return false; | 
| 185 | } | 
| 186 | } | 
| 187 |  | 
| 188 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 189 | MoleculeIterator i; | 
| 190 | i = molecules_.find(mol->getGlobalIndex()); | 
| 191 |  | 
| 192 | if (i != molecules_.end() ) { | 
| 193 |  | 
| 194 | assert(mol == i->second); | 
| 195 |  | 
| 196 | nAtoms_ -= mol->getNAtoms(); | 
| 197 | nBonds_ -= mol->getNBonds(); | 
| 198 | nBends_ -= mol->getNBends(); | 
| 199 | nTorsions_ -= mol->getNTorsions(); | 
| 200 | nInversions_ -= mol->getNInversions(); | 
| 201 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 202 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 203 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 204 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 205 |  | 
| 206 | removeInteractionPairs(mol); | 
| 207 | molecules_.erase(mol->getGlobalIndex()); | 
| 208 |  | 
| 209 | delete mol; | 
| 210 |  | 
| 211 | return true; | 
| 212 | } else { | 
| 213 | return false; | 
| 214 | } | 
| 215 | } | 
| 216 |  | 
| 217 |  | 
| 218 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 219 | i = molecules_.begin(); | 
| 220 | return i == molecules_.end() ? NULL : i->second; | 
| 221 | } | 
| 222 |  | 
| 223 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 224 | ++i; | 
| 225 | return i == molecules_.end() ? NULL : i->second; | 
| 226 | } | 
| 227 |  | 
| 228 |  | 
| 229 | void SimInfo::calcNdf() { | 
| 230 | int ndf_local; | 
| 231 | MoleculeIterator i; | 
| 232 | vector<StuntDouble*>::iterator j; | 
| 233 | Molecule* mol; | 
| 234 | StuntDouble* integrableObject; | 
| 235 |  | 
| 236 | ndf_local = 0; | 
| 237 |  | 
| 238 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 239 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 240 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 241 |  | 
| 242 | ndf_local += 3; | 
| 243 |  | 
| 244 | if (integrableObject->isDirectional()) { | 
| 245 | if (integrableObject->isLinear()) { | 
| 246 | ndf_local += 2; | 
| 247 | } else { | 
| 248 | ndf_local += 3; | 
| 249 | } | 
| 250 | } | 
| 251 |  | 
| 252 | } | 
| 253 | } | 
| 254 |  | 
| 255 | // n_constraints is local, so subtract them on each processor | 
| 256 | ndf_local -= nConstraints_; | 
| 257 |  | 
| 258 | #ifdef IS_MPI | 
| 259 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 260 | #else | 
| 261 | ndf_ = ndf_local; | 
| 262 | #endif | 
| 263 |  | 
| 264 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 265 | // entire system: | 
| 266 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 267 |  | 
| 268 | } | 
| 269 |  | 
| 270 | int SimInfo::getFdf() { | 
| 271 | #ifdef IS_MPI | 
| 272 | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 273 | #else | 
| 274 | fdf_ = fdf_local; | 
| 275 | #endif | 
| 276 | return fdf_; | 
| 277 | } | 
| 278 |  | 
| 279 | void SimInfo::calcNdfRaw() { | 
| 280 | int ndfRaw_local; | 
| 281 |  | 
| 282 | MoleculeIterator i; | 
| 283 | vector<StuntDouble*>::iterator j; | 
| 284 | Molecule* mol; | 
| 285 | StuntDouble* integrableObject; | 
| 286 |  | 
| 287 | // Raw degrees of freedom that we have to set | 
| 288 | ndfRaw_local = 0; | 
| 289 |  | 
| 290 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 291 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 292 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 293 |  | 
| 294 | ndfRaw_local += 3; | 
| 295 |  | 
| 296 | if (integrableObject->isDirectional()) { | 
| 297 | if (integrableObject->isLinear()) { | 
| 298 | ndfRaw_local += 2; | 
| 299 | } else { | 
| 300 | ndfRaw_local += 3; | 
| 301 | } | 
| 302 | } | 
| 303 |  | 
| 304 | } | 
| 305 | } | 
| 306 |  | 
| 307 | #ifdef IS_MPI | 
| 308 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 309 | #else | 
| 310 | ndfRaw_ = ndfRaw_local; | 
| 311 | #endif | 
| 312 | } | 
| 313 |  | 
| 314 | void SimInfo::calcNdfTrans() { | 
| 315 | int ndfTrans_local; | 
| 316 |  | 
| 317 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 318 |  | 
| 319 |  | 
| 320 | #ifdef IS_MPI | 
| 321 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 322 | #else | 
| 323 | ndfTrans_ = ndfTrans_local; | 
| 324 | #endif | 
| 325 |  | 
| 326 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 327 |  | 
| 328 | } | 
| 329 |  | 
| 330 | void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 331 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 332 | vector<Bond*>::iterator bondIter; | 
| 333 | vector<Bend*>::iterator bendIter; | 
| 334 | vector<Torsion*>::iterator torsionIter; | 
| 335 | vector<Inversion*>::iterator inversionIter; | 
| 336 | Bond* bond; | 
| 337 | Bend* bend; | 
| 338 | Torsion* torsion; | 
| 339 | Inversion* inversion; | 
| 340 | int a; | 
| 341 | int b; | 
| 342 | int c; | 
| 343 | int d; | 
| 344 |  | 
| 345 | // atomGroups can be used to add special interaction maps between | 
| 346 | // groups of atoms that are in two separate rigid bodies. | 
| 347 | // However, most site-site interactions between two rigid bodies | 
| 348 | // are probably not special, just the ones between the physically | 
| 349 | // bonded atoms.  Interactions *within* a single rigid body should | 
| 350 | // always be excluded.  These are done at the bottom of this | 
| 351 | // function. | 
| 352 |  | 
| 353 | map<int, set<int> > atomGroups; | 
| 354 | Molecule::RigidBodyIterator rbIter; | 
| 355 | RigidBody* rb; | 
| 356 | Molecule::IntegrableObjectIterator ii; | 
| 357 | StuntDouble* integrableObject; | 
| 358 |  | 
| 359 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 360 | integrableObject != NULL; | 
| 361 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 362 |  | 
| 363 | if (integrableObject->isRigidBody()) { | 
| 364 | rb = static_cast<RigidBody*>(integrableObject); | 
| 365 | vector<Atom*> atoms = rb->getAtoms(); | 
| 366 | set<int> rigidAtoms; | 
| 367 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 368 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 369 | } | 
| 370 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 371 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 372 | } | 
| 373 | } else { | 
| 374 | set<int> oneAtomSet; | 
| 375 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 376 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 377 | } | 
| 378 | } | 
| 379 |  | 
| 380 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 381 | bond = mol->nextBond(bondIter)) { | 
| 382 |  | 
| 383 | a = bond->getAtomA()->getGlobalIndex(); | 
| 384 | b = bond->getAtomB()->getGlobalIndex(); | 
| 385 |  | 
| 386 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 387 | oneTwoInteractions_.addPair(a, b); | 
| 388 | } else { | 
| 389 | excludedInteractions_.addPair(a, b); | 
| 390 | } | 
| 391 | } | 
| 392 |  | 
| 393 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 394 | bend = mol->nextBend(bendIter)) { | 
| 395 |  | 
| 396 | a = bend->getAtomA()->getGlobalIndex(); | 
| 397 | b = bend->getAtomB()->getGlobalIndex(); | 
| 398 | c = bend->getAtomC()->getGlobalIndex(); | 
| 399 |  | 
| 400 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 401 | oneTwoInteractions_.addPair(a, b); | 
| 402 | oneTwoInteractions_.addPair(b, c); | 
| 403 | } else { | 
| 404 | excludedInteractions_.addPair(a, b); | 
| 405 | excludedInteractions_.addPair(b, c); | 
| 406 | } | 
| 407 |  | 
| 408 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 409 | oneThreeInteractions_.addPair(a, c); | 
| 410 | } else { | 
| 411 | excludedInteractions_.addPair(a, c); | 
| 412 | } | 
| 413 | } | 
| 414 |  | 
| 415 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 416 | torsion = mol->nextTorsion(torsionIter)) { | 
| 417 |  | 
| 418 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 419 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 420 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 421 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 422 |  | 
| 423 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 424 | oneTwoInteractions_.addPair(a, b); | 
| 425 | oneTwoInteractions_.addPair(b, c); | 
| 426 | oneTwoInteractions_.addPair(c, d); | 
| 427 | } else { | 
| 428 | excludedInteractions_.addPair(a, b); | 
| 429 | excludedInteractions_.addPair(b, c); | 
| 430 | excludedInteractions_.addPair(c, d); | 
| 431 | } | 
| 432 |  | 
| 433 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 434 | oneThreeInteractions_.addPair(a, c); | 
| 435 | oneThreeInteractions_.addPair(b, d); | 
| 436 | } else { | 
| 437 | excludedInteractions_.addPair(a, c); | 
| 438 | excludedInteractions_.addPair(b, d); | 
| 439 | } | 
| 440 |  | 
| 441 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 442 | oneFourInteractions_.addPair(a, d); | 
| 443 | } else { | 
| 444 | excludedInteractions_.addPair(a, d); | 
| 445 | } | 
| 446 | } | 
| 447 |  | 
| 448 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 449 | inversion = mol->nextInversion(inversionIter)) { | 
| 450 |  | 
| 451 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 452 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 453 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 454 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 455 |  | 
| 456 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 457 | oneTwoInteractions_.addPair(a, b); | 
| 458 | oneTwoInteractions_.addPair(a, c); | 
| 459 | oneTwoInteractions_.addPair(a, d); | 
| 460 | } else { | 
| 461 | excludedInteractions_.addPair(a, b); | 
| 462 | excludedInteractions_.addPair(a, c); | 
| 463 | excludedInteractions_.addPair(a, d); | 
| 464 | } | 
| 465 |  | 
| 466 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 467 | oneThreeInteractions_.addPair(b, c); | 
| 468 | oneThreeInteractions_.addPair(b, d); | 
| 469 | oneThreeInteractions_.addPair(c, d); | 
| 470 | } else { | 
| 471 | excludedInteractions_.addPair(b, c); | 
| 472 | excludedInteractions_.addPair(b, d); | 
| 473 | excludedInteractions_.addPair(c, d); | 
| 474 | } | 
| 475 | } | 
| 476 |  | 
| 477 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 478 | rb = mol->nextRigidBody(rbIter)) { | 
| 479 | vector<Atom*> atoms = rb->getAtoms(); | 
| 480 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 481 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 482 | a = atoms[i]->getGlobalIndex(); | 
| 483 | b = atoms[j]->getGlobalIndex(); | 
| 484 | excludedInteractions_.addPair(a, b); | 
| 485 | } | 
| 486 | } | 
| 487 | } | 
| 488 |  | 
| 489 | } | 
| 490 |  | 
| 491 | void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 492 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 493 | vector<Bond*>::iterator bondIter; | 
| 494 | vector<Bend*>::iterator bendIter; | 
| 495 | vector<Torsion*>::iterator torsionIter; | 
| 496 | vector<Inversion*>::iterator inversionIter; | 
| 497 | Bond* bond; | 
| 498 | Bend* bend; | 
| 499 | Torsion* torsion; | 
| 500 | Inversion* inversion; | 
| 501 | int a; | 
| 502 | int b; | 
| 503 | int c; | 
| 504 | int d; | 
| 505 |  | 
| 506 | map<int, set<int> > atomGroups; | 
| 507 | Molecule::RigidBodyIterator rbIter; | 
| 508 | RigidBody* rb; | 
| 509 | Molecule::IntegrableObjectIterator ii; | 
| 510 | StuntDouble* integrableObject; | 
| 511 |  | 
| 512 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 513 | integrableObject != NULL; | 
| 514 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 515 |  | 
| 516 | if (integrableObject->isRigidBody()) { | 
| 517 | rb = static_cast<RigidBody*>(integrableObject); | 
| 518 | vector<Atom*> atoms = rb->getAtoms(); | 
| 519 | set<int> rigidAtoms; | 
| 520 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 521 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 522 | } | 
| 523 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 524 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 525 | } | 
| 526 | } else { | 
| 527 | set<int> oneAtomSet; | 
| 528 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 529 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 530 | } | 
| 531 | } | 
| 532 |  | 
| 533 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 534 | bond = mol->nextBond(bondIter)) { | 
| 535 |  | 
| 536 | a = bond->getAtomA()->getGlobalIndex(); | 
| 537 | b = bond->getAtomB()->getGlobalIndex(); | 
| 538 |  | 
| 539 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 540 | oneTwoInteractions_.removePair(a, b); | 
| 541 | } else { | 
| 542 | excludedInteractions_.removePair(a, b); | 
| 543 | } | 
| 544 | } | 
| 545 |  | 
| 546 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 547 | bend = mol->nextBend(bendIter)) { | 
| 548 |  | 
| 549 | a = bend->getAtomA()->getGlobalIndex(); | 
| 550 | b = bend->getAtomB()->getGlobalIndex(); | 
| 551 | c = bend->getAtomC()->getGlobalIndex(); | 
| 552 |  | 
| 553 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 554 | oneTwoInteractions_.removePair(a, b); | 
| 555 | oneTwoInteractions_.removePair(b, c); | 
| 556 | } else { | 
| 557 | excludedInteractions_.removePair(a, b); | 
| 558 | excludedInteractions_.removePair(b, c); | 
| 559 | } | 
| 560 |  | 
| 561 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 562 | oneThreeInteractions_.removePair(a, c); | 
| 563 | } else { | 
| 564 | excludedInteractions_.removePair(a, c); | 
| 565 | } | 
| 566 | } | 
| 567 |  | 
| 568 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 569 | torsion = mol->nextTorsion(torsionIter)) { | 
| 570 |  | 
| 571 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 572 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 573 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 574 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 575 |  | 
| 576 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 577 | oneTwoInteractions_.removePair(a, b); | 
| 578 | oneTwoInteractions_.removePair(b, c); | 
| 579 | oneTwoInteractions_.removePair(c, d); | 
| 580 | } else { | 
| 581 | excludedInteractions_.removePair(a, b); | 
| 582 | excludedInteractions_.removePair(b, c); | 
| 583 | excludedInteractions_.removePair(c, d); | 
| 584 | } | 
| 585 |  | 
| 586 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 587 | oneThreeInteractions_.removePair(a, c); | 
| 588 | oneThreeInteractions_.removePair(b, d); | 
| 589 | } else { | 
| 590 | excludedInteractions_.removePair(a, c); | 
| 591 | excludedInteractions_.removePair(b, d); | 
| 592 | } | 
| 593 |  | 
| 594 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 595 | oneFourInteractions_.removePair(a, d); | 
| 596 | } else { | 
| 597 | excludedInteractions_.removePair(a, d); | 
| 598 | } | 
| 599 | } | 
| 600 |  | 
| 601 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 602 | inversion = mol->nextInversion(inversionIter)) { | 
| 603 |  | 
| 604 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 605 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 606 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 607 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 608 |  | 
| 609 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 610 | oneTwoInteractions_.removePair(a, b); | 
| 611 | oneTwoInteractions_.removePair(a, c); | 
| 612 | oneTwoInteractions_.removePair(a, d); | 
| 613 | } else { | 
| 614 | excludedInteractions_.removePair(a, b); | 
| 615 | excludedInteractions_.removePair(a, c); | 
| 616 | excludedInteractions_.removePair(a, d); | 
| 617 | } | 
| 618 |  | 
| 619 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 620 | oneThreeInteractions_.removePair(b, c); | 
| 621 | oneThreeInteractions_.removePair(b, d); | 
| 622 | oneThreeInteractions_.removePair(c, d); | 
| 623 | } else { | 
| 624 | excludedInteractions_.removePair(b, c); | 
| 625 | excludedInteractions_.removePair(b, d); | 
| 626 | excludedInteractions_.removePair(c, d); | 
| 627 | } | 
| 628 | } | 
| 629 |  | 
| 630 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 631 | rb = mol->nextRigidBody(rbIter)) { | 
| 632 | vector<Atom*> atoms = rb->getAtoms(); | 
| 633 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 634 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 635 | a = atoms[i]->getGlobalIndex(); | 
| 636 | b = atoms[j]->getGlobalIndex(); | 
| 637 | excludedInteractions_.removePair(a, b); | 
| 638 | } | 
| 639 | } | 
| 640 | } | 
| 641 |  | 
| 642 | } | 
| 643 |  | 
| 644 |  | 
| 645 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 646 | int curStampId; | 
| 647 |  | 
| 648 | //index from 0 | 
| 649 | curStampId = moleculeStamps_.size(); | 
| 650 |  | 
| 651 | moleculeStamps_.push_back(molStamp); | 
| 652 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 653 | } | 
| 654 |  | 
| 655 |  | 
| 656 | /** | 
| 657 | * update | 
| 658 | * | 
| 659 | *  Performs the global checks and variable settings after the objects have been | 
| 660 | *  created. | 
| 661 | * | 
| 662 | */ | 
| 663 | void SimInfo::update() { | 
| 664 |  | 
| 665 | setupSimVariables(); | 
| 666 | setupCutoffs(); | 
| 667 | setupSwitching(); | 
| 668 | setupElectrostatics(); | 
| 669 | setupNeighborlists(); | 
| 670 |  | 
| 671 | #ifdef IS_MPI | 
| 672 | setupFortranParallel(); | 
| 673 | #endif | 
| 674 | setupFortranSim(); | 
| 675 | fortranInitialized_ = true; | 
| 676 |  | 
| 677 | calcNdf(); | 
| 678 | calcNdfRaw(); | 
| 679 | calcNdfTrans(); | 
| 680 | } | 
| 681 |  | 
| 682 | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 683 | SimInfo::MoleculeIterator mi; | 
| 684 | Molecule* mol; | 
| 685 | Molecule::AtomIterator ai; | 
| 686 | Atom* atom; | 
| 687 | set<AtomType*> atomTypes; | 
| 688 |  | 
| 689 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 690 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 691 | atomTypes.insert(atom->getAtomType()); | 
| 692 | } | 
| 693 | } | 
| 694 | return atomTypes; | 
| 695 | } | 
| 696 |  | 
| 697 | /** | 
| 698 | * setupCutoffs | 
| 699 | * | 
| 700 | * Sets the values of cutoffRadius and cutoffMethod | 
| 701 | * | 
| 702 | * cutoffRadius : realType | 
| 703 | *  If the cutoffRadius was explicitly set, use that value. | 
| 704 | *  If the cutoffRadius was not explicitly set: | 
| 705 | *      Are there electrostatic atoms?  Use 12.0 Angstroms. | 
| 706 | *      No electrostatic atoms?  Poll the atom types present in the | 
| 707 | *      simulation for suggested cutoff values (e.g. 2.5 * sigma). | 
| 708 | *      Use the maximum suggested value that was found. | 
| 709 | * | 
| 710 | * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) | 
| 711 | *      If cutoffMethod was explicitly set, use that choice. | 
| 712 | *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE | 
| 713 | */ | 
| 714 | void SimInfo::setupCutoffs() { | 
| 715 |  | 
| 716 | if (simParams_->haveCutoffRadius()) { | 
| 717 | cutoffRadius_ = simParams_->getCutoffRadius(); | 
| 718 | } else { | 
| 719 | if (usesElectrostaticAtoms_) { | 
| 720 | sprintf(painCave.errMsg, | 
| 721 | "SimInfo: No value was set for the cutoffRadius.\n" | 
| 722 | "\tOpenMD will use a default value of 12.0 angstroms" | 
| 723 | "\tfor the cutoffRadius.\n"); | 
| 724 | painCave.isFatal = 0; | 
| 725 | painCave.severity = OPENMD_INFO; | 
| 726 | simError(); | 
| 727 | cutoffRadius_ = 12.0; | 
| 728 | } else { | 
| 729 | RealType thisCut; | 
| 730 | set<AtomType*>::iterator i; | 
| 731 | set<AtomType*> atomTypes; | 
| 732 | atomTypes = getSimulatedAtomTypes(); | 
| 733 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 734 | thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); | 
| 735 | cutoffRadius_ = max(thisCut, cutoffRadius_); | 
| 736 | } | 
| 737 | sprintf(painCave.errMsg, | 
| 738 | "SimInfo: No value was set for the cutoffRadius.\n" | 
| 739 | "\tOpenMD will use %lf angstroms.\n", | 
| 740 | cutoffRadius_); | 
| 741 | painCave.isFatal = 0; | 
| 742 | painCave.severity = OPENMD_INFO; | 
| 743 | simError(); | 
| 744 | } | 
| 745 | } | 
| 746 |  | 
| 747 | map<string, CutoffMethod> stringToCutoffMethod; | 
| 748 | stringToCutoffMethod["HARD"] = HARD; | 
| 749 | stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION; | 
| 750 | stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; | 
| 751 | stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; | 
| 752 |  | 
| 753 | if (simParams_->haveCutoffMethod()) { | 
| 754 | string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); | 
| 755 | map<string, CutoffMethod>::iterator i; | 
| 756 | i = stringToCutoffMethod.find(cutMeth); | 
| 757 | if (i == stringToCutoffMethod.end()) { | 
| 758 | sprintf(painCave.errMsg, | 
| 759 | "SimInfo: Could not find chosen cutoffMethod %s\n" | 
| 760 | "\tShould be one of: " | 
| 761 | "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", | 
| 762 | cutMeth.c_str()); | 
| 763 | painCave.isFatal = 1; | 
| 764 | painCave.severity = OPENMD_ERROR; | 
| 765 | simError(); | 
| 766 | } else { | 
| 767 | cutoffMethod_ = i->second; | 
| 768 | } | 
| 769 | } else { | 
| 770 | sprintf(painCave.errMsg, | 
| 771 | "SimInfo: No value was set for the cutoffMethod.\n" | 
| 772 | "\tOpenMD will use SHIFTED_FORCE.\n"); | 
| 773 | painCave.isFatal = 0; | 
| 774 | painCave.severity = OPENMD_INFO; | 
| 775 | simError(); | 
| 776 | cutoffMethod_ = SHIFTED_FORCE; | 
| 777 | } | 
| 778 | } | 
| 779 |  | 
| 780 | /** | 
| 781 | * setupSwitching | 
| 782 | * | 
| 783 | * Sets the values of switchingRadius and | 
| 784 | *  If the switchingRadius was explicitly set, use that value (but check it) | 
| 785 | *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ | 
| 786 | */ | 
| 787 | void SimInfo::setupSwitching() { | 
| 788 |  | 
| 789 | if (simParams_->haveSwitchingRadius()) { | 
| 790 | switchingRadius_ = simParams_->getSwitchingRadius(); | 
| 791 | if (switchingRadius_ > cutoffRadius_) { | 
| 792 | sprintf(painCave.errMsg, | 
| 793 | "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n", | 
| 794 | switchingRadius_, cutoffRadius_); | 
| 795 | painCave.isFatal = 1; | 
| 796 | painCave.severity = OPENMD_ERROR; | 
| 797 | simError(); | 
| 798 | } | 
| 799 | } else { | 
| 800 | switchingRadius_ = 0.85 * cutoffRadius_; | 
| 801 | sprintf(painCave.errMsg, | 
| 802 | "SimInfo: No value was set for the switchingRadius.\n" | 
| 803 | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" | 
| 804 | "\tswitchingRadius = %f. for this simulation\n", switchingRadius_); | 
| 805 | painCave.isFatal = 0; | 
| 806 | painCave.severity = OPENMD_WARNING; | 
| 807 | simError(); | 
| 808 | } | 
| 809 |  | 
| 810 | if (simParams_->haveSwitchingFunctionType()) { | 
| 811 | string funcType = simParams_->getSwitchingFunctionType(); | 
| 812 | toUpper(funcType); | 
| 813 | if (funcType == "CUBIC") { | 
| 814 | sft_ = cubic; | 
| 815 | } else { | 
| 816 | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 817 | sft_ = fifth_order_poly; | 
| 818 | } else { | 
| 819 | // throw error | 
| 820 | sprintf( painCave.errMsg, | 
| 821 | "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n" | 
| 822 | "\tswitchingFunctionType must be one of: " | 
| 823 | "\"cubic\" or \"fifth_order_polynomial\".", | 
| 824 | funcType.c_str() ); | 
| 825 | painCave.isFatal = 1; | 
| 826 | painCave.severity = OPENMD_ERROR; | 
| 827 | simError(); | 
| 828 | } | 
| 829 | } | 
| 830 | } | 
| 831 | } | 
| 832 |  | 
| 833 | /** | 
| 834 | * setupNeighborlists | 
| 835 | * | 
| 836 | *  If the skinThickness was explicitly set, use that value (but check it) | 
| 837 | *  If the skinThickness was not explicitly set: use 1.0 angstroms | 
| 838 | */ | 
| 839 | void SimInfo::setupNeighborlists() { | 
| 840 | if (simParams_->haveSkinThickness()) { | 
| 841 | skinThickness_ = simParams_->getSkinThickness(); | 
| 842 | } else { | 
| 843 | skinThickness_ = 1.0; | 
| 844 | sprintf(painCave.errMsg, | 
| 845 | "SimInfo: No value was set for the skinThickness.\n" | 
| 846 | "\tOpenMD will use a default value of %f Angstroms\n" | 
| 847 | "\tfor this simulation\n", skinThickness_); | 
| 848 | painCave.severity = OPENMD_INFO; | 
| 849 | painCave.isFatal = 0; | 
| 850 | simError(); | 
| 851 | } | 
| 852 | } | 
| 853 |  | 
| 854 | void SimInfo::setupSimVariables() { | 
| 855 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 856 | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true | 
| 857 | calcBoxDipole_ = false; | 
| 858 | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 859 | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 860 | calcBoxDipole_ = true; | 
| 861 | } | 
| 862 |  | 
| 863 | set<AtomType*>::iterator i; | 
| 864 | set<AtomType*> atomTypes; | 
| 865 | atomTypes = getSimulatedAtomTypes(); | 
| 866 | int usesElectrostatic = 0; | 
| 867 | int usesMetallic = 0; | 
| 868 | int usesDirectional = 0; | 
| 869 | //loop over all of the atom types | 
| 870 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 871 | usesElectrostatic |= (*i)->isElectrostatic(); | 
| 872 | usesMetallic |= (*i)->isMetal(); | 
| 873 | usesDirectional |= (*i)->isDirectional(); | 
| 874 | } | 
| 875 |  | 
| 876 | #ifdef IS_MPI | 
| 877 | int temp; | 
| 878 | temp = usesDirectional; | 
| 879 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 880 |  | 
| 881 | temp = usesMetallic; | 
| 882 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 883 |  | 
| 884 | temp = usesElectrostatic; | 
| 885 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 886 | #endif | 
| 887 | fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; | 
| 888 | fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; | 
| 889 | fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; | 
| 890 | fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; | 
| 891 | fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; | 
| 892 | fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; | 
| 893 | } | 
| 894 |  | 
| 895 | void SimInfo::setupFortranSim() { | 
| 896 | int isError; | 
| 897 | int nExclude, nOneTwo, nOneThree, nOneFour; | 
| 898 | vector<int> fortranGlobalGroupMembership; | 
| 899 |  | 
| 900 | notifyFortranSkinThickness(&skinThickness_); | 
| 901 |  | 
| 902 | int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; | 
| 903 | int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; | 
| 904 | notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); | 
| 905 |  | 
| 906 | isError = 0; | 
| 907 |  | 
| 908 | //globalGroupMembership_ is filled by SimCreator | 
| 909 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 910 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 911 | } | 
| 912 |  | 
| 913 | //calculate mass ratio of cutoff group | 
| 914 | vector<RealType> mfact; | 
| 915 | SimInfo::MoleculeIterator mi; | 
| 916 | Molecule* mol; | 
| 917 | Molecule::CutoffGroupIterator ci; | 
| 918 | CutoffGroup* cg; | 
| 919 | Molecule::AtomIterator ai; | 
| 920 | Atom* atom; | 
| 921 | RealType totalMass; | 
| 922 |  | 
| 923 | //to avoid memory reallocation, reserve enough space for mfact | 
| 924 | mfact.reserve(getNCutoffGroups()); | 
| 925 |  | 
| 926 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 927 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 928 |  | 
| 929 | totalMass = cg->getMass(); | 
| 930 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 931 | // Check for massless groups - set mfact to 1 if true | 
| 932 | if (totalMass != 0) | 
| 933 | mfact.push_back(atom->getMass()/totalMass); | 
| 934 | else | 
| 935 | mfact.push_back( 1.0 ); | 
| 936 | } | 
| 937 | } | 
| 938 | } | 
| 939 |  | 
| 940 | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 941 | vector<int> identArray; | 
| 942 |  | 
| 943 | //to avoid memory reallocation, reserve enough space identArray | 
| 944 | identArray.reserve(getNAtoms()); | 
| 945 |  | 
| 946 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 947 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 948 | identArray.push_back(atom->getIdent()); | 
| 949 | } | 
| 950 | } | 
| 951 |  | 
| 952 | //fill molMembershipArray | 
| 953 | //molMembershipArray is filled by SimCreator | 
| 954 | vector<int> molMembershipArray(nGlobalAtoms_); | 
| 955 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 956 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 957 | } | 
| 958 |  | 
| 959 | //setup fortran simulation | 
| 960 |  | 
| 961 | nExclude = excludedInteractions_.getSize(); | 
| 962 | nOneTwo = oneTwoInteractions_.getSize(); | 
| 963 | nOneThree = oneThreeInteractions_.getSize(); | 
| 964 | nOneFour = oneFourInteractions_.getSize(); | 
| 965 |  | 
| 966 | int* excludeList = excludedInteractions_.getPairList(); | 
| 967 | int* oneTwoList = oneTwoInteractions_.getPairList(); | 
| 968 | int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 969 | int* oneFourList = oneFourInteractions_.getPairList(); | 
| 970 |  | 
| 971 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], | 
| 972 | &nExclude, excludeList, | 
| 973 | &nOneTwo, oneTwoList, | 
| 974 | &nOneThree, oneThreeList, | 
| 975 | &nOneFour, oneFourList, | 
| 976 | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, | 
| 977 | &fortranGlobalGroupMembership[0], &isError); | 
| 978 |  | 
| 979 | if( isError ){ | 
| 980 |  | 
| 981 | sprintf( painCave.errMsg, | 
| 982 | "There was an error setting the simulation information in fortran.\n" ); | 
| 983 | painCave.isFatal = 1; | 
| 984 | painCave.severity = OPENMD_ERROR; | 
| 985 | simError(); | 
| 986 | } | 
| 987 |  | 
| 988 |  | 
| 989 | sprintf( checkPointMsg, | 
| 990 | "succesfully sent the simulation information to fortran.\n"); | 
| 991 |  | 
| 992 | errorCheckPoint(); | 
| 993 |  | 
| 994 | // Setup number of neighbors in neighbor list if present | 
| 995 | if (simParams_->haveNeighborListNeighbors()) { | 
| 996 | int nlistNeighbors = simParams_->getNeighborListNeighbors(); | 
| 997 | setNeighbors(&nlistNeighbors); | 
| 998 | } | 
| 999 |  | 
| 1000 |  | 
| 1001 | } | 
| 1002 |  | 
| 1003 |  | 
| 1004 | void SimInfo::setupFortranParallel() { | 
| 1005 | #ifdef IS_MPI | 
| 1006 | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 1007 | vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 1008 | vector<int> localToGlobalCutoffGroupIndex; | 
| 1009 | SimInfo::MoleculeIterator mi; | 
| 1010 | Molecule::AtomIterator ai; | 
| 1011 | Molecule::CutoffGroupIterator ci; | 
| 1012 | Molecule* mol; | 
| 1013 | Atom* atom; | 
| 1014 | CutoffGroup* cg; | 
| 1015 | mpiSimData parallelData; | 
| 1016 | int isError; | 
| 1017 |  | 
| 1018 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 1019 |  | 
| 1020 | //local index(index in DataStorge) of atom is important | 
| 1021 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 1022 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 1023 | } | 
| 1024 |  | 
| 1025 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 1026 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 1027 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 1028 | } | 
| 1029 |  | 
| 1030 | } | 
| 1031 |  | 
| 1032 | //fill up mpiSimData struct | 
| 1033 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 1034 | parallelData.nMolLocal = getNMolecules(); | 
| 1035 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 1036 | parallelData.nAtomsLocal = getNAtoms(); | 
| 1037 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 1038 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 1039 | parallelData.myNode = worldRank; | 
| 1040 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 1041 |  | 
| 1042 | //pass mpiSimData struct and index arrays to fortran | 
| 1043 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 1044 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 1045 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 1046 |  | 
| 1047 | if (isError) { | 
| 1048 | sprintf(painCave.errMsg, | 
| 1049 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 1050 | painCave.isFatal = 1; | 
| 1051 | simError(); | 
| 1052 | } | 
| 1053 |  | 
| 1054 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 1055 | errorCheckPoint(); | 
| 1056 |  | 
| 1057 | #endif | 
| 1058 | } | 
| 1059 |  | 
| 1060 |  | 
| 1061 | void SimInfo::setupAccumulateBoxDipole() { | 
| 1062 |  | 
| 1063 |  | 
| 1064 | } | 
| 1065 |  | 
| 1066 | void SimInfo::addProperty(GenericData* genData) { | 
| 1067 | properties_.addProperty(genData); | 
| 1068 | } | 
| 1069 |  | 
| 1070 | void SimInfo::removeProperty(const string& propName) { | 
| 1071 | properties_.removeProperty(propName); | 
| 1072 | } | 
| 1073 |  | 
| 1074 | void SimInfo::clearProperties() { | 
| 1075 | properties_.clearProperties(); | 
| 1076 | } | 
| 1077 |  | 
| 1078 | vector<string> SimInfo::getPropertyNames() { | 
| 1079 | return properties_.getPropertyNames(); | 
| 1080 | } | 
| 1081 |  | 
| 1082 | vector<GenericData*> SimInfo::getProperties() { | 
| 1083 | return properties_.getProperties(); | 
| 1084 | } | 
| 1085 |  | 
| 1086 | GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 1087 | return properties_.getPropertyByName(propName); | 
| 1088 | } | 
| 1089 |  | 
| 1090 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 1091 | if (sman_ == sman) { | 
| 1092 | return; | 
| 1093 | } | 
| 1094 | delete sman_; | 
| 1095 | sman_ = sman; | 
| 1096 |  | 
| 1097 | Molecule* mol; | 
| 1098 | RigidBody* rb; | 
| 1099 | Atom* atom; | 
| 1100 | SimInfo::MoleculeIterator mi; | 
| 1101 | Molecule::RigidBodyIterator rbIter; | 
| 1102 | Molecule::AtomIterator atomIter;; | 
| 1103 |  | 
| 1104 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1105 |  | 
| 1106 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 1107 | atom->setSnapshotManager(sman_); | 
| 1108 | } | 
| 1109 |  | 
| 1110 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 1111 | rb->setSnapshotManager(sman_); | 
| 1112 | } | 
| 1113 | } | 
| 1114 |  | 
| 1115 | } | 
| 1116 |  | 
| 1117 | Vector3d SimInfo::getComVel(){ | 
| 1118 | SimInfo::MoleculeIterator i; | 
| 1119 | Molecule* mol; | 
| 1120 |  | 
| 1121 | Vector3d comVel(0.0); | 
| 1122 | RealType totalMass = 0.0; | 
| 1123 |  | 
| 1124 |  | 
| 1125 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1126 | RealType mass = mol->getMass(); | 
| 1127 | totalMass += mass; | 
| 1128 | comVel += mass * mol->getComVel(); | 
| 1129 | } | 
| 1130 |  | 
| 1131 | #ifdef IS_MPI | 
| 1132 | RealType tmpMass = totalMass; | 
| 1133 | Vector3d tmpComVel(comVel); | 
| 1134 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1135 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1136 | #endif | 
| 1137 |  | 
| 1138 | comVel /= totalMass; | 
| 1139 |  | 
| 1140 | return comVel; | 
| 1141 | } | 
| 1142 |  | 
| 1143 | Vector3d SimInfo::getCom(){ | 
| 1144 | SimInfo::MoleculeIterator i; | 
| 1145 | Molecule* mol; | 
| 1146 |  | 
| 1147 | Vector3d com(0.0); | 
| 1148 | RealType totalMass = 0.0; | 
| 1149 |  | 
| 1150 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1151 | RealType mass = mol->getMass(); | 
| 1152 | totalMass += mass; | 
| 1153 | com += mass * mol->getCom(); | 
| 1154 | } | 
| 1155 |  | 
| 1156 | #ifdef IS_MPI | 
| 1157 | RealType tmpMass = totalMass; | 
| 1158 | Vector3d tmpCom(com); | 
| 1159 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1160 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1161 | #endif | 
| 1162 |  | 
| 1163 | com /= totalMass; | 
| 1164 |  | 
| 1165 | return com; | 
| 1166 |  | 
| 1167 | } | 
| 1168 |  | 
| 1169 | ostream& operator <<(ostream& o, SimInfo& info) { | 
| 1170 |  | 
| 1171 | return o; | 
| 1172 | } | 
| 1173 |  | 
| 1174 |  | 
| 1175 | /* | 
| 1176 | Returns center of mass and center of mass velocity in one function call. | 
| 1177 | */ | 
| 1178 |  | 
| 1179 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1180 | SimInfo::MoleculeIterator i; | 
| 1181 | Molecule* mol; | 
| 1182 |  | 
| 1183 |  | 
| 1184 | RealType totalMass = 0.0; | 
| 1185 |  | 
| 1186 |  | 
| 1187 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1188 | RealType mass = mol->getMass(); | 
| 1189 | totalMass += mass; | 
| 1190 | com += mass * mol->getCom(); | 
| 1191 | comVel += mass * mol->getComVel(); | 
| 1192 | } | 
| 1193 |  | 
| 1194 | #ifdef IS_MPI | 
| 1195 | RealType tmpMass = totalMass; | 
| 1196 | Vector3d tmpCom(com); | 
| 1197 | Vector3d tmpComVel(comVel); | 
| 1198 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1199 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1200 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1201 | #endif | 
| 1202 |  | 
| 1203 | com /= totalMass; | 
| 1204 | comVel /= totalMass; | 
| 1205 | } | 
| 1206 |  | 
| 1207 | /* | 
| 1208 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1209 |  | 
| 1210 |  | 
| 1211 | [  Ixx -Ixy  -Ixz ] | 
| 1212 | J =| -Iyx  Iyy  -Iyz | | 
| 1213 | [ -Izx -Iyz   Izz ] | 
| 1214 | */ | 
| 1215 |  | 
| 1216 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1217 |  | 
| 1218 |  | 
| 1219 | RealType xx = 0.0; | 
| 1220 | RealType yy = 0.0; | 
| 1221 | RealType zz = 0.0; | 
| 1222 | RealType xy = 0.0; | 
| 1223 | RealType xz = 0.0; | 
| 1224 | RealType yz = 0.0; | 
| 1225 | Vector3d com(0.0); | 
| 1226 | Vector3d comVel(0.0); | 
| 1227 |  | 
| 1228 | getComAll(com, comVel); | 
| 1229 |  | 
| 1230 | SimInfo::MoleculeIterator i; | 
| 1231 | Molecule* mol; | 
| 1232 |  | 
| 1233 | Vector3d thisq(0.0); | 
| 1234 | Vector3d thisv(0.0); | 
| 1235 |  | 
| 1236 | RealType thisMass = 0.0; | 
| 1237 |  | 
| 1238 |  | 
| 1239 |  | 
| 1240 |  | 
| 1241 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1242 |  | 
| 1243 | thisq = mol->getCom()-com; | 
| 1244 | thisv = mol->getComVel()-comVel; | 
| 1245 | thisMass = mol->getMass(); | 
| 1246 | // Compute moment of intertia coefficients. | 
| 1247 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1248 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1249 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1250 |  | 
| 1251 | // compute products of intertia | 
| 1252 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1253 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1254 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1255 |  | 
| 1256 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1257 |  | 
| 1258 | } | 
| 1259 |  | 
| 1260 |  | 
| 1261 | inertiaTensor(0,0) = yy + zz; | 
| 1262 | inertiaTensor(0,1) = -xy; | 
| 1263 | inertiaTensor(0,2) = -xz; | 
| 1264 | inertiaTensor(1,0) = -xy; | 
| 1265 | inertiaTensor(1,1) = xx + zz; | 
| 1266 | inertiaTensor(1,2) = -yz; | 
| 1267 | inertiaTensor(2,0) = -xz; | 
| 1268 | inertiaTensor(2,1) = -yz; | 
| 1269 | inertiaTensor(2,2) = xx + yy; | 
| 1270 |  | 
| 1271 | #ifdef IS_MPI | 
| 1272 | Mat3x3d tmpI(inertiaTensor); | 
| 1273 | Vector3d tmpAngMom; | 
| 1274 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1275 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1276 | #endif | 
| 1277 |  | 
| 1278 | return; | 
| 1279 | } | 
| 1280 |  | 
| 1281 | //Returns the angular momentum of the system | 
| 1282 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1283 |  | 
| 1284 | Vector3d com(0.0); | 
| 1285 | Vector3d comVel(0.0); | 
| 1286 | Vector3d angularMomentum(0.0); | 
| 1287 |  | 
| 1288 | getComAll(com,comVel); | 
| 1289 |  | 
| 1290 | SimInfo::MoleculeIterator i; | 
| 1291 | Molecule* mol; | 
| 1292 |  | 
| 1293 | Vector3d thisr(0.0); | 
| 1294 | Vector3d thisp(0.0); | 
| 1295 |  | 
| 1296 | RealType thisMass; | 
| 1297 |  | 
| 1298 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1299 | thisMass = mol->getMass(); | 
| 1300 | thisr = mol->getCom()-com; | 
| 1301 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1302 |  | 
| 1303 | angularMomentum += cross( thisr, thisp ); | 
| 1304 |  | 
| 1305 | } | 
| 1306 |  | 
| 1307 | #ifdef IS_MPI | 
| 1308 | Vector3d tmpAngMom; | 
| 1309 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1310 | #endif | 
| 1311 |  | 
| 1312 | return angularMomentum; | 
| 1313 | } | 
| 1314 |  | 
| 1315 | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1316 | return IOIndexToIntegrableObject.at(index); | 
| 1317 | } | 
| 1318 |  | 
| 1319 | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1320 | IOIndexToIntegrableObject= v; | 
| 1321 | } | 
| 1322 |  | 
| 1323 | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes | 
| 1324 | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1325 | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to | 
| 1326 | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1327 | */ | 
| 1328 | void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1329 | Mat3x3d intTensor; | 
| 1330 | RealType det; | 
| 1331 | Vector3d dummyAngMom; | 
| 1332 | RealType sysconstants; | 
| 1333 | RealType geomCnst; | 
| 1334 |  | 
| 1335 | geomCnst = 3.0/2.0; | 
| 1336 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1337 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1338 |  | 
| 1339 | det = intTensor.determinant(); | 
| 1340 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1341 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1342 | return; | 
| 1343 | } | 
| 1344 |  | 
| 1345 | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1346 | Mat3x3d intTensor; | 
| 1347 | Vector3d dummyAngMom; | 
| 1348 | RealType sysconstants; | 
| 1349 | RealType geomCnst; | 
| 1350 |  | 
| 1351 | geomCnst = 3.0/2.0; | 
| 1352 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1353 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1354 |  | 
| 1355 | detI = intTensor.determinant(); | 
| 1356 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1357 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1358 | return; | 
| 1359 | } | 
| 1360 | /* | 
| 1361 | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { | 
| 1362 | assert( v.size() == nAtoms_ + nRigidBodies_); | 
| 1363 | sdByGlobalIndex_ = v; | 
| 1364 | } | 
| 1365 |  | 
| 1366 | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { | 
| 1367 | //assert(index < nAtoms_ + nRigidBodies_); | 
| 1368 | return sdByGlobalIndex_.at(index); | 
| 1369 | } | 
| 1370 | */ | 
| 1371 | int SimInfo::getNGlobalConstraints() { | 
| 1372 | int nGlobalConstraints; | 
| 1373 | #ifdef IS_MPI | 
| 1374 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 1375 | MPI_COMM_WORLD); | 
| 1376 | #else | 
| 1377 | nGlobalConstraints =  nConstraints_; | 
| 1378 | #endif | 
| 1379 | return nGlobalConstraints; | 
| 1380 | } | 
| 1381 |  | 
| 1382 | }//end namespace OpenMD | 
| 1383 |  |