| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 | #include <map> | 
| 52 |  | 
| 53 | #include "brains/SimInfo.hpp" | 
| 54 | #include "math/Vector3.hpp" | 
| 55 | #include "primitives/Molecule.hpp" | 
| 56 | #include "primitives/StuntDouble.hpp" | 
| 57 | #include "UseTheForce/fCutoffPolicy.h" | 
| 58 | #include "UseTheForce/doForces_interface.h" | 
| 59 | #include "UseTheForce/DarkSide/neighborLists_interface.h" | 
| 60 | #include "utils/MemoryUtils.hpp" | 
| 61 | #include "utils/simError.h" | 
| 62 | #include "selection/SelectionManager.hpp" | 
| 63 | #include "io/ForceFieldOptions.hpp" | 
| 64 | #include "UseTheForce/ForceField.hpp" | 
| 65 | #include "nonbonded/SwitchingFunction.hpp" | 
| 66 |  | 
| 67 |  | 
| 68 | #ifdef IS_MPI | 
| 69 | #include "UseTheForce/mpiComponentPlan.h" | 
| 70 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 71 | #endif | 
| 72 |  | 
| 73 | using namespace std; | 
| 74 | namespace OpenMD { | 
| 75 |  | 
| 76 | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 77 | forceField_(ff), simParams_(simParams), | 
| 78 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 79 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 80 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 81 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0), | 
| 82 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | 
| 83 | nConstraints_(0), sman_(NULL), fortranInitialized_(false), | 
| 84 | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 85 |  | 
| 86 | MoleculeStamp* molStamp; | 
| 87 | int nMolWithSameStamp; | 
| 88 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 89 | int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 90 | CutoffGroupStamp* cgStamp; | 
| 91 | RigidBodyStamp* rbStamp; | 
| 92 | int nRigidAtoms = 0; | 
| 93 |  | 
| 94 | vector<Component*> components = simParams->getComponents(); | 
| 95 |  | 
| 96 | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { | 
| 97 | molStamp = (*i)->getMoleculeStamp(); | 
| 98 | nMolWithSameStamp = (*i)->getNMol(); | 
| 99 |  | 
| 100 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 101 |  | 
| 102 | //calculate atoms in molecules | 
| 103 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 104 |  | 
| 105 | //calculate atoms in cutoff groups | 
| 106 | int nAtomsInGroups = 0; | 
| 107 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 108 |  | 
| 109 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 110 | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 111 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 112 | } | 
| 113 |  | 
| 114 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 115 |  | 
| 116 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 117 |  | 
| 118 | //calculate atoms in rigid bodies | 
| 119 | int nAtomsInRigidBodies = 0; | 
| 120 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 121 |  | 
| 122 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 123 | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 124 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 125 | } | 
| 126 |  | 
| 127 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 128 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 129 |  | 
| 130 | } | 
| 131 |  | 
| 132 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 133 | //group therefore the total number of cutoff groups in the system is | 
| 134 | //equal to the total number of atoms minus number of atoms belong to | 
| 135 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 136 | //groups defined in meta-data file | 
| 137 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 138 |  | 
| 139 | //every free atom (atom does not belong to rigid bodies) is an | 
| 140 | //integrable object therefore the total number of integrable objects | 
| 141 | //in the system is equal to the total number of atoms minus number of | 
| 142 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 143 | //of rigid bodies defined in meta-data file | 
| 144 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 145 | + nGlobalRigidBodies_; | 
| 146 |  | 
| 147 | nGlobalMols_ = molStampIds_.size(); | 
| 148 | molToProcMap_.resize(nGlobalMols_); | 
| 149 | } | 
| 150 |  | 
| 151 | SimInfo::~SimInfo() { | 
| 152 | map<int, Molecule*>::iterator i; | 
| 153 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 154 | delete i->second; | 
| 155 | } | 
| 156 | molecules_.clear(); | 
| 157 |  | 
| 158 | delete sman_; | 
| 159 | delete simParams_; | 
| 160 | delete forceField_; | 
| 161 | } | 
| 162 |  | 
| 163 |  | 
| 164 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 165 | MoleculeIterator i; | 
| 166 |  | 
| 167 | i = molecules_.find(mol->getGlobalIndex()); | 
| 168 | if (i == molecules_.end() ) { | 
| 169 |  | 
| 170 | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 171 |  | 
| 172 | nAtoms_ += mol->getNAtoms(); | 
| 173 | nBonds_ += mol->getNBonds(); | 
| 174 | nBends_ += mol->getNBends(); | 
| 175 | nTorsions_ += mol->getNTorsions(); | 
| 176 | nInversions_ += mol->getNInversions(); | 
| 177 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 178 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 179 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 180 | nConstraints_ += mol->getNConstraintPairs(); | 
| 181 |  | 
| 182 | addInteractionPairs(mol); | 
| 183 |  | 
| 184 | return true; | 
| 185 | } else { | 
| 186 | return false; | 
| 187 | } | 
| 188 | } | 
| 189 |  | 
| 190 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 191 | MoleculeIterator i; | 
| 192 | i = molecules_.find(mol->getGlobalIndex()); | 
| 193 |  | 
| 194 | if (i != molecules_.end() ) { | 
| 195 |  | 
| 196 | assert(mol == i->second); | 
| 197 |  | 
| 198 | nAtoms_ -= mol->getNAtoms(); | 
| 199 | nBonds_ -= mol->getNBonds(); | 
| 200 | nBends_ -= mol->getNBends(); | 
| 201 | nTorsions_ -= mol->getNTorsions(); | 
| 202 | nInversions_ -= mol->getNInversions(); | 
| 203 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 204 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 205 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 206 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 207 |  | 
| 208 | removeInteractionPairs(mol); | 
| 209 | molecules_.erase(mol->getGlobalIndex()); | 
| 210 |  | 
| 211 | delete mol; | 
| 212 |  | 
| 213 | return true; | 
| 214 | } else { | 
| 215 | return false; | 
| 216 | } | 
| 217 | } | 
| 218 |  | 
| 219 |  | 
| 220 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 221 | i = molecules_.begin(); | 
| 222 | return i == molecules_.end() ? NULL : i->second; | 
| 223 | } | 
| 224 |  | 
| 225 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 226 | ++i; | 
| 227 | return i == molecules_.end() ? NULL : i->second; | 
| 228 | } | 
| 229 |  | 
| 230 |  | 
| 231 | void SimInfo::calcNdf() { | 
| 232 | int ndf_local; | 
| 233 | MoleculeIterator i; | 
| 234 | vector<StuntDouble*>::iterator j; | 
| 235 | Molecule* mol; | 
| 236 | StuntDouble* integrableObject; | 
| 237 |  | 
| 238 | ndf_local = 0; | 
| 239 |  | 
| 240 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 241 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 242 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 243 |  | 
| 244 | ndf_local += 3; | 
| 245 |  | 
| 246 | if (integrableObject->isDirectional()) { | 
| 247 | if (integrableObject->isLinear()) { | 
| 248 | ndf_local += 2; | 
| 249 | } else { | 
| 250 | ndf_local += 3; | 
| 251 | } | 
| 252 | } | 
| 253 |  | 
| 254 | } | 
| 255 | } | 
| 256 |  | 
| 257 | // n_constraints is local, so subtract them on each processor | 
| 258 | ndf_local -= nConstraints_; | 
| 259 |  | 
| 260 | #ifdef IS_MPI | 
| 261 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 262 | #else | 
| 263 | ndf_ = ndf_local; | 
| 264 | #endif | 
| 265 |  | 
| 266 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 267 | // entire system: | 
| 268 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 269 |  | 
| 270 | } | 
| 271 |  | 
| 272 | int SimInfo::getFdf() { | 
| 273 | #ifdef IS_MPI | 
| 274 | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 275 | #else | 
| 276 | fdf_ = fdf_local; | 
| 277 | #endif | 
| 278 | return fdf_; | 
| 279 | } | 
| 280 |  | 
| 281 | void SimInfo::calcNdfRaw() { | 
| 282 | int ndfRaw_local; | 
| 283 |  | 
| 284 | MoleculeIterator i; | 
| 285 | vector<StuntDouble*>::iterator j; | 
| 286 | Molecule* mol; | 
| 287 | StuntDouble* integrableObject; | 
| 288 |  | 
| 289 | // Raw degrees of freedom that we have to set | 
| 290 | ndfRaw_local = 0; | 
| 291 |  | 
| 292 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 293 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 294 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 295 |  | 
| 296 | ndfRaw_local += 3; | 
| 297 |  | 
| 298 | if (integrableObject->isDirectional()) { | 
| 299 | if (integrableObject->isLinear()) { | 
| 300 | ndfRaw_local += 2; | 
| 301 | } else { | 
| 302 | ndfRaw_local += 3; | 
| 303 | } | 
| 304 | } | 
| 305 |  | 
| 306 | } | 
| 307 | } | 
| 308 |  | 
| 309 | #ifdef IS_MPI | 
| 310 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 311 | #else | 
| 312 | ndfRaw_ = ndfRaw_local; | 
| 313 | #endif | 
| 314 | } | 
| 315 |  | 
| 316 | void SimInfo::calcNdfTrans() { | 
| 317 | int ndfTrans_local; | 
| 318 |  | 
| 319 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 320 |  | 
| 321 |  | 
| 322 | #ifdef IS_MPI | 
| 323 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 324 | #else | 
| 325 | ndfTrans_ = ndfTrans_local; | 
| 326 | #endif | 
| 327 |  | 
| 328 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 329 |  | 
| 330 | } | 
| 331 |  | 
| 332 | void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 333 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 334 | vector<Bond*>::iterator bondIter; | 
| 335 | vector<Bend*>::iterator bendIter; | 
| 336 | vector<Torsion*>::iterator torsionIter; | 
| 337 | vector<Inversion*>::iterator inversionIter; | 
| 338 | Bond* bond; | 
| 339 | Bend* bend; | 
| 340 | Torsion* torsion; | 
| 341 | Inversion* inversion; | 
| 342 | int a; | 
| 343 | int b; | 
| 344 | int c; | 
| 345 | int d; | 
| 346 |  | 
| 347 | // atomGroups can be used to add special interaction maps between | 
| 348 | // groups of atoms that are in two separate rigid bodies. | 
| 349 | // However, most site-site interactions between two rigid bodies | 
| 350 | // are probably not special, just the ones between the physically | 
| 351 | // bonded atoms.  Interactions *within* a single rigid body should | 
| 352 | // always be excluded.  These are done at the bottom of this | 
| 353 | // function. | 
| 354 |  | 
| 355 | map<int, set<int> > atomGroups; | 
| 356 | Molecule::RigidBodyIterator rbIter; | 
| 357 | RigidBody* rb; | 
| 358 | Molecule::IntegrableObjectIterator ii; | 
| 359 | StuntDouble* integrableObject; | 
| 360 |  | 
| 361 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 362 | integrableObject != NULL; | 
| 363 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 364 |  | 
| 365 | if (integrableObject->isRigidBody()) { | 
| 366 | rb = static_cast<RigidBody*>(integrableObject); | 
| 367 | vector<Atom*> atoms = rb->getAtoms(); | 
| 368 | set<int> rigidAtoms; | 
| 369 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 370 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 371 | } | 
| 372 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 373 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 374 | } | 
| 375 | } else { | 
| 376 | set<int> oneAtomSet; | 
| 377 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 378 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 379 | } | 
| 380 | } | 
| 381 |  | 
| 382 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 383 | bond = mol->nextBond(bondIter)) { | 
| 384 |  | 
| 385 | a = bond->getAtomA()->getGlobalIndex(); | 
| 386 | b = bond->getAtomB()->getGlobalIndex(); | 
| 387 |  | 
| 388 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 389 | oneTwoInteractions_.addPair(a, b); | 
| 390 | } else { | 
| 391 | excludedInteractions_.addPair(a, b); | 
| 392 | } | 
| 393 | } | 
| 394 |  | 
| 395 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 396 | bend = mol->nextBend(bendIter)) { | 
| 397 |  | 
| 398 | a = bend->getAtomA()->getGlobalIndex(); | 
| 399 | b = bend->getAtomB()->getGlobalIndex(); | 
| 400 | c = bend->getAtomC()->getGlobalIndex(); | 
| 401 |  | 
| 402 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 403 | oneTwoInteractions_.addPair(a, b); | 
| 404 | oneTwoInteractions_.addPair(b, c); | 
| 405 | } else { | 
| 406 | excludedInteractions_.addPair(a, b); | 
| 407 | excludedInteractions_.addPair(b, c); | 
| 408 | } | 
| 409 |  | 
| 410 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 411 | oneThreeInteractions_.addPair(a, c); | 
| 412 | } else { | 
| 413 | excludedInteractions_.addPair(a, c); | 
| 414 | } | 
| 415 | } | 
| 416 |  | 
| 417 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 418 | torsion = mol->nextTorsion(torsionIter)) { | 
| 419 |  | 
| 420 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 421 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 422 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 423 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 424 |  | 
| 425 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 426 | oneTwoInteractions_.addPair(a, b); | 
| 427 | oneTwoInteractions_.addPair(b, c); | 
| 428 | oneTwoInteractions_.addPair(c, d); | 
| 429 | } else { | 
| 430 | excludedInteractions_.addPair(a, b); | 
| 431 | excludedInteractions_.addPair(b, c); | 
| 432 | excludedInteractions_.addPair(c, d); | 
| 433 | } | 
| 434 |  | 
| 435 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 436 | oneThreeInteractions_.addPair(a, c); | 
| 437 | oneThreeInteractions_.addPair(b, d); | 
| 438 | } else { | 
| 439 | excludedInteractions_.addPair(a, c); | 
| 440 | excludedInteractions_.addPair(b, d); | 
| 441 | } | 
| 442 |  | 
| 443 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 444 | oneFourInteractions_.addPair(a, d); | 
| 445 | } else { | 
| 446 | excludedInteractions_.addPair(a, d); | 
| 447 | } | 
| 448 | } | 
| 449 |  | 
| 450 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 451 | inversion = mol->nextInversion(inversionIter)) { | 
| 452 |  | 
| 453 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 454 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 455 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 456 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 457 |  | 
| 458 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 459 | oneTwoInteractions_.addPair(a, b); | 
| 460 | oneTwoInteractions_.addPair(a, c); | 
| 461 | oneTwoInteractions_.addPair(a, d); | 
| 462 | } else { | 
| 463 | excludedInteractions_.addPair(a, b); | 
| 464 | excludedInteractions_.addPair(a, c); | 
| 465 | excludedInteractions_.addPair(a, d); | 
| 466 | } | 
| 467 |  | 
| 468 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 469 | oneThreeInteractions_.addPair(b, c); | 
| 470 | oneThreeInteractions_.addPair(b, d); | 
| 471 | oneThreeInteractions_.addPair(c, d); | 
| 472 | } else { | 
| 473 | excludedInteractions_.addPair(b, c); | 
| 474 | excludedInteractions_.addPair(b, d); | 
| 475 | excludedInteractions_.addPair(c, d); | 
| 476 | } | 
| 477 | } | 
| 478 |  | 
| 479 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 480 | rb = mol->nextRigidBody(rbIter)) { | 
| 481 | vector<Atom*> atoms = rb->getAtoms(); | 
| 482 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 483 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 484 | a = atoms[i]->getGlobalIndex(); | 
| 485 | b = atoms[j]->getGlobalIndex(); | 
| 486 | excludedInteractions_.addPair(a, b); | 
| 487 | } | 
| 488 | } | 
| 489 | } | 
| 490 |  | 
| 491 | } | 
| 492 |  | 
| 493 | void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 494 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 495 | vector<Bond*>::iterator bondIter; | 
| 496 | vector<Bend*>::iterator bendIter; | 
| 497 | vector<Torsion*>::iterator torsionIter; | 
| 498 | vector<Inversion*>::iterator inversionIter; | 
| 499 | Bond* bond; | 
| 500 | Bend* bend; | 
| 501 | Torsion* torsion; | 
| 502 | Inversion* inversion; | 
| 503 | int a; | 
| 504 | int b; | 
| 505 | int c; | 
| 506 | int d; | 
| 507 |  | 
| 508 | map<int, set<int> > atomGroups; | 
| 509 | Molecule::RigidBodyIterator rbIter; | 
| 510 | RigidBody* rb; | 
| 511 | Molecule::IntegrableObjectIterator ii; | 
| 512 | StuntDouble* integrableObject; | 
| 513 |  | 
| 514 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 515 | integrableObject != NULL; | 
| 516 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 517 |  | 
| 518 | if (integrableObject->isRigidBody()) { | 
| 519 | rb = static_cast<RigidBody*>(integrableObject); | 
| 520 | vector<Atom*> atoms = rb->getAtoms(); | 
| 521 | set<int> rigidAtoms; | 
| 522 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 523 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 524 | } | 
| 525 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 526 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 527 | } | 
| 528 | } else { | 
| 529 | set<int> oneAtomSet; | 
| 530 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 531 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 532 | } | 
| 533 | } | 
| 534 |  | 
| 535 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 536 | bond = mol->nextBond(bondIter)) { | 
| 537 |  | 
| 538 | a = bond->getAtomA()->getGlobalIndex(); | 
| 539 | b = bond->getAtomB()->getGlobalIndex(); | 
| 540 |  | 
| 541 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 542 | oneTwoInteractions_.removePair(a, b); | 
| 543 | } else { | 
| 544 | excludedInteractions_.removePair(a, b); | 
| 545 | } | 
| 546 | } | 
| 547 |  | 
| 548 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 549 | bend = mol->nextBend(bendIter)) { | 
| 550 |  | 
| 551 | a = bend->getAtomA()->getGlobalIndex(); | 
| 552 | b = bend->getAtomB()->getGlobalIndex(); | 
| 553 | c = bend->getAtomC()->getGlobalIndex(); | 
| 554 |  | 
| 555 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 556 | oneTwoInteractions_.removePair(a, b); | 
| 557 | oneTwoInteractions_.removePair(b, c); | 
| 558 | } else { | 
| 559 | excludedInteractions_.removePair(a, b); | 
| 560 | excludedInteractions_.removePair(b, c); | 
| 561 | } | 
| 562 |  | 
| 563 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 564 | oneThreeInteractions_.removePair(a, c); | 
| 565 | } else { | 
| 566 | excludedInteractions_.removePair(a, c); | 
| 567 | } | 
| 568 | } | 
| 569 |  | 
| 570 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 571 | torsion = mol->nextTorsion(torsionIter)) { | 
| 572 |  | 
| 573 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 574 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 575 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 576 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 577 |  | 
| 578 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 579 | oneTwoInteractions_.removePair(a, b); | 
| 580 | oneTwoInteractions_.removePair(b, c); | 
| 581 | oneTwoInteractions_.removePair(c, d); | 
| 582 | } else { | 
| 583 | excludedInteractions_.removePair(a, b); | 
| 584 | excludedInteractions_.removePair(b, c); | 
| 585 | excludedInteractions_.removePair(c, d); | 
| 586 | } | 
| 587 |  | 
| 588 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 589 | oneThreeInteractions_.removePair(a, c); | 
| 590 | oneThreeInteractions_.removePair(b, d); | 
| 591 | } else { | 
| 592 | excludedInteractions_.removePair(a, c); | 
| 593 | excludedInteractions_.removePair(b, d); | 
| 594 | } | 
| 595 |  | 
| 596 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 597 | oneFourInteractions_.removePair(a, d); | 
| 598 | } else { | 
| 599 | excludedInteractions_.removePair(a, d); | 
| 600 | } | 
| 601 | } | 
| 602 |  | 
| 603 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 604 | inversion = mol->nextInversion(inversionIter)) { | 
| 605 |  | 
| 606 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 607 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 608 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 609 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 610 |  | 
| 611 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 612 | oneTwoInteractions_.removePair(a, b); | 
| 613 | oneTwoInteractions_.removePair(a, c); | 
| 614 | oneTwoInteractions_.removePair(a, d); | 
| 615 | } else { | 
| 616 | excludedInteractions_.removePair(a, b); | 
| 617 | excludedInteractions_.removePair(a, c); | 
| 618 | excludedInteractions_.removePair(a, d); | 
| 619 | } | 
| 620 |  | 
| 621 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 622 | oneThreeInteractions_.removePair(b, c); | 
| 623 | oneThreeInteractions_.removePair(b, d); | 
| 624 | oneThreeInteractions_.removePair(c, d); | 
| 625 | } else { | 
| 626 | excludedInteractions_.removePair(b, c); | 
| 627 | excludedInteractions_.removePair(b, d); | 
| 628 | excludedInteractions_.removePair(c, d); | 
| 629 | } | 
| 630 | } | 
| 631 |  | 
| 632 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 633 | rb = mol->nextRigidBody(rbIter)) { | 
| 634 | vector<Atom*> atoms = rb->getAtoms(); | 
| 635 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 636 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 637 | a = atoms[i]->getGlobalIndex(); | 
| 638 | b = atoms[j]->getGlobalIndex(); | 
| 639 | excludedInteractions_.removePair(a, b); | 
| 640 | } | 
| 641 | } | 
| 642 | } | 
| 643 |  | 
| 644 | } | 
| 645 |  | 
| 646 |  | 
| 647 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 648 | int curStampId; | 
| 649 |  | 
| 650 | //index from 0 | 
| 651 | curStampId = moleculeStamps_.size(); | 
| 652 |  | 
| 653 | moleculeStamps_.push_back(molStamp); | 
| 654 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 655 | } | 
| 656 |  | 
| 657 |  | 
| 658 | /** | 
| 659 | * update | 
| 660 | * | 
| 661 | *  Performs the global checks and variable settings after the objects have been | 
| 662 | *  created. | 
| 663 | * | 
| 664 | */ | 
| 665 | void SimInfo::update() { | 
| 666 |  | 
| 667 | setupSimVariables(); | 
| 668 | setupCutoffs(); | 
| 669 | setupSwitching(); | 
| 670 | setupElectrostatics(); | 
| 671 | setupNeighborlists(); | 
| 672 |  | 
| 673 | #ifdef IS_MPI | 
| 674 | setupFortranParallel(); | 
| 675 | #endif | 
| 676 | setupFortranSim(); | 
| 677 | fortranInitialized_ = true; | 
| 678 |  | 
| 679 | calcNdf(); | 
| 680 | calcNdfRaw(); | 
| 681 | calcNdfTrans(); | 
| 682 | } | 
| 683 |  | 
| 684 | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 685 | SimInfo::MoleculeIterator mi; | 
| 686 | Molecule* mol; | 
| 687 | Molecule::AtomIterator ai; | 
| 688 | Atom* atom; | 
| 689 | set<AtomType*> atomTypes; | 
| 690 |  | 
| 691 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 692 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 693 | atomTypes.insert(atom->getAtomType()); | 
| 694 | } | 
| 695 | } | 
| 696 | return atomTypes; | 
| 697 | } | 
| 698 |  | 
| 699 | /** | 
| 700 | * setupCutoffs | 
| 701 | * | 
| 702 | * Sets the values of cutoffRadius and cutoffMethod | 
| 703 | * | 
| 704 | * cutoffRadius : realType | 
| 705 | *  If the cutoffRadius was explicitly set, use that value. | 
| 706 | *  If the cutoffRadius was not explicitly set: | 
| 707 | *      Are there electrostatic atoms?  Use 12.0 Angstroms. | 
| 708 | *      No electrostatic atoms?  Poll the atom types present in the | 
| 709 | *      simulation for suggested cutoff values (e.g. 2.5 * sigma). | 
| 710 | *      Use the maximum suggested value that was found. | 
| 711 | * | 
| 712 | * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) | 
| 713 | *      If cutoffMethod was explicitly set, use that choice. | 
| 714 | *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE | 
| 715 | */ | 
| 716 | void SimInfo::setupCutoffs() { | 
| 717 |  | 
| 718 | if (simParams_->haveCutoffRadius()) { | 
| 719 | cutoffRadius_ = simParams_->getCutoffRadius(); | 
| 720 | } else { | 
| 721 | if (usesElectrostaticAtoms_) { | 
| 722 | sprintf(painCave.errMsg, | 
| 723 | "SimInfo: No value was set for the cutoffRadius.\n" | 
| 724 | "\tOpenMD will use a default value of 12.0 angstroms" | 
| 725 | "\tfor the cutoffRadius.\n"); | 
| 726 | painCave.isFatal = 0; | 
| 727 | painCave.severity = OPENMD_INFO; | 
| 728 | simError(); | 
| 729 | cutoffRadius_ = 12.0; | 
| 730 | } else { | 
| 731 | RealType thisCut; | 
| 732 | set<AtomType*>::iterator i; | 
| 733 | set<AtomType*> atomTypes; | 
| 734 | atomTypes = getSimulatedAtomTypes(); | 
| 735 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 736 | thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); | 
| 737 | cutoffRadius_ = max(thisCut, cutoffRadius_); | 
| 738 | } | 
| 739 | sprintf(painCave.errMsg, | 
| 740 | "SimInfo: No value was set for the cutoffRadius.\n" | 
| 741 | "\tOpenMD will use %lf angstroms.\n", | 
| 742 | cutoffRadius_); | 
| 743 | painCave.isFatal = 0; | 
| 744 | painCave.severity = OPENMD_INFO; | 
| 745 | simError(); | 
| 746 | } | 
| 747 | } | 
| 748 |  | 
| 749 | InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); | 
| 750 |  | 
| 751 | map<string, CutoffMethod> stringToCutoffMethod; | 
| 752 | stringToCutoffMethod["HARD"] = HARD; | 
| 753 | stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION; | 
| 754 | stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; | 
| 755 | stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; | 
| 756 |  | 
| 757 | if (simParams_->haveCutoffMethod()) { | 
| 758 | string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); | 
| 759 | map<string, CutoffMethod>::iterator i; | 
| 760 | i = stringToCutoffMethod.find(cutMeth); | 
| 761 | if (i == stringToCutoffMethod.end()) { | 
| 762 | sprintf(painCave.errMsg, | 
| 763 | "SimInfo: Could not find chosen cutoffMethod %s\n" | 
| 764 | "\tShould be one of: " | 
| 765 | "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", | 
| 766 | cutMeth.c_str()); | 
| 767 | painCave.isFatal = 1; | 
| 768 | painCave.severity = OPENMD_ERROR; | 
| 769 | simError(); | 
| 770 | } else { | 
| 771 | cutoffMethod_ = i->second; | 
| 772 | } | 
| 773 | } else { | 
| 774 | sprintf(painCave.errMsg, | 
| 775 | "SimInfo: No value was set for the cutoffMethod.\n" | 
| 776 | "\tOpenMD will use SHIFTED_FORCE.\n"); | 
| 777 | painCave.isFatal = 0; | 
| 778 | painCave.severity = OPENMD_INFO; | 
| 779 | simError(); | 
| 780 | cutoffMethod_ = SHIFTED_FORCE; | 
| 781 | } | 
| 782 |  | 
| 783 | InteractionManager::Instance()->setCutoffMethod(cutoffMethod_); | 
| 784 | } | 
| 785 |  | 
| 786 | /** | 
| 787 | * setupSwitching | 
| 788 | * | 
| 789 | * Sets the values of switchingRadius and | 
| 790 | *  If the switchingRadius was explicitly set, use that value (but check it) | 
| 791 | *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ | 
| 792 | */ | 
| 793 | void SimInfo::setupSwitching() { | 
| 794 |  | 
| 795 | if (simParams_->haveSwitchingRadius()) { | 
| 796 | switchingRadius_ = simParams_->getSwitchingRadius(); | 
| 797 | if (switchingRadius_ > cutoffRadius_) { | 
| 798 | sprintf(painCave.errMsg, | 
| 799 | "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n", | 
| 800 | switchingRadius_, cutoffRadius_); | 
| 801 | painCave.isFatal = 1; | 
| 802 | painCave.severity = OPENMD_ERROR; | 
| 803 | simError(); | 
| 804 | } | 
| 805 | } else { | 
| 806 | switchingRadius_ = 0.85 * cutoffRadius_; | 
| 807 | sprintf(painCave.errMsg, | 
| 808 | "SimInfo: No value was set for the switchingRadius.\n" | 
| 809 | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" | 
| 810 | "\tswitchingRadius = %f. for this simulation\n", switchingRadius_); | 
| 811 | painCave.isFatal = 0; | 
| 812 | painCave.severity = OPENMD_WARNING; | 
| 813 | simError(); | 
| 814 | } | 
| 815 |  | 
| 816 | InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); | 
| 817 |  | 
| 818 | SwitchingFunctionType ft; | 
| 819 |  | 
| 820 | if (simParams_->haveSwitchingFunctionType()) { | 
| 821 | string funcType = simParams_->getSwitchingFunctionType(); | 
| 822 | toUpper(funcType); | 
| 823 | if (funcType == "CUBIC") { | 
| 824 | ft = cubic; | 
| 825 | } else { | 
| 826 | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 827 | ft = fifth_order_poly; | 
| 828 | } else { | 
| 829 | // throw error | 
| 830 | sprintf( painCave.errMsg, | 
| 831 | "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n" | 
| 832 | "\tswitchingFunctionType must be one of: " | 
| 833 | "\"cubic\" or \"fifth_order_polynomial\".", | 
| 834 | funcType.c_str() ); | 
| 835 | painCave.isFatal = 1; | 
| 836 | painCave.severity = OPENMD_ERROR; | 
| 837 | simError(); | 
| 838 | } | 
| 839 | } | 
| 840 | } | 
| 841 |  | 
| 842 | InteractionManager::Instance()->setSwitchingFunctionType(ft); | 
| 843 | } | 
| 844 |  | 
| 845 | /** | 
| 846 | * setupSkinThickness | 
| 847 | * | 
| 848 | *  If the skinThickness was explicitly set, use that value (but check it) | 
| 849 | *  If the skinThickness was not explicitly set: use 1.0 angstroms | 
| 850 | */ | 
| 851 | void SimInfo::setupSkinThickness() { | 
| 852 | if (simParams_->haveSkinThickness()) { | 
| 853 | skinThickness_ = simParams_->getSkinThickness(); | 
| 854 | } else { | 
| 855 | skinThickness_ = 1.0; | 
| 856 | sprintf(painCave.errMsg, | 
| 857 | "SimInfo Warning: No value was set for the skinThickness.\n" | 
| 858 | "\tOpenMD will use a default value of %f Angstroms\n" | 
| 859 | "\tfor this simulation\n", skinThickness_); | 
| 860 | painCave.isFatal = 0; | 
| 861 | simError(); | 
| 862 | } | 
| 863 | } | 
| 864 |  | 
| 865 | void SimInfo::setupSimType() { | 
| 866 | set<AtomType*>::iterator i; | 
| 867 | set<AtomType*> atomTypes; | 
| 868 | atomTypes = getSimulatedAtomTypes(); | 
| 869 |  | 
| 870 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 871 |  | 
| 872 | int usesElectrostatic = 0; | 
| 873 | int usesMetallic = 0; | 
| 874 | int usesDirectional = 0; | 
| 875 | //loop over all of the atom types | 
| 876 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 877 | usesElectrostatic |= (*i)->isElectrostatic(); | 
| 878 | usesMetallic |= (*i)->isMetal(); | 
| 879 | usesDirectional |= (*i)->isDirectional(); | 
| 880 | } | 
| 881 |  | 
| 882 | #ifdef IS_MPI | 
| 883 | int temp; | 
| 884 | temp = usesDirectional; | 
| 885 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 886 |  | 
| 887 | temp = usesMetallic; | 
| 888 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 889 |  | 
| 890 | temp = usesElectrostatic; | 
| 891 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 892 | #endif | 
| 893 | fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; | 
| 894 | fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; | 
| 895 | fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; | 
| 896 | fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; | 
| 897 | fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; | 
| 898 | fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; | 
| 899 | } | 
| 900 |  | 
| 901 | void SimInfo::setupFortranSim() { | 
| 902 | int isError; | 
| 903 | int nExclude, nOneTwo, nOneThree, nOneFour; | 
| 904 | vector<int> fortranGlobalGroupMembership; | 
| 905 |  | 
| 906 | notifyFortranSkinThickness(&skinThickness_); | 
| 907 |  | 
| 908 | int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; | 
| 909 | int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; | 
| 910 | notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); | 
| 911 |  | 
| 912 | isError = 0; | 
| 913 |  | 
| 914 | //globalGroupMembership_ is filled by SimCreator | 
| 915 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 916 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 917 | } | 
| 918 |  | 
| 919 | //calculate mass ratio of cutoff group | 
| 920 | vector<RealType> mfact; | 
| 921 | SimInfo::MoleculeIterator mi; | 
| 922 | Molecule* mol; | 
| 923 | Molecule::CutoffGroupIterator ci; | 
| 924 | CutoffGroup* cg; | 
| 925 | Molecule::AtomIterator ai; | 
| 926 | Atom* atom; | 
| 927 | RealType totalMass; | 
| 928 |  | 
| 929 | //to avoid memory reallocation, reserve enough space for mfact | 
| 930 | mfact.reserve(getNCutoffGroups()); | 
| 931 |  | 
| 932 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 933 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 934 |  | 
| 935 | totalMass = cg->getMass(); | 
| 936 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 937 | // Check for massless groups - set mfact to 1 if true | 
| 938 | if (totalMass != 0) | 
| 939 | mfact.push_back(atom->getMass()/totalMass); | 
| 940 | else | 
| 941 | mfact.push_back( 1.0 ); | 
| 942 | } | 
| 943 | } | 
| 944 | } | 
| 945 |  | 
| 946 | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 947 | vector<int> identArray; | 
| 948 |  | 
| 949 | //to avoid memory reallocation, reserve enough space identArray | 
| 950 | identArray.reserve(getNAtoms()); | 
| 951 |  | 
| 952 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 953 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 954 | identArray.push_back(atom->getIdent()); | 
| 955 | } | 
| 956 | } | 
| 957 |  | 
| 958 | //fill molMembershipArray | 
| 959 | //molMembershipArray is filled by SimCreator | 
| 960 | vector<int> molMembershipArray(nGlobalAtoms_); | 
| 961 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 962 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 963 | } | 
| 964 |  | 
| 965 | //setup fortran simulation | 
| 966 |  | 
| 967 | nExclude = excludedInteractions_.getSize(); | 
| 968 | nOneTwo = oneTwoInteractions_.getSize(); | 
| 969 | nOneThree = oneThreeInteractions_.getSize(); | 
| 970 | nOneFour = oneFourInteractions_.getSize(); | 
| 971 |  | 
| 972 | int* excludeList = excludedInteractions_.getPairList(); | 
| 973 | int* oneTwoList = oneTwoInteractions_.getPairList(); | 
| 974 | int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 975 | int* oneFourList = oneFourInteractions_.getPairList(); | 
| 976 |  | 
| 977 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], | 
| 978 | &nExclude, excludeList, | 
| 979 | &nOneTwo, oneTwoList, | 
| 980 | &nOneThree, oneThreeList, | 
| 981 | &nOneFour, oneFourList, | 
| 982 | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, | 
| 983 | &fortranGlobalGroupMembership[0], &isError); | 
| 984 |  | 
| 985 | if( isError ){ | 
| 986 |  | 
| 987 | sprintf( painCave.errMsg, | 
| 988 | "There was an error setting the simulation information in fortran.\n" ); | 
| 989 | painCave.isFatal = 1; | 
| 990 | painCave.severity = OPENMD_ERROR; | 
| 991 | simError(); | 
| 992 | } | 
| 993 |  | 
| 994 |  | 
| 995 | sprintf( checkPointMsg, | 
| 996 | "succesfully sent the simulation information to fortran.\n"); | 
| 997 |  | 
| 998 | errorCheckPoint(); | 
| 999 |  | 
| 1000 | // Setup number of neighbors in neighbor list if present | 
| 1001 | if (simParams_->haveNeighborListNeighbors()) { | 
| 1002 | int nlistNeighbors = simParams_->getNeighborListNeighbors(); | 
| 1003 | setNeighbors(&nlistNeighbors); | 
| 1004 | } | 
| 1005 |  | 
| 1006 |  | 
| 1007 | } | 
| 1008 |  | 
| 1009 |  | 
| 1010 | void SimInfo::setupFortranParallel() { | 
| 1011 | #ifdef IS_MPI | 
| 1012 | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 1013 | vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 1014 | vector<int> localToGlobalCutoffGroupIndex; | 
| 1015 | SimInfo::MoleculeIterator mi; | 
| 1016 | Molecule::AtomIterator ai; | 
| 1017 | Molecule::CutoffGroupIterator ci; | 
| 1018 | Molecule* mol; | 
| 1019 | Atom* atom; | 
| 1020 | CutoffGroup* cg; | 
| 1021 | mpiSimData parallelData; | 
| 1022 | int isError; | 
| 1023 |  | 
| 1024 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 1025 |  | 
| 1026 | //local index(index in DataStorge) of atom is important | 
| 1027 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 1028 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 1029 | } | 
| 1030 |  | 
| 1031 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 1032 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 1033 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 1034 | } | 
| 1035 |  | 
| 1036 | } | 
| 1037 |  | 
| 1038 | //fill up mpiSimData struct | 
| 1039 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 1040 | parallelData.nMolLocal = getNMolecules(); | 
| 1041 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 1042 | parallelData.nAtomsLocal = getNAtoms(); | 
| 1043 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 1044 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 1045 | parallelData.myNode = worldRank; | 
| 1046 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 1047 |  | 
| 1048 | //pass mpiSimData struct and index arrays to fortran | 
| 1049 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 1050 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 1051 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 1052 |  | 
| 1053 | if (isError) { | 
| 1054 | sprintf(painCave.errMsg, | 
| 1055 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 1056 | painCave.isFatal = 1; | 
| 1057 | simError(); | 
| 1058 | } | 
| 1059 |  | 
| 1060 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 1061 | errorCheckPoint(); | 
| 1062 |  | 
| 1063 | #endif | 
| 1064 | } | 
| 1065 |  | 
| 1066 |  | 
| 1067 | void SimInfo::setupSwitchingFunction() { | 
| 1068 |  | 
| 1069 | } | 
| 1070 |  | 
| 1071 | void SimInfo::setupAccumulateBoxDipole() { | 
| 1072 |  | 
| 1073 | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true | 
| 1074 | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 1075 | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 1076 | calcBoxDipole_ = true; | 
| 1077 | } | 
| 1078 |  | 
| 1079 | } | 
| 1080 |  | 
| 1081 | void SimInfo::addProperty(GenericData* genData) { | 
| 1082 | properties_.addProperty(genData); | 
| 1083 | } | 
| 1084 |  | 
| 1085 | void SimInfo::removeProperty(const string& propName) { | 
| 1086 | properties_.removeProperty(propName); | 
| 1087 | } | 
| 1088 |  | 
| 1089 | void SimInfo::clearProperties() { | 
| 1090 | properties_.clearProperties(); | 
| 1091 | } | 
| 1092 |  | 
| 1093 | vector<string> SimInfo::getPropertyNames() { | 
| 1094 | return properties_.getPropertyNames(); | 
| 1095 | } | 
| 1096 |  | 
| 1097 | vector<GenericData*> SimInfo::getProperties() { | 
| 1098 | return properties_.getProperties(); | 
| 1099 | } | 
| 1100 |  | 
| 1101 | GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 1102 | return properties_.getPropertyByName(propName); | 
| 1103 | } | 
| 1104 |  | 
| 1105 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 1106 | if (sman_ == sman) { | 
| 1107 | return; | 
| 1108 | } | 
| 1109 | delete sman_; | 
| 1110 | sman_ = sman; | 
| 1111 |  | 
| 1112 | Molecule* mol; | 
| 1113 | RigidBody* rb; | 
| 1114 | Atom* atom; | 
| 1115 | SimInfo::MoleculeIterator mi; | 
| 1116 | Molecule::RigidBodyIterator rbIter; | 
| 1117 | Molecule::AtomIterator atomIter;; | 
| 1118 |  | 
| 1119 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1120 |  | 
| 1121 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 1122 | atom->setSnapshotManager(sman_); | 
| 1123 | } | 
| 1124 |  | 
| 1125 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 1126 | rb->setSnapshotManager(sman_); | 
| 1127 | } | 
| 1128 | } | 
| 1129 |  | 
| 1130 | } | 
| 1131 |  | 
| 1132 | Vector3d SimInfo::getComVel(){ | 
| 1133 | SimInfo::MoleculeIterator i; | 
| 1134 | Molecule* mol; | 
| 1135 |  | 
| 1136 | Vector3d comVel(0.0); | 
| 1137 | RealType totalMass = 0.0; | 
| 1138 |  | 
| 1139 |  | 
| 1140 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1141 | RealType mass = mol->getMass(); | 
| 1142 | totalMass += mass; | 
| 1143 | comVel += mass * mol->getComVel(); | 
| 1144 | } | 
| 1145 |  | 
| 1146 | #ifdef IS_MPI | 
| 1147 | RealType tmpMass = totalMass; | 
| 1148 | Vector3d tmpComVel(comVel); | 
| 1149 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1150 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1151 | #endif | 
| 1152 |  | 
| 1153 | comVel /= totalMass; | 
| 1154 |  | 
| 1155 | return comVel; | 
| 1156 | } | 
| 1157 |  | 
| 1158 | Vector3d SimInfo::getCom(){ | 
| 1159 | SimInfo::MoleculeIterator i; | 
| 1160 | Molecule* mol; | 
| 1161 |  | 
| 1162 | Vector3d com(0.0); | 
| 1163 | RealType totalMass = 0.0; | 
| 1164 |  | 
| 1165 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1166 | RealType mass = mol->getMass(); | 
| 1167 | totalMass += mass; | 
| 1168 | com += mass * mol->getCom(); | 
| 1169 | } | 
| 1170 |  | 
| 1171 | #ifdef IS_MPI | 
| 1172 | RealType tmpMass = totalMass; | 
| 1173 | Vector3d tmpCom(com); | 
| 1174 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1175 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1176 | #endif | 
| 1177 |  | 
| 1178 | com /= totalMass; | 
| 1179 |  | 
| 1180 | return com; | 
| 1181 |  | 
| 1182 | } | 
| 1183 |  | 
| 1184 | ostream& operator <<(ostream& o, SimInfo& info) { | 
| 1185 |  | 
| 1186 | return o; | 
| 1187 | } | 
| 1188 |  | 
| 1189 |  | 
| 1190 | /* | 
| 1191 | Returns center of mass and center of mass velocity in one function call. | 
| 1192 | */ | 
| 1193 |  | 
| 1194 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1195 | SimInfo::MoleculeIterator i; | 
| 1196 | Molecule* mol; | 
| 1197 |  | 
| 1198 |  | 
| 1199 | RealType totalMass = 0.0; | 
| 1200 |  | 
| 1201 |  | 
| 1202 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1203 | RealType mass = mol->getMass(); | 
| 1204 | totalMass += mass; | 
| 1205 | com += mass * mol->getCom(); | 
| 1206 | comVel += mass * mol->getComVel(); | 
| 1207 | } | 
| 1208 |  | 
| 1209 | #ifdef IS_MPI | 
| 1210 | RealType tmpMass = totalMass; | 
| 1211 | Vector3d tmpCom(com); | 
| 1212 | Vector3d tmpComVel(comVel); | 
| 1213 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1214 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1215 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1216 | #endif | 
| 1217 |  | 
| 1218 | com /= totalMass; | 
| 1219 | comVel /= totalMass; | 
| 1220 | } | 
| 1221 |  | 
| 1222 | /* | 
| 1223 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1224 |  | 
| 1225 |  | 
| 1226 | [  Ixx -Ixy  -Ixz ] | 
| 1227 | J =| -Iyx  Iyy  -Iyz | | 
| 1228 | [ -Izx -Iyz   Izz ] | 
| 1229 | */ | 
| 1230 |  | 
| 1231 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1232 |  | 
| 1233 |  | 
| 1234 | RealType xx = 0.0; | 
| 1235 | RealType yy = 0.0; | 
| 1236 | RealType zz = 0.0; | 
| 1237 | RealType xy = 0.0; | 
| 1238 | RealType xz = 0.0; | 
| 1239 | RealType yz = 0.0; | 
| 1240 | Vector3d com(0.0); | 
| 1241 | Vector3d comVel(0.0); | 
| 1242 |  | 
| 1243 | getComAll(com, comVel); | 
| 1244 |  | 
| 1245 | SimInfo::MoleculeIterator i; | 
| 1246 | Molecule* mol; | 
| 1247 |  | 
| 1248 | Vector3d thisq(0.0); | 
| 1249 | Vector3d thisv(0.0); | 
| 1250 |  | 
| 1251 | RealType thisMass = 0.0; | 
| 1252 |  | 
| 1253 |  | 
| 1254 |  | 
| 1255 |  | 
| 1256 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1257 |  | 
| 1258 | thisq = mol->getCom()-com; | 
| 1259 | thisv = mol->getComVel()-comVel; | 
| 1260 | thisMass = mol->getMass(); | 
| 1261 | // Compute moment of intertia coefficients. | 
| 1262 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1263 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1264 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1265 |  | 
| 1266 | // compute products of intertia | 
| 1267 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1268 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1269 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1270 |  | 
| 1271 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1272 |  | 
| 1273 | } | 
| 1274 |  | 
| 1275 |  | 
| 1276 | inertiaTensor(0,0) = yy + zz; | 
| 1277 | inertiaTensor(0,1) = -xy; | 
| 1278 | inertiaTensor(0,2) = -xz; | 
| 1279 | inertiaTensor(1,0) = -xy; | 
| 1280 | inertiaTensor(1,1) = xx + zz; | 
| 1281 | inertiaTensor(1,2) = -yz; | 
| 1282 | inertiaTensor(2,0) = -xz; | 
| 1283 | inertiaTensor(2,1) = -yz; | 
| 1284 | inertiaTensor(2,2) = xx + yy; | 
| 1285 |  | 
| 1286 | #ifdef IS_MPI | 
| 1287 | Mat3x3d tmpI(inertiaTensor); | 
| 1288 | Vector3d tmpAngMom; | 
| 1289 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1290 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1291 | #endif | 
| 1292 |  | 
| 1293 | return; | 
| 1294 | } | 
| 1295 |  | 
| 1296 | //Returns the angular momentum of the system | 
| 1297 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1298 |  | 
| 1299 | Vector3d com(0.0); | 
| 1300 | Vector3d comVel(0.0); | 
| 1301 | Vector3d angularMomentum(0.0); | 
| 1302 |  | 
| 1303 | getComAll(com,comVel); | 
| 1304 |  | 
| 1305 | SimInfo::MoleculeIterator i; | 
| 1306 | Molecule* mol; | 
| 1307 |  | 
| 1308 | Vector3d thisr(0.0); | 
| 1309 | Vector3d thisp(0.0); | 
| 1310 |  | 
| 1311 | RealType thisMass; | 
| 1312 |  | 
| 1313 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1314 | thisMass = mol->getMass(); | 
| 1315 | thisr = mol->getCom()-com; | 
| 1316 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1317 |  | 
| 1318 | angularMomentum += cross( thisr, thisp ); | 
| 1319 |  | 
| 1320 | } | 
| 1321 |  | 
| 1322 | #ifdef IS_MPI | 
| 1323 | Vector3d tmpAngMom; | 
| 1324 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1325 | #endif | 
| 1326 |  | 
| 1327 | return angularMomentum; | 
| 1328 | } | 
| 1329 |  | 
| 1330 | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1331 | return IOIndexToIntegrableObject.at(index); | 
| 1332 | } | 
| 1333 |  | 
| 1334 | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1335 | IOIndexToIntegrableObject= v; | 
| 1336 | } | 
| 1337 |  | 
| 1338 | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes | 
| 1339 | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1340 | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to | 
| 1341 | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1342 | */ | 
| 1343 | void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1344 | Mat3x3d intTensor; | 
| 1345 | RealType det; | 
| 1346 | Vector3d dummyAngMom; | 
| 1347 | RealType sysconstants; | 
| 1348 | RealType geomCnst; | 
| 1349 |  | 
| 1350 | geomCnst = 3.0/2.0; | 
| 1351 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1352 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1353 |  | 
| 1354 | det = intTensor.determinant(); | 
| 1355 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1356 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1357 | return; | 
| 1358 | } | 
| 1359 |  | 
| 1360 | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1361 | Mat3x3d intTensor; | 
| 1362 | Vector3d dummyAngMom; | 
| 1363 | RealType sysconstants; | 
| 1364 | RealType geomCnst; | 
| 1365 |  | 
| 1366 | geomCnst = 3.0/2.0; | 
| 1367 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1368 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1369 |  | 
| 1370 | detI = intTensor.determinant(); | 
| 1371 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1372 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1373 | return; | 
| 1374 | } | 
| 1375 | /* | 
| 1376 | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { | 
| 1377 | assert( v.size() == nAtoms_ + nRigidBodies_); | 
| 1378 | sdByGlobalIndex_ = v; | 
| 1379 | } | 
| 1380 |  | 
| 1381 | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { | 
| 1382 | //assert(index < nAtoms_ + nRigidBodies_); | 
| 1383 | return sdByGlobalIndex_.at(index); | 
| 1384 | } | 
| 1385 | */ | 
| 1386 | int SimInfo::getNGlobalConstraints() { | 
| 1387 | int nGlobalConstraints; | 
| 1388 | #ifdef IS_MPI | 
| 1389 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 1390 | MPI_COMM_WORLD); | 
| 1391 | #else | 
| 1392 | nGlobalConstraints =  nConstraints_; | 
| 1393 | #endif | 
| 1394 | return nGlobalConstraints; | 
| 1395 | } | 
| 1396 |  | 
| 1397 | }//end namespace OpenMD | 
| 1398 |  |