| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 | #include <map> | 
| 52 |  | 
| 53 | #include "brains/SimInfo.hpp" | 
| 54 | #include "math/Vector3.hpp" | 
| 55 | #include "primitives/Molecule.hpp" | 
| 56 | #include "primitives/StuntDouble.hpp" | 
| 57 | #include "UseTheForce/DarkSide/neighborLists_interface.h" | 
| 58 | #include "UseTheForce/doForces_interface.h" | 
| 59 | #include "utils/MemoryUtils.hpp" | 
| 60 | #include "utils/simError.h" | 
| 61 | #include "selection/SelectionManager.hpp" | 
| 62 | #include "io/ForceFieldOptions.hpp" | 
| 63 | #include "UseTheForce/ForceField.hpp" | 
| 64 | #include "nonbonded/SwitchingFunction.hpp" | 
| 65 |  | 
| 66 | #ifdef IS_MPI | 
| 67 | #include "UseTheForce/mpiComponentPlan.h" | 
| 68 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 69 | #endif | 
| 70 |  | 
| 71 | using namespace std; | 
| 72 | namespace OpenMD { | 
| 73 |  | 
| 74 | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 75 | forceField_(ff), simParams_(simParams), | 
| 76 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 77 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 78 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 79 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0), | 
| 80 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | 
| 81 | nConstraints_(0), sman_(NULL), fortranInitialized_(false), | 
| 82 | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 83 |  | 
| 84 | MoleculeStamp* molStamp; | 
| 85 | int nMolWithSameStamp; | 
| 86 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 87 | int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 88 | CutoffGroupStamp* cgStamp; | 
| 89 | RigidBodyStamp* rbStamp; | 
| 90 | int nRigidAtoms = 0; | 
| 91 |  | 
| 92 | vector<Component*> components = simParams->getComponents(); | 
| 93 |  | 
| 94 | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { | 
| 95 | molStamp = (*i)->getMoleculeStamp(); | 
| 96 | nMolWithSameStamp = (*i)->getNMol(); | 
| 97 |  | 
| 98 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 99 |  | 
| 100 | //calculate atoms in molecules | 
| 101 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 102 |  | 
| 103 | //calculate atoms in cutoff groups | 
| 104 | int nAtomsInGroups = 0; | 
| 105 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 106 |  | 
| 107 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 108 | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 109 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 110 | } | 
| 111 |  | 
| 112 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 113 |  | 
| 114 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 115 |  | 
| 116 | //calculate atoms in rigid bodies | 
| 117 | int nAtomsInRigidBodies = 0; | 
| 118 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 119 |  | 
| 120 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 121 | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 122 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 123 | } | 
| 124 |  | 
| 125 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 126 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 127 |  | 
| 128 | } | 
| 129 |  | 
| 130 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 131 | //group therefore the total number of cutoff groups in the system is | 
| 132 | //equal to the total number of atoms minus number of atoms belong to | 
| 133 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 134 | //groups defined in meta-data file | 
| 135 | std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; | 
| 136 | std::cerr << "nCA = " << nCutoffAtoms << "\n"; | 
| 137 | std::cerr << "nG = " << nGroups << "\n"; | 
| 138 |  | 
| 139 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 140 |  | 
| 141 | std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; | 
| 142 |  | 
| 143 | //every free atom (atom does not belong to rigid bodies) is an | 
| 144 | //integrable object therefore the total number of integrable objects | 
| 145 | //in the system is equal to the total number of atoms minus number of | 
| 146 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 147 | //of rigid bodies defined in meta-data file | 
| 148 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 149 | + nGlobalRigidBodies_; | 
| 150 |  | 
| 151 | nGlobalMols_ = molStampIds_.size(); | 
| 152 | molToProcMap_.resize(nGlobalMols_); | 
| 153 | } | 
| 154 |  | 
| 155 | SimInfo::~SimInfo() { | 
| 156 | map<int, Molecule*>::iterator i; | 
| 157 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 158 | delete i->second; | 
| 159 | } | 
| 160 | molecules_.clear(); | 
| 161 |  | 
| 162 | delete sman_; | 
| 163 | delete simParams_; | 
| 164 | delete forceField_; | 
| 165 | } | 
| 166 |  | 
| 167 |  | 
| 168 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 169 | MoleculeIterator i; | 
| 170 |  | 
| 171 | i = molecules_.find(mol->getGlobalIndex()); | 
| 172 | if (i == molecules_.end() ) { | 
| 173 |  | 
| 174 | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 175 |  | 
| 176 | nAtoms_ += mol->getNAtoms(); | 
| 177 | nBonds_ += mol->getNBonds(); | 
| 178 | nBends_ += mol->getNBends(); | 
| 179 | nTorsions_ += mol->getNTorsions(); | 
| 180 | nInversions_ += mol->getNInversions(); | 
| 181 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 182 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 183 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 184 | nConstraints_ += mol->getNConstraintPairs(); | 
| 185 |  | 
| 186 | addInteractionPairs(mol); | 
| 187 |  | 
| 188 | return true; | 
| 189 | } else { | 
| 190 | return false; | 
| 191 | } | 
| 192 | } | 
| 193 |  | 
| 194 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 195 | MoleculeIterator i; | 
| 196 | i = molecules_.find(mol->getGlobalIndex()); | 
| 197 |  | 
| 198 | if (i != molecules_.end() ) { | 
| 199 |  | 
| 200 | assert(mol == i->second); | 
| 201 |  | 
| 202 | nAtoms_ -= mol->getNAtoms(); | 
| 203 | nBonds_ -= mol->getNBonds(); | 
| 204 | nBends_ -= mol->getNBends(); | 
| 205 | nTorsions_ -= mol->getNTorsions(); | 
| 206 | nInversions_ -= mol->getNInversions(); | 
| 207 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 208 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 209 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 210 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 211 |  | 
| 212 | removeInteractionPairs(mol); | 
| 213 | molecules_.erase(mol->getGlobalIndex()); | 
| 214 |  | 
| 215 | delete mol; | 
| 216 |  | 
| 217 | return true; | 
| 218 | } else { | 
| 219 | return false; | 
| 220 | } | 
| 221 | } | 
| 222 |  | 
| 223 |  | 
| 224 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 225 | i = molecules_.begin(); | 
| 226 | return i == molecules_.end() ? NULL : i->second; | 
| 227 | } | 
| 228 |  | 
| 229 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 230 | ++i; | 
| 231 | return i == molecules_.end() ? NULL : i->second; | 
| 232 | } | 
| 233 |  | 
| 234 |  | 
| 235 | void SimInfo::calcNdf() { | 
| 236 | int ndf_local; | 
| 237 | MoleculeIterator i; | 
| 238 | vector<StuntDouble*>::iterator j; | 
| 239 | Molecule* mol; | 
| 240 | StuntDouble* integrableObject; | 
| 241 |  | 
| 242 | ndf_local = 0; | 
| 243 |  | 
| 244 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 245 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 246 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 247 |  | 
| 248 | ndf_local += 3; | 
| 249 |  | 
| 250 | if (integrableObject->isDirectional()) { | 
| 251 | if (integrableObject->isLinear()) { | 
| 252 | ndf_local += 2; | 
| 253 | } else { | 
| 254 | ndf_local += 3; | 
| 255 | } | 
| 256 | } | 
| 257 |  | 
| 258 | } | 
| 259 | } | 
| 260 |  | 
| 261 | // n_constraints is local, so subtract them on each processor | 
| 262 | ndf_local -= nConstraints_; | 
| 263 |  | 
| 264 | #ifdef IS_MPI | 
| 265 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 266 | #else | 
| 267 | ndf_ = ndf_local; | 
| 268 | #endif | 
| 269 |  | 
| 270 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 271 | // entire system: | 
| 272 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 273 |  | 
| 274 | } | 
| 275 |  | 
| 276 | int SimInfo::getFdf() { | 
| 277 | #ifdef IS_MPI | 
| 278 | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 279 | #else | 
| 280 | fdf_ = fdf_local; | 
| 281 | #endif | 
| 282 | return fdf_; | 
| 283 | } | 
| 284 |  | 
| 285 | void SimInfo::calcNdfRaw() { | 
| 286 | int ndfRaw_local; | 
| 287 |  | 
| 288 | MoleculeIterator i; | 
| 289 | vector<StuntDouble*>::iterator j; | 
| 290 | Molecule* mol; | 
| 291 | StuntDouble* integrableObject; | 
| 292 |  | 
| 293 | // Raw degrees of freedom that we have to set | 
| 294 | ndfRaw_local = 0; | 
| 295 |  | 
| 296 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 297 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 298 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 299 |  | 
| 300 | ndfRaw_local += 3; | 
| 301 |  | 
| 302 | if (integrableObject->isDirectional()) { | 
| 303 | if (integrableObject->isLinear()) { | 
| 304 | ndfRaw_local += 2; | 
| 305 | } else { | 
| 306 | ndfRaw_local += 3; | 
| 307 | } | 
| 308 | } | 
| 309 |  | 
| 310 | } | 
| 311 | } | 
| 312 |  | 
| 313 | #ifdef IS_MPI | 
| 314 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 315 | #else | 
| 316 | ndfRaw_ = ndfRaw_local; | 
| 317 | #endif | 
| 318 | } | 
| 319 |  | 
| 320 | void SimInfo::calcNdfTrans() { | 
| 321 | int ndfTrans_local; | 
| 322 |  | 
| 323 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 324 |  | 
| 325 |  | 
| 326 | #ifdef IS_MPI | 
| 327 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 328 | #else | 
| 329 | ndfTrans_ = ndfTrans_local; | 
| 330 | #endif | 
| 331 |  | 
| 332 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 333 |  | 
| 334 | } | 
| 335 |  | 
| 336 | void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 337 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 338 | vector<Bond*>::iterator bondIter; | 
| 339 | vector<Bend*>::iterator bendIter; | 
| 340 | vector<Torsion*>::iterator torsionIter; | 
| 341 | vector<Inversion*>::iterator inversionIter; | 
| 342 | Bond* bond; | 
| 343 | Bend* bend; | 
| 344 | Torsion* torsion; | 
| 345 | Inversion* inversion; | 
| 346 | int a; | 
| 347 | int b; | 
| 348 | int c; | 
| 349 | int d; | 
| 350 |  | 
| 351 | // atomGroups can be used to add special interaction maps between | 
| 352 | // groups of atoms that are in two separate rigid bodies. | 
| 353 | // However, most site-site interactions between two rigid bodies | 
| 354 | // are probably not special, just the ones between the physically | 
| 355 | // bonded atoms.  Interactions *within* a single rigid body should | 
| 356 | // always be excluded.  These are done at the bottom of this | 
| 357 | // function. | 
| 358 |  | 
| 359 | map<int, set<int> > atomGroups; | 
| 360 | Molecule::RigidBodyIterator rbIter; | 
| 361 | RigidBody* rb; | 
| 362 | Molecule::IntegrableObjectIterator ii; | 
| 363 | StuntDouble* integrableObject; | 
| 364 |  | 
| 365 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 366 | integrableObject != NULL; | 
| 367 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 368 |  | 
| 369 | if (integrableObject->isRigidBody()) { | 
| 370 | rb = static_cast<RigidBody*>(integrableObject); | 
| 371 | vector<Atom*> atoms = rb->getAtoms(); | 
| 372 | set<int> rigidAtoms; | 
| 373 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 374 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 375 | } | 
| 376 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 377 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 378 | } | 
| 379 | } else { | 
| 380 | set<int> oneAtomSet; | 
| 381 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 382 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 383 | } | 
| 384 | } | 
| 385 |  | 
| 386 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 387 | bond = mol->nextBond(bondIter)) { | 
| 388 |  | 
| 389 | a = bond->getAtomA()->getGlobalIndex(); | 
| 390 | b = bond->getAtomB()->getGlobalIndex(); | 
| 391 |  | 
| 392 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 393 | oneTwoInteractions_.addPair(a, b); | 
| 394 | } else { | 
| 395 | excludedInteractions_.addPair(a, b); | 
| 396 | } | 
| 397 | } | 
| 398 |  | 
| 399 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 400 | bend = mol->nextBend(bendIter)) { | 
| 401 |  | 
| 402 | a = bend->getAtomA()->getGlobalIndex(); | 
| 403 | b = bend->getAtomB()->getGlobalIndex(); | 
| 404 | c = bend->getAtomC()->getGlobalIndex(); | 
| 405 |  | 
| 406 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 407 | oneTwoInteractions_.addPair(a, b); | 
| 408 | oneTwoInteractions_.addPair(b, c); | 
| 409 | } else { | 
| 410 | excludedInteractions_.addPair(a, b); | 
| 411 | excludedInteractions_.addPair(b, c); | 
| 412 | } | 
| 413 |  | 
| 414 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 415 | oneThreeInteractions_.addPair(a, c); | 
| 416 | } else { | 
| 417 | excludedInteractions_.addPair(a, c); | 
| 418 | } | 
| 419 | } | 
| 420 |  | 
| 421 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 422 | torsion = mol->nextTorsion(torsionIter)) { | 
| 423 |  | 
| 424 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 425 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 426 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 427 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 428 |  | 
| 429 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 430 | oneTwoInteractions_.addPair(a, b); | 
| 431 | oneTwoInteractions_.addPair(b, c); | 
| 432 | oneTwoInteractions_.addPair(c, d); | 
| 433 | } else { | 
| 434 | excludedInteractions_.addPair(a, b); | 
| 435 | excludedInteractions_.addPair(b, c); | 
| 436 | excludedInteractions_.addPair(c, d); | 
| 437 | } | 
| 438 |  | 
| 439 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 440 | oneThreeInteractions_.addPair(a, c); | 
| 441 | oneThreeInteractions_.addPair(b, d); | 
| 442 | } else { | 
| 443 | excludedInteractions_.addPair(a, c); | 
| 444 | excludedInteractions_.addPair(b, d); | 
| 445 | } | 
| 446 |  | 
| 447 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 448 | oneFourInteractions_.addPair(a, d); | 
| 449 | } else { | 
| 450 | excludedInteractions_.addPair(a, d); | 
| 451 | } | 
| 452 | } | 
| 453 |  | 
| 454 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 455 | inversion = mol->nextInversion(inversionIter)) { | 
| 456 |  | 
| 457 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 458 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 459 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 460 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 461 |  | 
| 462 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 463 | oneTwoInteractions_.addPair(a, b); | 
| 464 | oneTwoInteractions_.addPair(a, c); | 
| 465 | oneTwoInteractions_.addPair(a, d); | 
| 466 | } else { | 
| 467 | excludedInteractions_.addPair(a, b); | 
| 468 | excludedInteractions_.addPair(a, c); | 
| 469 | excludedInteractions_.addPair(a, d); | 
| 470 | } | 
| 471 |  | 
| 472 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 473 | oneThreeInteractions_.addPair(b, c); | 
| 474 | oneThreeInteractions_.addPair(b, d); | 
| 475 | oneThreeInteractions_.addPair(c, d); | 
| 476 | } else { | 
| 477 | excludedInteractions_.addPair(b, c); | 
| 478 | excludedInteractions_.addPair(b, d); | 
| 479 | excludedInteractions_.addPair(c, d); | 
| 480 | } | 
| 481 | } | 
| 482 |  | 
| 483 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 484 | rb = mol->nextRigidBody(rbIter)) { | 
| 485 | vector<Atom*> atoms = rb->getAtoms(); | 
| 486 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 487 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 488 | a = atoms[i]->getGlobalIndex(); | 
| 489 | b = atoms[j]->getGlobalIndex(); | 
| 490 | excludedInteractions_.addPair(a, b); | 
| 491 | } | 
| 492 | } | 
| 493 | } | 
| 494 |  | 
| 495 | } | 
| 496 |  | 
| 497 | void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 498 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 499 | vector<Bond*>::iterator bondIter; | 
| 500 | vector<Bend*>::iterator bendIter; | 
| 501 | vector<Torsion*>::iterator torsionIter; | 
| 502 | vector<Inversion*>::iterator inversionIter; | 
| 503 | Bond* bond; | 
| 504 | Bend* bend; | 
| 505 | Torsion* torsion; | 
| 506 | Inversion* inversion; | 
| 507 | int a; | 
| 508 | int b; | 
| 509 | int c; | 
| 510 | int d; | 
| 511 |  | 
| 512 | map<int, set<int> > atomGroups; | 
| 513 | Molecule::RigidBodyIterator rbIter; | 
| 514 | RigidBody* rb; | 
| 515 | Molecule::IntegrableObjectIterator ii; | 
| 516 | StuntDouble* integrableObject; | 
| 517 |  | 
| 518 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 519 | integrableObject != NULL; | 
| 520 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 521 |  | 
| 522 | if (integrableObject->isRigidBody()) { | 
| 523 | rb = static_cast<RigidBody*>(integrableObject); | 
| 524 | vector<Atom*> atoms = rb->getAtoms(); | 
| 525 | set<int> rigidAtoms; | 
| 526 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 527 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 528 | } | 
| 529 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 530 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 531 | } | 
| 532 | } else { | 
| 533 | set<int> oneAtomSet; | 
| 534 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 535 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 536 | } | 
| 537 | } | 
| 538 |  | 
| 539 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 540 | bond = mol->nextBond(bondIter)) { | 
| 541 |  | 
| 542 | a = bond->getAtomA()->getGlobalIndex(); | 
| 543 | b = bond->getAtomB()->getGlobalIndex(); | 
| 544 |  | 
| 545 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 546 | oneTwoInteractions_.removePair(a, b); | 
| 547 | } else { | 
| 548 | excludedInteractions_.removePair(a, b); | 
| 549 | } | 
| 550 | } | 
| 551 |  | 
| 552 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 553 | bend = mol->nextBend(bendIter)) { | 
| 554 |  | 
| 555 | a = bend->getAtomA()->getGlobalIndex(); | 
| 556 | b = bend->getAtomB()->getGlobalIndex(); | 
| 557 | c = bend->getAtomC()->getGlobalIndex(); | 
| 558 |  | 
| 559 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 560 | oneTwoInteractions_.removePair(a, b); | 
| 561 | oneTwoInteractions_.removePair(b, c); | 
| 562 | } else { | 
| 563 | excludedInteractions_.removePair(a, b); | 
| 564 | excludedInteractions_.removePair(b, c); | 
| 565 | } | 
| 566 |  | 
| 567 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 568 | oneThreeInteractions_.removePair(a, c); | 
| 569 | } else { | 
| 570 | excludedInteractions_.removePair(a, c); | 
| 571 | } | 
| 572 | } | 
| 573 |  | 
| 574 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 575 | torsion = mol->nextTorsion(torsionIter)) { | 
| 576 |  | 
| 577 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 578 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 579 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 580 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 581 |  | 
| 582 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 583 | oneTwoInteractions_.removePair(a, b); | 
| 584 | oneTwoInteractions_.removePair(b, c); | 
| 585 | oneTwoInteractions_.removePair(c, d); | 
| 586 | } else { | 
| 587 | excludedInteractions_.removePair(a, b); | 
| 588 | excludedInteractions_.removePair(b, c); | 
| 589 | excludedInteractions_.removePair(c, d); | 
| 590 | } | 
| 591 |  | 
| 592 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 593 | oneThreeInteractions_.removePair(a, c); | 
| 594 | oneThreeInteractions_.removePair(b, d); | 
| 595 | } else { | 
| 596 | excludedInteractions_.removePair(a, c); | 
| 597 | excludedInteractions_.removePair(b, d); | 
| 598 | } | 
| 599 |  | 
| 600 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 601 | oneFourInteractions_.removePair(a, d); | 
| 602 | } else { | 
| 603 | excludedInteractions_.removePair(a, d); | 
| 604 | } | 
| 605 | } | 
| 606 |  | 
| 607 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 608 | inversion = mol->nextInversion(inversionIter)) { | 
| 609 |  | 
| 610 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 611 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 612 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 613 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 614 |  | 
| 615 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 616 | oneTwoInteractions_.removePair(a, b); | 
| 617 | oneTwoInteractions_.removePair(a, c); | 
| 618 | oneTwoInteractions_.removePair(a, d); | 
| 619 | } else { | 
| 620 | excludedInteractions_.removePair(a, b); | 
| 621 | excludedInteractions_.removePair(a, c); | 
| 622 | excludedInteractions_.removePair(a, d); | 
| 623 | } | 
| 624 |  | 
| 625 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 626 | oneThreeInteractions_.removePair(b, c); | 
| 627 | oneThreeInteractions_.removePair(b, d); | 
| 628 | oneThreeInteractions_.removePair(c, d); | 
| 629 | } else { | 
| 630 | excludedInteractions_.removePair(b, c); | 
| 631 | excludedInteractions_.removePair(b, d); | 
| 632 | excludedInteractions_.removePair(c, d); | 
| 633 | } | 
| 634 | } | 
| 635 |  | 
| 636 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 637 | rb = mol->nextRigidBody(rbIter)) { | 
| 638 | vector<Atom*> atoms = rb->getAtoms(); | 
| 639 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 640 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 641 | a = atoms[i]->getGlobalIndex(); | 
| 642 | b = atoms[j]->getGlobalIndex(); | 
| 643 | excludedInteractions_.removePair(a, b); | 
| 644 | } | 
| 645 | } | 
| 646 | } | 
| 647 |  | 
| 648 | } | 
| 649 |  | 
| 650 |  | 
| 651 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 652 | int curStampId; | 
| 653 |  | 
| 654 | //index from 0 | 
| 655 | curStampId = moleculeStamps_.size(); | 
| 656 |  | 
| 657 | moleculeStamps_.push_back(molStamp); | 
| 658 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 659 | } | 
| 660 |  | 
| 661 |  | 
| 662 | /** | 
| 663 | * update | 
| 664 | * | 
| 665 | *  Performs the global checks and variable settings after the | 
| 666 | *  objects have been created. | 
| 667 | * | 
| 668 | */ | 
| 669 | void SimInfo::update() { | 
| 670 | setupSimVariables(); | 
| 671 | calcNdf(); | 
| 672 | calcNdfRaw(); | 
| 673 | calcNdfTrans(); | 
| 674 | } | 
| 675 |  | 
| 676 | /** | 
| 677 | * getSimulatedAtomTypes | 
| 678 | * | 
| 679 | * Returns an STL set of AtomType* that are actually present in this | 
| 680 | * simulation.  Must query all processors to assemble this information. | 
| 681 | * | 
| 682 | */ | 
| 683 | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 684 | SimInfo::MoleculeIterator mi; | 
| 685 | Molecule* mol; | 
| 686 | Molecule::AtomIterator ai; | 
| 687 | Atom* atom; | 
| 688 | set<AtomType*> atomTypes; | 
| 689 |  | 
| 690 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 691 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 692 | atomTypes.insert(atom->getAtomType()); | 
| 693 | } | 
| 694 | } | 
| 695 |  | 
| 696 | #ifdef IS_MPI | 
| 697 |  | 
| 698 | // loop over the found atom types on this processor, and add their | 
| 699 | // numerical idents to a vector: | 
| 700 |  | 
| 701 | vector<int> foundTypes; | 
| 702 | set<AtomType*>::iterator i; | 
| 703 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | 
| 704 | foundTypes.push_back( (*i)->getIdent() ); | 
| 705 |  | 
| 706 | // count_local holds the number of found types on this processor | 
| 707 | int count_local = foundTypes.size(); | 
| 708 |  | 
| 709 | // count holds the total number of found types on all processors | 
| 710 | // (some will be redundant with the ones found locally): | 
| 711 | int count; | 
| 712 | MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); | 
| 713 |  | 
| 714 | // create a vector to hold the globally found types, and resize it: | 
| 715 | vector<int> ftGlobal; | 
| 716 | ftGlobal.resize(count); | 
| 717 | vector<int> counts; | 
| 718 |  | 
| 719 | int nproc = MPI::COMM_WORLD.Get_size(); | 
| 720 | counts.resize(nproc); | 
| 721 | vector<int> disps; | 
| 722 | disps.resize(nproc); | 
| 723 |  | 
| 724 | // now spray out the foundTypes to all the other processors: | 
| 725 |  | 
| 726 | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | 
| 727 | &ftGlobal[0], &counts[0], &disps[0], MPI::INT); | 
| 728 |  | 
| 729 | // foundIdents is a stl set, so inserting an already found ident | 
| 730 | // will have no effect. | 
| 731 | set<int> foundIdents; | 
| 732 | vector<int>::iterator j; | 
| 733 | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | 
| 734 | foundIdents.insert((*j)); | 
| 735 |  | 
| 736 | // now iterate over the foundIdents and get the actual atom types | 
| 737 | // that correspond to these: | 
| 738 | set<int>::iterator it; | 
| 739 | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) | 
| 740 | atomTypes.insert( forceField_->getAtomType((*it)) ); | 
| 741 |  | 
| 742 | #endif | 
| 743 |  | 
| 744 | return atomTypes; | 
| 745 | } | 
| 746 |  | 
| 747 | void SimInfo::setupSimVariables() { | 
| 748 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 749 | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true | 
| 750 | calcBoxDipole_ = false; | 
| 751 | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 752 | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 753 | calcBoxDipole_ = true; | 
| 754 | } | 
| 755 |  | 
| 756 | set<AtomType*>::iterator i; | 
| 757 | set<AtomType*> atomTypes; | 
| 758 | atomTypes = getSimulatedAtomTypes(); | 
| 759 | int usesElectrostatic = 0; | 
| 760 | int usesMetallic = 0; | 
| 761 | int usesDirectional = 0; | 
| 762 | //loop over all of the atom types | 
| 763 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 764 | usesElectrostatic |= (*i)->isElectrostatic(); | 
| 765 | usesMetallic |= (*i)->isMetal(); | 
| 766 | usesDirectional |= (*i)->isDirectional(); | 
| 767 | } | 
| 768 |  | 
| 769 | #ifdef IS_MPI | 
| 770 | int temp; | 
| 771 | temp = usesDirectional; | 
| 772 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 773 |  | 
| 774 | temp = usesMetallic; | 
| 775 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 776 |  | 
| 777 | temp = usesElectrostatic; | 
| 778 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 779 | #endif | 
| 780 | fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; | 
| 781 | fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; | 
| 782 | fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; | 
| 783 | fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; | 
| 784 | fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; | 
| 785 | fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; | 
| 786 | } | 
| 787 |  | 
| 788 | void SimInfo::setupFortran() { | 
| 789 | int isError; | 
| 790 | int nExclude, nOneTwo, nOneThree, nOneFour; | 
| 791 | vector<int> fortranGlobalGroupMembership; | 
| 792 |  | 
| 793 | isError = 0; | 
| 794 |  | 
| 795 | //globalGroupMembership_ is filled by SimCreator | 
| 796 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 797 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 798 | } | 
| 799 |  | 
| 800 | //calculate mass ratio of cutoff group | 
| 801 | vector<RealType> mfact; | 
| 802 | SimInfo::MoleculeIterator mi; | 
| 803 | Molecule* mol; | 
| 804 | Molecule::CutoffGroupIterator ci; | 
| 805 | CutoffGroup* cg; | 
| 806 | Molecule::AtomIterator ai; | 
| 807 | Atom* atom; | 
| 808 | RealType totalMass; | 
| 809 |  | 
| 810 | //to avoid memory reallocation, reserve enough space for mfact | 
| 811 | mfact.reserve(getNCutoffGroups()); | 
| 812 |  | 
| 813 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 814 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 815 |  | 
| 816 | totalMass = cg->getMass(); | 
| 817 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 818 | // Check for massless groups - set mfact to 1 if true | 
| 819 | if (totalMass != 0) | 
| 820 | mfact.push_back(atom->getMass()/totalMass); | 
| 821 | else | 
| 822 | mfact.push_back( 1.0 ); | 
| 823 | } | 
| 824 | } | 
| 825 | } | 
| 826 |  | 
| 827 | // Build the identArray_ | 
| 828 |  | 
| 829 | identArray_.clear(); | 
| 830 | identArray_.reserve(getNAtoms()); | 
| 831 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 832 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 833 | identArray_.push_back(atom->getIdent()); | 
| 834 | } | 
| 835 | } | 
| 836 |  | 
| 837 | //fill molMembershipArray | 
| 838 | //molMembershipArray is filled by SimCreator | 
| 839 | vector<int> molMembershipArray(nGlobalAtoms_); | 
| 840 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 841 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 842 | } | 
| 843 |  | 
| 844 | //setup fortran simulation | 
| 845 |  | 
| 846 | nExclude = excludedInteractions_.getSize(); | 
| 847 | nOneTwo = oneTwoInteractions_.getSize(); | 
| 848 | nOneThree = oneThreeInteractions_.getSize(); | 
| 849 | nOneFour = oneFourInteractions_.getSize(); | 
| 850 |  | 
| 851 | int* excludeList = excludedInteractions_.getPairList(); | 
| 852 | int* oneTwoList = oneTwoInteractions_.getPairList(); | 
| 853 | int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 854 | int* oneFourList = oneFourInteractions_.getPairList(); | 
| 855 |  | 
| 856 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], | 
| 857 | &nExclude, excludeList, | 
| 858 | &nOneTwo, oneTwoList, | 
| 859 | &nOneThree, oneThreeList, | 
| 860 | &nOneFour, oneFourList, | 
| 861 | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, | 
| 862 | &fortranGlobalGroupMembership[0], &isError); | 
| 863 |  | 
| 864 | if( isError ){ | 
| 865 |  | 
| 866 | sprintf( painCave.errMsg, | 
| 867 | "There was an error setting the simulation information in fortran.\n" ); | 
| 868 | painCave.isFatal = 1; | 
| 869 | painCave.severity = OPENMD_ERROR; | 
| 870 | simError(); | 
| 871 | } | 
| 872 |  | 
| 873 |  | 
| 874 | sprintf( checkPointMsg, | 
| 875 | "succesfully sent the simulation information to fortran.\n"); | 
| 876 |  | 
| 877 | errorCheckPoint(); | 
| 878 |  | 
| 879 | // Setup number of neighbors in neighbor list if present | 
| 880 | if (simParams_->haveNeighborListNeighbors()) { | 
| 881 | int nlistNeighbors = simParams_->getNeighborListNeighbors(); | 
| 882 | setNeighbors(&nlistNeighbors); | 
| 883 | } | 
| 884 |  | 
| 885 | #ifdef IS_MPI | 
| 886 | //SimInfo is responsible for creating localToGlobalAtomIndex and | 
| 887 | //localToGlobalGroupIndex | 
| 888 | vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 889 | vector<int> localToGlobalCutoffGroupIndex; | 
| 890 | mpiSimData parallelData; | 
| 891 |  | 
| 892 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 893 |  | 
| 894 | //local index(index in DataStorge) of atom is important | 
| 895 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 896 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 897 | } | 
| 898 |  | 
| 899 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 900 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 901 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 902 | } | 
| 903 |  | 
| 904 | } | 
| 905 |  | 
| 906 | //fill up mpiSimData struct | 
| 907 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 908 | parallelData.nMolLocal = getNMolecules(); | 
| 909 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 910 | parallelData.nAtomsLocal = getNAtoms(); | 
| 911 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 912 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 913 | parallelData.myNode = worldRank; | 
| 914 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 915 |  | 
| 916 | //pass mpiSimData struct and index arrays to fortran | 
| 917 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 918 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 919 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 920 |  | 
| 921 | if (isError) { | 
| 922 | sprintf(painCave.errMsg, | 
| 923 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 924 | painCave.isFatal = 1; | 
| 925 | simError(); | 
| 926 | } | 
| 927 |  | 
| 928 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 929 | errorCheckPoint(); | 
| 930 | #endif | 
| 931 |  | 
| 932 | initFortranFF(&isError); | 
| 933 | if (isError) { | 
| 934 | sprintf(painCave.errMsg, | 
| 935 | "initFortranFF errror: fortran didn't like something we gave it.\n"); | 
| 936 | painCave.isFatal = 1; | 
| 937 | simError(); | 
| 938 | } | 
| 939 | fortranInitialized_ = true; | 
| 940 | } | 
| 941 |  | 
| 942 | void SimInfo::addProperty(GenericData* genData) { | 
| 943 | properties_.addProperty(genData); | 
| 944 | } | 
| 945 |  | 
| 946 | void SimInfo::removeProperty(const string& propName) { | 
| 947 | properties_.removeProperty(propName); | 
| 948 | } | 
| 949 |  | 
| 950 | void SimInfo::clearProperties() { | 
| 951 | properties_.clearProperties(); | 
| 952 | } | 
| 953 |  | 
| 954 | vector<string> SimInfo::getPropertyNames() { | 
| 955 | return properties_.getPropertyNames(); | 
| 956 | } | 
| 957 |  | 
| 958 | vector<GenericData*> SimInfo::getProperties() { | 
| 959 | return properties_.getProperties(); | 
| 960 | } | 
| 961 |  | 
| 962 | GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 963 | return properties_.getPropertyByName(propName); | 
| 964 | } | 
| 965 |  | 
| 966 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 967 | if (sman_ == sman) { | 
| 968 | return; | 
| 969 | } | 
| 970 | delete sman_; | 
| 971 | sman_ = sman; | 
| 972 |  | 
| 973 | Molecule* mol; | 
| 974 | RigidBody* rb; | 
| 975 | Atom* atom; | 
| 976 | CutoffGroup* cg; | 
| 977 | SimInfo::MoleculeIterator mi; | 
| 978 | Molecule::RigidBodyIterator rbIter; | 
| 979 | Molecule::AtomIterator atomIter; | 
| 980 | Molecule::CutoffGroupIterator cgIter; | 
| 981 |  | 
| 982 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 983 |  | 
| 984 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 985 | atom->setSnapshotManager(sman_); | 
| 986 | } | 
| 987 |  | 
| 988 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 989 | rb->setSnapshotManager(sman_); | 
| 990 | } | 
| 991 |  | 
| 992 | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { | 
| 993 | cg->setSnapshotManager(sman_); | 
| 994 | } | 
| 995 | } | 
| 996 |  | 
| 997 | } | 
| 998 |  | 
| 999 | Vector3d SimInfo::getComVel(){ | 
| 1000 | SimInfo::MoleculeIterator i; | 
| 1001 | Molecule* mol; | 
| 1002 |  | 
| 1003 | Vector3d comVel(0.0); | 
| 1004 | RealType totalMass = 0.0; | 
| 1005 |  | 
| 1006 |  | 
| 1007 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1008 | RealType mass = mol->getMass(); | 
| 1009 | totalMass += mass; | 
| 1010 | comVel += mass * mol->getComVel(); | 
| 1011 | } | 
| 1012 |  | 
| 1013 | #ifdef IS_MPI | 
| 1014 | RealType tmpMass = totalMass; | 
| 1015 | Vector3d tmpComVel(comVel); | 
| 1016 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1017 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1018 | #endif | 
| 1019 |  | 
| 1020 | comVel /= totalMass; | 
| 1021 |  | 
| 1022 | return comVel; | 
| 1023 | } | 
| 1024 |  | 
| 1025 | Vector3d SimInfo::getCom(){ | 
| 1026 | SimInfo::MoleculeIterator i; | 
| 1027 | Molecule* mol; | 
| 1028 |  | 
| 1029 | Vector3d com(0.0); | 
| 1030 | RealType totalMass = 0.0; | 
| 1031 |  | 
| 1032 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1033 | RealType mass = mol->getMass(); | 
| 1034 | totalMass += mass; | 
| 1035 | com += mass * mol->getCom(); | 
| 1036 | } | 
| 1037 |  | 
| 1038 | #ifdef IS_MPI | 
| 1039 | RealType tmpMass = totalMass; | 
| 1040 | Vector3d tmpCom(com); | 
| 1041 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1042 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1043 | #endif | 
| 1044 |  | 
| 1045 | com /= totalMass; | 
| 1046 |  | 
| 1047 | return com; | 
| 1048 |  | 
| 1049 | } | 
| 1050 |  | 
| 1051 | ostream& operator <<(ostream& o, SimInfo& info) { | 
| 1052 |  | 
| 1053 | return o; | 
| 1054 | } | 
| 1055 |  | 
| 1056 |  | 
| 1057 | /* | 
| 1058 | Returns center of mass and center of mass velocity in one function call. | 
| 1059 | */ | 
| 1060 |  | 
| 1061 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1062 | SimInfo::MoleculeIterator i; | 
| 1063 | Molecule* mol; | 
| 1064 |  | 
| 1065 |  | 
| 1066 | RealType totalMass = 0.0; | 
| 1067 |  | 
| 1068 |  | 
| 1069 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1070 | RealType mass = mol->getMass(); | 
| 1071 | totalMass += mass; | 
| 1072 | com += mass * mol->getCom(); | 
| 1073 | comVel += mass * mol->getComVel(); | 
| 1074 | } | 
| 1075 |  | 
| 1076 | #ifdef IS_MPI | 
| 1077 | RealType tmpMass = totalMass; | 
| 1078 | Vector3d tmpCom(com); | 
| 1079 | Vector3d tmpComVel(comVel); | 
| 1080 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1081 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1082 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1083 | #endif | 
| 1084 |  | 
| 1085 | com /= totalMass; | 
| 1086 | comVel /= totalMass; | 
| 1087 | } | 
| 1088 |  | 
| 1089 | /* | 
| 1090 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1091 |  | 
| 1092 |  | 
| 1093 | [  Ixx -Ixy  -Ixz ] | 
| 1094 | J =| -Iyx  Iyy  -Iyz | | 
| 1095 | [ -Izx -Iyz   Izz ] | 
| 1096 | */ | 
| 1097 |  | 
| 1098 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1099 |  | 
| 1100 |  | 
| 1101 | RealType xx = 0.0; | 
| 1102 | RealType yy = 0.0; | 
| 1103 | RealType zz = 0.0; | 
| 1104 | RealType xy = 0.0; | 
| 1105 | RealType xz = 0.0; | 
| 1106 | RealType yz = 0.0; | 
| 1107 | Vector3d com(0.0); | 
| 1108 | Vector3d comVel(0.0); | 
| 1109 |  | 
| 1110 | getComAll(com, comVel); | 
| 1111 |  | 
| 1112 | SimInfo::MoleculeIterator i; | 
| 1113 | Molecule* mol; | 
| 1114 |  | 
| 1115 | Vector3d thisq(0.0); | 
| 1116 | Vector3d thisv(0.0); | 
| 1117 |  | 
| 1118 | RealType thisMass = 0.0; | 
| 1119 |  | 
| 1120 |  | 
| 1121 |  | 
| 1122 |  | 
| 1123 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1124 |  | 
| 1125 | thisq = mol->getCom()-com; | 
| 1126 | thisv = mol->getComVel()-comVel; | 
| 1127 | thisMass = mol->getMass(); | 
| 1128 | // Compute moment of intertia coefficients. | 
| 1129 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1130 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1131 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1132 |  | 
| 1133 | // compute products of intertia | 
| 1134 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1135 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1136 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1137 |  | 
| 1138 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1139 |  | 
| 1140 | } | 
| 1141 |  | 
| 1142 |  | 
| 1143 | inertiaTensor(0,0) = yy + zz; | 
| 1144 | inertiaTensor(0,1) = -xy; | 
| 1145 | inertiaTensor(0,2) = -xz; | 
| 1146 | inertiaTensor(1,0) = -xy; | 
| 1147 | inertiaTensor(1,1) = xx + zz; | 
| 1148 | inertiaTensor(1,2) = -yz; | 
| 1149 | inertiaTensor(2,0) = -xz; | 
| 1150 | inertiaTensor(2,1) = -yz; | 
| 1151 | inertiaTensor(2,2) = xx + yy; | 
| 1152 |  | 
| 1153 | #ifdef IS_MPI | 
| 1154 | Mat3x3d tmpI(inertiaTensor); | 
| 1155 | Vector3d tmpAngMom; | 
| 1156 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1157 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1158 | #endif | 
| 1159 |  | 
| 1160 | return; | 
| 1161 | } | 
| 1162 |  | 
| 1163 | //Returns the angular momentum of the system | 
| 1164 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1165 |  | 
| 1166 | Vector3d com(0.0); | 
| 1167 | Vector3d comVel(0.0); | 
| 1168 | Vector3d angularMomentum(0.0); | 
| 1169 |  | 
| 1170 | getComAll(com,comVel); | 
| 1171 |  | 
| 1172 | SimInfo::MoleculeIterator i; | 
| 1173 | Molecule* mol; | 
| 1174 |  | 
| 1175 | Vector3d thisr(0.0); | 
| 1176 | Vector3d thisp(0.0); | 
| 1177 |  | 
| 1178 | RealType thisMass; | 
| 1179 |  | 
| 1180 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1181 | thisMass = mol->getMass(); | 
| 1182 | thisr = mol->getCom()-com; | 
| 1183 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1184 |  | 
| 1185 | angularMomentum += cross( thisr, thisp ); | 
| 1186 |  | 
| 1187 | } | 
| 1188 |  | 
| 1189 | #ifdef IS_MPI | 
| 1190 | Vector3d tmpAngMom; | 
| 1191 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1192 | #endif | 
| 1193 |  | 
| 1194 | return angularMomentum; | 
| 1195 | } | 
| 1196 |  | 
| 1197 | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1198 | return IOIndexToIntegrableObject.at(index); | 
| 1199 | } | 
| 1200 |  | 
| 1201 | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1202 | IOIndexToIntegrableObject= v; | 
| 1203 | } | 
| 1204 |  | 
| 1205 | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes | 
| 1206 | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1207 | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to | 
| 1208 | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1209 | */ | 
| 1210 | void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1211 | Mat3x3d intTensor; | 
| 1212 | RealType det; | 
| 1213 | Vector3d dummyAngMom; | 
| 1214 | RealType sysconstants; | 
| 1215 | RealType geomCnst; | 
| 1216 |  | 
| 1217 | geomCnst = 3.0/2.0; | 
| 1218 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1219 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1220 |  | 
| 1221 | det = intTensor.determinant(); | 
| 1222 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1223 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1224 | return; | 
| 1225 | } | 
| 1226 |  | 
| 1227 | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1228 | Mat3x3d intTensor; | 
| 1229 | Vector3d dummyAngMom; | 
| 1230 | RealType sysconstants; | 
| 1231 | RealType geomCnst; | 
| 1232 |  | 
| 1233 | geomCnst = 3.0/2.0; | 
| 1234 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1235 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1236 |  | 
| 1237 | detI = intTensor.determinant(); | 
| 1238 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1239 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1240 | return; | 
| 1241 | } | 
| 1242 | /* | 
| 1243 | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { | 
| 1244 | assert( v.size() == nAtoms_ + nRigidBodies_); | 
| 1245 | sdByGlobalIndex_ = v; | 
| 1246 | } | 
| 1247 |  | 
| 1248 | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { | 
| 1249 | //assert(index < nAtoms_ + nRigidBodies_); | 
| 1250 | return sdByGlobalIndex_.at(index); | 
| 1251 | } | 
| 1252 | */ | 
| 1253 | int SimInfo::getNGlobalConstraints() { | 
| 1254 | int nGlobalConstraints; | 
| 1255 | #ifdef IS_MPI | 
| 1256 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 1257 | MPI_COMM_WORLD); | 
| 1258 | #else | 
| 1259 | nGlobalConstraints =  nConstraints_; | 
| 1260 | #endif | 
| 1261 | return nGlobalConstraints; | 
| 1262 | } | 
| 1263 |  | 
| 1264 | }//end namespace OpenMD | 
| 1265 |  |