| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | /** | 
| 44 | * @file SimInfo.cpp | 
| 45 | * @author    tlin | 
| 46 | * @date  11/02/2004 | 
| 47 | * @version 1.0 | 
| 48 | */ | 
| 49 |  | 
| 50 | #include <algorithm> | 
| 51 | #include <set> | 
| 52 | #include <map> | 
| 53 |  | 
| 54 | #include "brains/SimInfo.hpp" | 
| 55 | #include "math/Vector3.hpp" | 
| 56 | #include "primitives/Molecule.hpp" | 
| 57 | #include "primitives/StuntDouble.hpp" | 
| 58 | #include "utils/MemoryUtils.hpp" | 
| 59 | #include "utils/simError.h" | 
| 60 | #include "selection/SelectionManager.hpp" | 
| 61 | #include "io/ForceFieldOptions.hpp" | 
| 62 | #include "UseTheForce/ForceField.hpp" | 
| 63 | #include "nonbonded/SwitchingFunction.hpp" | 
| 64 | #ifdef IS_MPI | 
| 65 | #include <mpi.h> | 
| 66 | #endif | 
| 67 |  | 
| 68 | using namespace std; | 
| 69 | namespace OpenMD { | 
| 70 |  | 
| 71 | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 72 | forceField_(ff), simParams_(simParams), | 
| 73 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 74 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 75 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 76 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0), | 
| 77 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | 
| 78 | nConstraints_(0), sman_(NULL), topologyDone_(false), | 
| 79 | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 80 |  | 
| 81 | MoleculeStamp* molStamp; | 
| 82 | int nMolWithSameStamp; | 
| 83 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 84 | int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 85 | CutoffGroupStamp* cgStamp; | 
| 86 | RigidBodyStamp* rbStamp; | 
| 87 | int nRigidAtoms = 0; | 
| 88 |  | 
| 89 | vector<Component*> components = simParams->getComponents(); | 
| 90 |  | 
| 91 | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { | 
| 92 | molStamp = (*i)->getMoleculeStamp(); | 
| 93 | nMolWithSameStamp = (*i)->getNMol(); | 
| 94 |  | 
| 95 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 96 |  | 
| 97 | //calculate atoms in molecules | 
| 98 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 99 |  | 
| 100 | //calculate atoms in cutoff groups | 
| 101 | int nAtomsInGroups = 0; | 
| 102 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 103 |  | 
| 104 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 105 | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 106 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 107 | } | 
| 108 |  | 
| 109 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 110 |  | 
| 111 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 112 |  | 
| 113 | //calculate atoms in rigid bodies | 
| 114 | int nAtomsInRigidBodies = 0; | 
| 115 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 116 |  | 
| 117 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 118 | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 119 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 120 | } | 
| 121 |  | 
| 122 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 123 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 124 |  | 
| 125 | } | 
| 126 |  | 
| 127 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 128 | //group therefore the total number of cutoff groups in the system is | 
| 129 | //equal to the total number of atoms minus number of atoms belong to | 
| 130 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 131 | //groups defined in meta-data file | 
| 132 |  | 
| 133 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 134 |  | 
| 135 | //every free atom (atom does not belong to rigid bodies) is an | 
| 136 | //integrable object therefore the total number of integrable objects | 
| 137 | //in the system is equal to the total number of atoms minus number of | 
| 138 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 139 | //of rigid bodies defined in meta-data file | 
| 140 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 141 | + nGlobalRigidBodies_; | 
| 142 |  | 
| 143 | nGlobalMols_ = molStampIds_.size(); | 
| 144 | molToProcMap_.resize(nGlobalMols_); | 
| 145 | } | 
| 146 |  | 
| 147 | SimInfo::~SimInfo() { | 
| 148 | map<int, Molecule*>::iterator i; | 
| 149 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 150 | delete i->second; | 
| 151 | } | 
| 152 | molecules_.clear(); | 
| 153 |  | 
| 154 | delete sman_; | 
| 155 | delete simParams_; | 
| 156 | delete forceField_; | 
| 157 | } | 
| 158 |  | 
| 159 |  | 
| 160 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 161 | MoleculeIterator i; | 
| 162 |  | 
| 163 | i = molecules_.find(mol->getGlobalIndex()); | 
| 164 | if (i == molecules_.end() ) { | 
| 165 |  | 
| 166 | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 167 |  | 
| 168 | nAtoms_ += mol->getNAtoms(); | 
| 169 | nBonds_ += mol->getNBonds(); | 
| 170 | nBends_ += mol->getNBends(); | 
| 171 | nTorsions_ += mol->getNTorsions(); | 
| 172 | nInversions_ += mol->getNInversions(); | 
| 173 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 174 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 175 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 176 | nConstraints_ += mol->getNConstraintPairs(); | 
| 177 |  | 
| 178 | addInteractionPairs(mol); | 
| 179 |  | 
| 180 | return true; | 
| 181 | } else { | 
| 182 | return false; | 
| 183 | } | 
| 184 | } | 
| 185 |  | 
| 186 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 187 | MoleculeIterator i; | 
| 188 | i = molecules_.find(mol->getGlobalIndex()); | 
| 189 |  | 
| 190 | if (i != molecules_.end() ) { | 
| 191 |  | 
| 192 | assert(mol == i->second); | 
| 193 |  | 
| 194 | nAtoms_ -= mol->getNAtoms(); | 
| 195 | nBonds_ -= mol->getNBonds(); | 
| 196 | nBends_ -= mol->getNBends(); | 
| 197 | nTorsions_ -= mol->getNTorsions(); | 
| 198 | nInversions_ -= mol->getNInversions(); | 
| 199 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 200 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 201 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 202 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 203 |  | 
| 204 | removeInteractionPairs(mol); | 
| 205 | molecules_.erase(mol->getGlobalIndex()); | 
| 206 |  | 
| 207 | delete mol; | 
| 208 |  | 
| 209 | return true; | 
| 210 | } else { | 
| 211 | return false; | 
| 212 | } | 
| 213 | } | 
| 214 |  | 
| 215 |  | 
| 216 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 217 | i = molecules_.begin(); | 
| 218 | return i == molecules_.end() ? NULL : i->second; | 
| 219 | } | 
| 220 |  | 
| 221 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 222 | ++i; | 
| 223 | return i == molecules_.end() ? NULL : i->second; | 
| 224 | } | 
| 225 |  | 
| 226 |  | 
| 227 | void SimInfo::calcNdf() { | 
| 228 | int ndf_local; | 
| 229 | MoleculeIterator i; | 
| 230 | vector<StuntDouble*>::iterator j; | 
| 231 | Molecule* mol; | 
| 232 | StuntDouble* integrableObject; | 
| 233 |  | 
| 234 | ndf_local = 0; | 
| 235 |  | 
| 236 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 237 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 238 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 239 |  | 
| 240 | ndf_local += 3; | 
| 241 |  | 
| 242 | if (integrableObject->isDirectional()) { | 
| 243 | if (integrableObject->isLinear()) { | 
| 244 | ndf_local += 2; | 
| 245 | } else { | 
| 246 | ndf_local += 3; | 
| 247 | } | 
| 248 | } | 
| 249 |  | 
| 250 | } | 
| 251 | } | 
| 252 |  | 
| 253 | // n_constraints is local, so subtract them on each processor | 
| 254 | ndf_local -= nConstraints_; | 
| 255 |  | 
| 256 | #ifdef IS_MPI | 
| 257 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 258 | #else | 
| 259 | ndf_ = ndf_local; | 
| 260 | #endif | 
| 261 |  | 
| 262 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 263 | // entire system: | 
| 264 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 265 |  | 
| 266 | } | 
| 267 |  | 
| 268 | int SimInfo::getFdf() { | 
| 269 | #ifdef IS_MPI | 
| 270 | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 271 | #else | 
| 272 | fdf_ = fdf_local; | 
| 273 | #endif | 
| 274 | return fdf_; | 
| 275 | } | 
| 276 |  | 
| 277 | unsigned int SimInfo::getNLocalCutoffGroups(){ | 
| 278 | int nLocalCutoffAtoms = 0; | 
| 279 | Molecule* mol; | 
| 280 | MoleculeIterator mi; | 
| 281 | CutoffGroup* cg; | 
| 282 | Molecule::CutoffGroupIterator ci; | 
| 283 |  | 
| 284 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 285 |  | 
| 286 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 287 | cg = mol->nextCutoffGroup(ci)) { | 
| 288 | nLocalCutoffAtoms += cg->getNumAtom(); | 
| 289 |  | 
| 290 | } | 
| 291 | } | 
| 292 |  | 
| 293 | return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; | 
| 294 | } | 
| 295 |  | 
| 296 | void SimInfo::calcNdfRaw() { | 
| 297 | int ndfRaw_local; | 
| 298 |  | 
| 299 | MoleculeIterator i; | 
| 300 | vector<StuntDouble*>::iterator j; | 
| 301 | Molecule* mol; | 
| 302 | StuntDouble* integrableObject; | 
| 303 |  | 
| 304 | // Raw degrees of freedom that we have to set | 
| 305 | ndfRaw_local = 0; | 
| 306 |  | 
| 307 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 308 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 309 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 310 |  | 
| 311 | ndfRaw_local += 3; | 
| 312 |  | 
| 313 | if (integrableObject->isDirectional()) { | 
| 314 | if (integrableObject->isLinear()) { | 
| 315 | ndfRaw_local += 2; | 
| 316 | } else { | 
| 317 | ndfRaw_local += 3; | 
| 318 | } | 
| 319 | } | 
| 320 |  | 
| 321 | } | 
| 322 | } | 
| 323 |  | 
| 324 | #ifdef IS_MPI | 
| 325 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 326 | #else | 
| 327 | ndfRaw_ = ndfRaw_local; | 
| 328 | #endif | 
| 329 | } | 
| 330 |  | 
| 331 | void SimInfo::calcNdfTrans() { | 
| 332 | int ndfTrans_local; | 
| 333 |  | 
| 334 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 335 |  | 
| 336 |  | 
| 337 | #ifdef IS_MPI | 
| 338 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 339 | #else | 
| 340 | ndfTrans_ = ndfTrans_local; | 
| 341 | #endif | 
| 342 |  | 
| 343 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 344 |  | 
| 345 | } | 
| 346 |  | 
| 347 | void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 348 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 349 | vector<Bond*>::iterator bondIter; | 
| 350 | vector<Bend*>::iterator bendIter; | 
| 351 | vector<Torsion*>::iterator torsionIter; | 
| 352 | vector<Inversion*>::iterator inversionIter; | 
| 353 | Bond* bond; | 
| 354 | Bend* bend; | 
| 355 | Torsion* torsion; | 
| 356 | Inversion* inversion; | 
| 357 | int a; | 
| 358 | int b; | 
| 359 | int c; | 
| 360 | int d; | 
| 361 |  | 
| 362 | // atomGroups can be used to add special interaction maps between | 
| 363 | // groups of atoms that are in two separate rigid bodies. | 
| 364 | // However, most site-site interactions between two rigid bodies | 
| 365 | // are probably not special, just the ones between the physically | 
| 366 | // bonded atoms.  Interactions *within* a single rigid body should | 
| 367 | // always be excluded.  These are done at the bottom of this | 
| 368 | // function. | 
| 369 |  | 
| 370 | map<int, set<int> > atomGroups; | 
| 371 | Molecule::RigidBodyIterator rbIter; | 
| 372 | RigidBody* rb; | 
| 373 | Molecule::IntegrableObjectIterator ii; | 
| 374 | StuntDouble* integrableObject; | 
| 375 |  | 
| 376 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 377 | integrableObject != NULL; | 
| 378 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 379 |  | 
| 380 | if (integrableObject->isRigidBody()) { | 
| 381 | rb = static_cast<RigidBody*>(integrableObject); | 
| 382 | vector<Atom*> atoms = rb->getAtoms(); | 
| 383 | set<int> rigidAtoms; | 
| 384 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 385 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 386 | } | 
| 387 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 388 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 389 | } | 
| 390 | } else { | 
| 391 | set<int> oneAtomSet; | 
| 392 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 393 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 394 | } | 
| 395 | } | 
| 396 |  | 
| 397 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 398 | bond = mol->nextBond(bondIter)) { | 
| 399 |  | 
| 400 | a = bond->getAtomA()->getGlobalIndex(); | 
| 401 | b = bond->getAtomB()->getGlobalIndex(); | 
| 402 |  | 
| 403 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 404 | oneTwoInteractions_.addPair(a, b); | 
| 405 | } else { | 
| 406 | excludedInteractions_.addPair(a, b); | 
| 407 | } | 
| 408 | } | 
| 409 |  | 
| 410 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 411 | bend = mol->nextBend(bendIter)) { | 
| 412 |  | 
| 413 | a = bend->getAtomA()->getGlobalIndex(); | 
| 414 | b = bend->getAtomB()->getGlobalIndex(); | 
| 415 | c = bend->getAtomC()->getGlobalIndex(); | 
| 416 |  | 
| 417 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 418 | oneTwoInteractions_.addPair(a, b); | 
| 419 | oneTwoInteractions_.addPair(b, c); | 
| 420 | } else { | 
| 421 | excludedInteractions_.addPair(a, b); | 
| 422 | excludedInteractions_.addPair(b, c); | 
| 423 | } | 
| 424 |  | 
| 425 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 426 | oneThreeInteractions_.addPair(a, c); | 
| 427 | } else { | 
| 428 | excludedInteractions_.addPair(a, c); | 
| 429 | } | 
| 430 | } | 
| 431 |  | 
| 432 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 433 | torsion = mol->nextTorsion(torsionIter)) { | 
| 434 |  | 
| 435 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 436 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 437 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 438 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 439 |  | 
| 440 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 441 | oneTwoInteractions_.addPair(a, b); | 
| 442 | oneTwoInteractions_.addPair(b, c); | 
| 443 | oneTwoInteractions_.addPair(c, d); | 
| 444 | } else { | 
| 445 | excludedInteractions_.addPair(a, b); | 
| 446 | excludedInteractions_.addPair(b, c); | 
| 447 | excludedInteractions_.addPair(c, d); | 
| 448 | } | 
| 449 |  | 
| 450 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 451 | oneThreeInteractions_.addPair(a, c); | 
| 452 | oneThreeInteractions_.addPair(b, d); | 
| 453 | } else { | 
| 454 | excludedInteractions_.addPair(a, c); | 
| 455 | excludedInteractions_.addPair(b, d); | 
| 456 | } | 
| 457 |  | 
| 458 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 459 | oneFourInteractions_.addPair(a, d); | 
| 460 | } else { | 
| 461 | excludedInteractions_.addPair(a, d); | 
| 462 | } | 
| 463 | } | 
| 464 |  | 
| 465 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 466 | inversion = mol->nextInversion(inversionIter)) { | 
| 467 |  | 
| 468 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 469 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 470 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 471 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 472 |  | 
| 473 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 474 | oneTwoInteractions_.addPair(a, b); | 
| 475 | oneTwoInteractions_.addPair(a, c); | 
| 476 | oneTwoInteractions_.addPair(a, d); | 
| 477 | } else { | 
| 478 | excludedInteractions_.addPair(a, b); | 
| 479 | excludedInteractions_.addPair(a, c); | 
| 480 | excludedInteractions_.addPair(a, d); | 
| 481 | } | 
| 482 |  | 
| 483 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 484 | oneThreeInteractions_.addPair(b, c); | 
| 485 | oneThreeInteractions_.addPair(b, d); | 
| 486 | oneThreeInteractions_.addPair(c, d); | 
| 487 | } else { | 
| 488 | excludedInteractions_.addPair(b, c); | 
| 489 | excludedInteractions_.addPair(b, d); | 
| 490 | excludedInteractions_.addPair(c, d); | 
| 491 | } | 
| 492 | } | 
| 493 |  | 
| 494 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 495 | rb = mol->nextRigidBody(rbIter)) { | 
| 496 | vector<Atom*> atoms = rb->getAtoms(); | 
| 497 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 498 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 499 | a = atoms[i]->getGlobalIndex(); | 
| 500 | b = atoms[j]->getGlobalIndex(); | 
| 501 | excludedInteractions_.addPair(a, b); | 
| 502 | } | 
| 503 | } | 
| 504 | } | 
| 505 |  | 
| 506 | } | 
| 507 |  | 
| 508 | void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 509 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 510 | vector<Bond*>::iterator bondIter; | 
| 511 | vector<Bend*>::iterator bendIter; | 
| 512 | vector<Torsion*>::iterator torsionIter; | 
| 513 | vector<Inversion*>::iterator inversionIter; | 
| 514 | Bond* bond; | 
| 515 | Bend* bend; | 
| 516 | Torsion* torsion; | 
| 517 | Inversion* inversion; | 
| 518 | int a; | 
| 519 | int b; | 
| 520 | int c; | 
| 521 | int d; | 
| 522 |  | 
| 523 | map<int, set<int> > atomGroups; | 
| 524 | Molecule::RigidBodyIterator rbIter; | 
| 525 | RigidBody* rb; | 
| 526 | Molecule::IntegrableObjectIterator ii; | 
| 527 | StuntDouble* integrableObject; | 
| 528 |  | 
| 529 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 530 | integrableObject != NULL; | 
| 531 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 532 |  | 
| 533 | if (integrableObject->isRigidBody()) { | 
| 534 | rb = static_cast<RigidBody*>(integrableObject); | 
| 535 | vector<Atom*> atoms = rb->getAtoms(); | 
| 536 | set<int> rigidAtoms; | 
| 537 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 538 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 539 | } | 
| 540 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 541 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 542 | } | 
| 543 | } else { | 
| 544 | set<int> oneAtomSet; | 
| 545 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 546 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 547 | } | 
| 548 | } | 
| 549 |  | 
| 550 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 551 | bond = mol->nextBond(bondIter)) { | 
| 552 |  | 
| 553 | a = bond->getAtomA()->getGlobalIndex(); | 
| 554 | b = bond->getAtomB()->getGlobalIndex(); | 
| 555 |  | 
| 556 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 557 | oneTwoInteractions_.removePair(a, b); | 
| 558 | } else { | 
| 559 | excludedInteractions_.removePair(a, b); | 
| 560 | } | 
| 561 | } | 
| 562 |  | 
| 563 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 564 | bend = mol->nextBend(bendIter)) { | 
| 565 |  | 
| 566 | a = bend->getAtomA()->getGlobalIndex(); | 
| 567 | b = bend->getAtomB()->getGlobalIndex(); | 
| 568 | c = bend->getAtomC()->getGlobalIndex(); | 
| 569 |  | 
| 570 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 571 | oneTwoInteractions_.removePair(a, b); | 
| 572 | oneTwoInteractions_.removePair(b, c); | 
| 573 | } else { | 
| 574 | excludedInteractions_.removePair(a, b); | 
| 575 | excludedInteractions_.removePair(b, c); | 
| 576 | } | 
| 577 |  | 
| 578 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 579 | oneThreeInteractions_.removePair(a, c); | 
| 580 | } else { | 
| 581 | excludedInteractions_.removePair(a, c); | 
| 582 | } | 
| 583 | } | 
| 584 |  | 
| 585 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 586 | torsion = mol->nextTorsion(torsionIter)) { | 
| 587 |  | 
| 588 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 589 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 590 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 591 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 592 |  | 
| 593 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 594 | oneTwoInteractions_.removePair(a, b); | 
| 595 | oneTwoInteractions_.removePair(b, c); | 
| 596 | oneTwoInteractions_.removePair(c, d); | 
| 597 | } else { | 
| 598 | excludedInteractions_.removePair(a, b); | 
| 599 | excludedInteractions_.removePair(b, c); | 
| 600 | excludedInteractions_.removePair(c, d); | 
| 601 | } | 
| 602 |  | 
| 603 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 604 | oneThreeInteractions_.removePair(a, c); | 
| 605 | oneThreeInteractions_.removePair(b, d); | 
| 606 | } else { | 
| 607 | excludedInteractions_.removePair(a, c); | 
| 608 | excludedInteractions_.removePair(b, d); | 
| 609 | } | 
| 610 |  | 
| 611 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 612 | oneFourInteractions_.removePair(a, d); | 
| 613 | } else { | 
| 614 | excludedInteractions_.removePair(a, d); | 
| 615 | } | 
| 616 | } | 
| 617 |  | 
| 618 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 619 | inversion = mol->nextInversion(inversionIter)) { | 
| 620 |  | 
| 621 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 622 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 623 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 624 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 625 |  | 
| 626 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 627 | oneTwoInteractions_.removePair(a, b); | 
| 628 | oneTwoInteractions_.removePair(a, c); | 
| 629 | oneTwoInteractions_.removePair(a, d); | 
| 630 | } else { | 
| 631 | excludedInteractions_.removePair(a, b); | 
| 632 | excludedInteractions_.removePair(a, c); | 
| 633 | excludedInteractions_.removePair(a, d); | 
| 634 | } | 
| 635 |  | 
| 636 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 637 | oneThreeInteractions_.removePair(b, c); | 
| 638 | oneThreeInteractions_.removePair(b, d); | 
| 639 | oneThreeInteractions_.removePair(c, d); | 
| 640 | } else { | 
| 641 | excludedInteractions_.removePair(b, c); | 
| 642 | excludedInteractions_.removePair(b, d); | 
| 643 | excludedInteractions_.removePair(c, d); | 
| 644 | } | 
| 645 | } | 
| 646 |  | 
| 647 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 648 | rb = mol->nextRigidBody(rbIter)) { | 
| 649 | vector<Atom*> atoms = rb->getAtoms(); | 
| 650 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 651 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 652 | a = atoms[i]->getGlobalIndex(); | 
| 653 | b = atoms[j]->getGlobalIndex(); | 
| 654 | excludedInteractions_.removePair(a, b); | 
| 655 | } | 
| 656 | } | 
| 657 | } | 
| 658 |  | 
| 659 | } | 
| 660 |  | 
| 661 |  | 
| 662 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 663 | int curStampId; | 
| 664 |  | 
| 665 | //index from 0 | 
| 666 | curStampId = moleculeStamps_.size(); | 
| 667 |  | 
| 668 | moleculeStamps_.push_back(molStamp); | 
| 669 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 670 | } | 
| 671 |  | 
| 672 |  | 
| 673 | /** | 
| 674 | * update | 
| 675 | * | 
| 676 | *  Performs the global checks and variable settings after the | 
| 677 | *  objects have been created. | 
| 678 | * | 
| 679 | */ | 
| 680 | void SimInfo::update() { | 
| 681 | setupSimVariables(); | 
| 682 | calcNdf(); | 
| 683 | calcNdfRaw(); | 
| 684 | calcNdfTrans(); | 
| 685 | } | 
| 686 |  | 
| 687 | /** | 
| 688 | * getSimulatedAtomTypes | 
| 689 | * | 
| 690 | * Returns an STL set of AtomType* that are actually present in this | 
| 691 | * simulation.  Must query all processors to assemble this information. | 
| 692 | * | 
| 693 | */ | 
| 694 | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 695 | SimInfo::MoleculeIterator mi; | 
| 696 | Molecule* mol; | 
| 697 | Molecule::AtomIterator ai; | 
| 698 | Atom* atom; | 
| 699 | set<AtomType*> atomTypes; | 
| 700 |  | 
| 701 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 702 | for(atom = mol->beginAtom(ai); atom != NULL; | 
| 703 | atom = mol->nextAtom(ai)) { | 
| 704 | atomTypes.insert(atom->getAtomType()); | 
| 705 | } | 
| 706 | } | 
| 707 |  | 
| 708 | #ifdef IS_MPI | 
| 709 |  | 
| 710 | // loop over the found atom types on this processor, and add their | 
| 711 | // numerical idents to a vector: | 
| 712 |  | 
| 713 | vector<int> foundTypes; | 
| 714 | set<AtomType*>::iterator i; | 
| 715 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) | 
| 716 | foundTypes.push_back( (*i)->getIdent() ); | 
| 717 |  | 
| 718 | // count_local holds the number of found types on this processor | 
| 719 | int count_local = foundTypes.size(); | 
| 720 |  | 
| 721 | int nproc = MPI::COMM_WORLD.Get_size(); | 
| 722 |  | 
| 723 | // we need arrays to hold the counts and displacement vectors for | 
| 724 | // all processors | 
| 725 | vector<int> counts(nproc, 0); | 
| 726 | vector<int> disps(nproc, 0); | 
| 727 |  | 
| 728 | // fill the counts array | 
| 729 | MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], | 
| 730 | 1, MPI::INT); | 
| 731 |  | 
| 732 | // use the processor counts to compute the displacement array | 
| 733 | disps[0] = 0; | 
| 734 | int totalCount = counts[0]; | 
| 735 | for (int iproc = 1; iproc < nproc; iproc++) { | 
| 736 | disps[iproc] = disps[iproc-1] + counts[iproc-1]; | 
| 737 | totalCount += counts[iproc]; | 
| 738 | } | 
| 739 |  | 
| 740 | // we need a (possibly redundant) set of all found types: | 
| 741 | vector<int> ftGlobal(totalCount); | 
| 742 |  | 
| 743 | // now spray out the foundTypes to all the other processors: | 
| 744 | MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, | 
| 745 | &ftGlobal[0], &counts[0], &disps[0], | 
| 746 | MPI::INT); | 
| 747 |  | 
| 748 | vector<int>::iterator j; | 
| 749 |  | 
| 750 | // foundIdents is a stl set, so inserting an already found ident | 
| 751 | // will have no effect. | 
| 752 | set<int> foundIdents; | 
| 753 |  | 
| 754 | for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) | 
| 755 | foundIdents.insert((*j)); | 
| 756 |  | 
| 757 | // now iterate over the foundIdents and get the actual atom types | 
| 758 | // that correspond to these: | 
| 759 | set<int>::iterator it; | 
| 760 | for (it = foundIdents.begin(); it != foundIdents.end(); ++it) | 
| 761 | atomTypes.insert( forceField_->getAtomType((*it)) ); | 
| 762 |  | 
| 763 | #endif | 
| 764 |  | 
| 765 | return atomTypes; | 
| 766 | } | 
| 767 |  | 
| 768 | void SimInfo::setupSimVariables() { | 
| 769 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 770 | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true | 
| 771 | calcBoxDipole_ = false; | 
| 772 | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 773 | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 774 | calcBoxDipole_ = true; | 
| 775 | } | 
| 776 |  | 
| 777 | set<AtomType*>::iterator i; | 
| 778 | set<AtomType*> atomTypes; | 
| 779 | atomTypes = getSimulatedAtomTypes(); | 
| 780 | int usesElectrostatic = 0; | 
| 781 | int usesMetallic = 0; | 
| 782 | int usesDirectional = 0; | 
| 783 | //loop over all of the atom types | 
| 784 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 785 | usesElectrostatic |= (*i)->isElectrostatic(); | 
| 786 | usesMetallic |= (*i)->isMetal(); | 
| 787 | usesDirectional |= (*i)->isDirectional(); | 
| 788 | } | 
| 789 |  | 
| 790 | #ifdef IS_MPI | 
| 791 | int temp; | 
| 792 | temp = usesDirectional; | 
| 793 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 794 |  | 
| 795 | temp = usesMetallic; | 
| 796 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 797 |  | 
| 798 | temp = usesElectrostatic; | 
| 799 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 800 | #else | 
| 801 |  | 
| 802 | usesDirectionalAtoms_ = usesDirectional; | 
| 803 | usesMetallicAtoms_ = usesMetallic; | 
| 804 | usesElectrostaticAtoms_ = usesElectrostatic; | 
| 805 |  | 
| 806 | #endif | 
| 807 |  | 
| 808 | requiresPrepair_ = usesMetallicAtoms_ ? true : false; | 
| 809 | requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 810 | requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; | 
| 811 | } | 
| 812 |  | 
| 813 |  | 
| 814 | vector<int> SimInfo::getGlobalAtomIndices() { | 
| 815 | SimInfo::MoleculeIterator mi; | 
| 816 | Molecule* mol; | 
| 817 | Molecule::AtomIterator ai; | 
| 818 | Atom* atom; | 
| 819 |  | 
| 820 | vector<int> GlobalAtomIndices(getNAtoms(), 0); | 
| 821 |  | 
| 822 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 823 |  | 
| 824 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 825 | GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); | 
| 826 | } | 
| 827 | } | 
| 828 | return GlobalAtomIndices; | 
| 829 | } | 
| 830 |  | 
| 831 |  | 
| 832 | vector<int> SimInfo::getGlobalGroupIndices() { | 
| 833 | SimInfo::MoleculeIterator mi; | 
| 834 | Molecule* mol; | 
| 835 | Molecule::CutoffGroupIterator ci; | 
| 836 | CutoffGroup* cg; | 
| 837 |  | 
| 838 | vector<int> GlobalGroupIndices; | 
| 839 |  | 
| 840 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 841 |  | 
| 842 | //local index of cutoff group is trivial, it only depends on the | 
| 843 | //order of travesing | 
| 844 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 845 | cg = mol->nextCutoffGroup(ci)) { | 
| 846 | GlobalGroupIndices.push_back(cg->getGlobalIndex()); | 
| 847 | } | 
| 848 | } | 
| 849 | return GlobalGroupIndices; | 
| 850 | } | 
| 851 |  | 
| 852 |  | 
| 853 | void SimInfo::prepareTopology() { | 
| 854 | int nExclude, nOneTwo, nOneThree, nOneFour; | 
| 855 |  | 
| 856 | //calculate mass ratio of cutoff group | 
| 857 | SimInfo::MoleculeIterator mi; | 
| 858 | Molecule* mol; | 
| 859 | Molecule::CutoffGroupIterator ci; | 
| 860 | CutoffGroup* cg; | 
| 861 | Molecule::AtomIterator ai; | 
| 862 | Atom* atom; | 
| 863 | RealType totalMass; | 
| 864 |  | 
| 865 | /** | 
| 866 | * The mass factor is the relative mass of an atom to the total | 
| 867 | * mass of the cutoff group it belongs to.  By default, all atoms | 
| 868 | * are their own cutoff groups, and therefore have mass factors of | 
| 869 | * 1.  We need some special handling for massless atoms, which | 
| 870 | * will be treated as carrying the entire mass of the cutoff | 
| 871 | * group. | 
| 872 | */ | 
| 873 | massFactors_.clear(); | 
| 874 | massFactors_.resize(getNAtoms(), 1.0); | 
| 875 |  | 
| 876 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 877 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; | 
| 878 | cg = mol->nextCutoffGroup(ci)) { | 
| 879 |  | 
| 880 | totalMass = cg->getMass(); | 
| 881 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 882 | // Check for massless groups - set mfact to 1 if true | 
| 883 | if (totalMass != 0) | 
| 884 | massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; | 
| 885 | else | 
| 886 | massFactors_[atom->getLocalIndex()] = 1.0; | 
| 887 | } | 
| 888 | } | 
| 889 | } | 
| 890 |  | 
| 891 | // Build the identArray_ | 
| 892 |  | 
| 893 | identArray_.clear(); | 
| 894 | identArray_.reserve(getNAtoms()); | 
| 895 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 896 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 897 | identArray_.push_back(atom->getIdent()); | 
| 898 | } | 
| 899 | } | 
| 900 |  | 
| 901 | //scan topology | 
| 902 |  | 
| 903 | nExclude = excludedInteractions_.getSize(); | 
| 904 | nOneTwo = oneTwoInteractions_.getSize(); | 
| 905 | nOneThree = oneThreeInteractions_.getSize(); | 
| 906 | nOneFour = oneFourInteractions_.getSize(); | 
| 907 |  | 
| 908 | int* excludeList = excludedInteractions_.getPairList(); | 
| 909 | int* oneTwoList = oneTwoInteractions_.getPairList(); | 
| 910 | int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 911 | int* oneFourList = oneFourInteractions_.getPairList(); | 
| 912 |  | 
| 913 | topologyDone_ = true; | 
| 914 | } | 
| 915 |  | 
| 916 | void SimInfo::addProperty(GenericData* genData) { | 
| 917 | properties_.addProperty(genData); | 
| 918 | } | 
| 919 |  | 
| 920 | void SimInfo::removeProperty(const string& propName) { | 
| 921 | properties_.removeProperty(propName); | 
| 922 | } | 
| 923 |  | 
| 924 | void SimInfo::clearProperties() { | 
| 925 | properties_.clearProperties(); | 
| 926 | } | 
| 927 |  | 
| 928 | vector<string> SimInfo::getPropertyNames() { | 
| 929 | return properties_.getPropertyNames(); | 
| 930 | } | 
| 931 |  | 
| 932 | vector<GenericData*> SimInfo::getProperties() { | 
| 933 | return properties_.getProperties(); | 
| 934 | } | 
| 935 |  | 
| 936 | GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 937 | return properties_.getPropertyByName(propName); | 
| 938 | } | 
| 939 |  | 
| 940 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 941 | if (sman_ == sman) { | 
| 942 | return; | 
| 943 | } | 
| 944 | delete sman_; | 
| 945 | sman_ = sman; | 
| 946 |  | 
| 947 | Molecule* mol; | 
| 948 | RigidBody* rb; | 
| 949 | Atom* atom; | 
| 950 | CutoffGroup* cg; | 
| 951 | SimInfo::MoleculeIterator mi; | 
| 952 | Molecule::RigidBodyIterator rbIter; | 
| 953 | Molecule::AtomIterator atomIter; | 
| 954 | Molecule::CutoffGroupIterator cgIter; | 
| 955 |  | 
| 956 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 957 |  | 
| 958 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 959 | atom->setSnapshotManager(sman_); | 
| 960 | } | 
| 961 |  | 
| 962 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 963 | rb->setSnapshotManager(sman_); | 
| 964 | } | 
| 965 |  | 
| 966 | for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { | 
| 967 | cg->setSnapshotManager(sman_); | 
| 968 | } | 
| 969 | } | 
| 970 |  | 
| 971 | } | 
| 972 |  | 
| 973 | Vector3d SimInfo::getComVel(){ | 
| 974 | SimInfo::MoleculeIterator i; | 
| 975 | Molecule* mol; | 
| 976 |  | 
| 977 | Vector3d comVel(0.0); | 
| 978 | RealType totalMass = 0.0; | 
| 979 |  | 
| 980 |  | 
| 981 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 982 | RealType mass = mol->getMass(); | 
| 983 | totalMass += mass; | 
| 984 | comVel += mass * mol->getComVel(); | 
| 985 | } | 
| 986 |  | 
| 987 | #ifdef IS_MPI | 
| 988 | RealType tmpMass = totalMass; | 
| 989 | Vector3d tmpComVel(comVel); | 
| 990 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 991 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 992 | #endif | 
| 993 |  | 
| 994 | comVel /= totalMass; | 
| 995 |  | 
| 996 | return comVel; | 
| 997 | } | 
| 998 |  | 
| 999 | Vector3d SimInfo::getCom(){ | 
| 1000 | SimInfo::MoleculeIterator i; | 
| 1001 | Molecule* mol; | 
| 1002 |  | 
| 1003 | Vector3d com(0.0); | 
| 1004 | RealType totalMass = 0.0; | 
| 1005 |  | 
| 1006 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1007 | RealType mass = mol->getMass(); | 
| 1008 | totalMass += mass; | 
| 1009 | com += mass * mol->getCom(); | 
| 1010 | } | 
| 1011 |  | 
| 1012 | #ifdef IS_MPI | 
| 1013 | RealType tmpMass = totalMass; | 
| 1014 | Vector3d tmpCom(com); | 
| 1015 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1016 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1017 | #endif | 
| 1018 |  | 
| 1019 | com /= totalMass; | 
| 1020 |  | 
| 1021 | return com; | 
| 1022 |  | 
| 1023 | } | 
| 1024 |  | 
| 1025 | ostream& operator <<(ostream& o, SimInfo& info) { | 
| 1026 |  | 
| 1027 | return o; | 
| 1028 | } | 
| 1029 |  | 
| 1030 |  | 
| 1031 | /* | 
| 1032 | Returns center of mass and center of mass velocity in one function call. | 
| 1033 | */ | 
| 1034 |  | 
| 1035 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1036 | SimInfo::MoleculeIterator i; | 
| 1037 | Molecule* mol; | 
| 1038 |  | 
| 1039 |  | 
| 1040 | RealType totalMass = 0.0; | 
| 1041 |  | 
| 1042 |  | 
| 1043 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1044 | RealType mass = mol->getMass(); | 
| 1045 | totalMass += mass; | 
| 1046 | com += mass * mol->getCom(); | 
| 1047 | comVel += mass * mol->getComVel(); | 
| 1048 | } | 
| 1049 |  | 
| 1050 | #ifdef IS_MPI | 
| 1051 | RealType tmpMass = totalMass; | 
| 1052 | Vector3d tmpCom(com); | 
| 1053 | Vector3d tmpComVel(comVel); | 
| 1054 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1055 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1056 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1057 | #endif | 
| 1058 |  | 
| 1059 | com /= totalMass; | 
| 1060 | comVel /= totalMass; | 
| 1061 | } | 
| 1062 |  | 
| 1063 | /* | 
| 1064 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1065 |  | 
| 1066 |  | 
| 1067 | [  Ixx -Ixy  -Ixz ] | 
| 1068 | J =| -Iyx  Iyy  -Iyz | | 
| 1069 | [ -Izx -Iyz   Izz ] | 
| 1070 | */ | 
| 1071 |  | 
| 1072 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1073 |  | 
| 1074 |  | 
| 1075 | RealType xx = 0.0; | 
| 1076 | RealType yy = 0.0; | 
| 1077 | RealType zz = 0.0; | 
| 1078 | RealType xy = 0.0; | 
| 1079 | RealType xz = 0.0; | 
| 1080 | RealType yz = 0.0; | 
| 1081 | Vector3d com(0.0); | 
| 1082 | Vector3d comVel(0.0); | 
| 1083 |  | 
| 1084 | getComAll(com, comVel); | 
| 1085 |  | 
| 1086 | SimInfo::MoleculeIterator i; | 
| 1087 | Molecule* mol; | 
| 1088 |  | 
| 1089 | Vector3d thisq(0.0); | 
| 1090 | Vector3d thisv(0.0); | 
| 1091 |  | 
| 1092 | RealType thisMass = 0.0; | 
| 1093 |  | 
| 1094 |  | 
| 1095 |  | 
| 1096 |  | 
| 1097 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1098 |  | 
| 1099 | thisq = mol->getCom()-com; | 
| 1100 | thisv = mol->getComVel()-comVel; | 
| 1101 | thisMass = mol->getMass(); | 
| 1102 | // Compute moment of intertia coefficients. | 
| 1103 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1104 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1105 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1106 |  | 
| 1107 | // compute products of intertia | 
| 1108 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1109 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1110 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1111 |  | 
| 1112 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1113 |  | 
| 1114 | } | 
| 1115 |  | 
| 1116 |  | 
| 1117 | inertiaTensor(0,0) = yy + zz; | 
| 1118 | inertiaTensor(0,1) = -xy; | 
| 1119 | inertiaTensor(0,2) = -xz; | 
| 1120 | inertiaTensor(1,0) = -xy; | 
| 1121 | inertiaTensor(1,1) = xx + zz; | 
| 1122 | inertiaTensor(1,2) = -yz; | 
| 1123 | inertiaTensor(2,0) = -xz; | 
| 1124 | inertiaTensor(2,1) = -yz; | 
| 1125 | inertiaTensor(2,2) = xx + yy; | 
| 1126 |  | 
| 1127 | #ifdef IS_MPI | 
| 1128 | Mat3x3d tmpI(inertiaTensor); | 
| 1129 | Vector3d tmpAngMom; | 
| 1130 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1131 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1132 | #endif | 
| 1133 |  | 
| 1134 | return; | 
| 1135 | } | 
| 1136 |  | 
| 1137 | //Returns the angular momentum of the system | 
| 1138 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1139 |  | 
| 1140 | Vector3d com(0.0); | 
| 1141 | Vector3d comVel(0.0); | 
| 1142 | Vector3d angularMomentum(0.0); | 
| 1143 |  | 
| 1144 | getComAll(com,comVel); | 
| 1145 |  | 
| 1146 | SimInfo::MoleculeIterator i; | 
| 1147 | Molecule* mol; | 
| 1148 |  | 
| 1149 | Vector3d thisr(0.0); | 
| 1150 | Vector3d thisp(0.0); | 
| 1151 |  | 
| 1152 | RealType thisMass; | 
| 1153 |  | 
| 1154 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1155 | thisMass = mol->getMass(); | 
| 1156 | thisr = mol->getCom()-com; | 
| 1157 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1158 |  | 
| 1159 | angularMomentum += cross( thisr, thisp ); | 
| 1160 |  | 
| 1161 | } | 
| 1162 |  | 
| 1163 | #ifdef IS_MPI | 
| 1164 | Vector3d tmpAngMom; | 
| 1165 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1166 | #endif | 
| 1167 |  | 
| 1168 | return angularMomentum; | 
| 1169 | } | 
| 1170 |  | 
| 1171 | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1172 | return IOIndexToIntegrableObject.at(index); | 
| 1173 | } | 
| 1174 |  | 
| 1175 | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1176 | IOIndexToIntegrableObject= v; | 
| 1177 | } | 
| 1178 |  | 
| 1179 | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes | 
| 1180 | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1181 | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to | 
| 1182 | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1183 | */ | 
| 1184 | void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1185 | Mat3x3d intTensor; | 
| 1186 | RealType det; | 
| 1187 | Vector3d dummyAngMom; | 
| 1188 | RealType sysconstants; | 
| 1189 | RealType geomCnst; | 
| 1190 |  | 
| 1191 | geomCnst = 3.0/2.0; | 
| 1192 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1193 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1194 |  | 
| 1195 | det = intTensor.determinant(); | 
| 1196 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1197 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); | 
| 1198 | return; | 
| 1199 | } | 
| 1200 |  | 
| 1201 | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1202 | Mat3x3d intTensor; | 
| 1203 | Vector3d dummyAngMom; | 
| 1204 | RealType sysconstants; | 
| 1205 | RealType geomCnst; | 
| 1206 |  | 
| 1207 | geomCnst = 3.0/2.0; | 
| 1208 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1209 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1210 |  | 
| 1211 | detI = intTensor.determinant(); | 
| 1212 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1213 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); | 
| 1214 | return; | 
| 1215 | } | 
| 1216 | /* | 
| 1217 | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { | 
| 1218 | assert( v.size() == nAtoms_ + nRigidBodies_); | 
| 1219 | sdByGlobalIndex_ = v; | 
| 1220 | } | 
| 1221 |  | 
| 1222 | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { | 
| 1223 | //assert(index < nAtoms_ + nRigidBodies_); | 
| 1224 | return sdByGlobalIndex_.at(index); | 
| 1225 | } | 
| 1226 | */ | 
| 1227 | int SimInfo::getNGlobalConstraints() { | 
| 1228 | int nGlobalConstraints; | 
| 1229 | #ifdef IS_MPI | 
| 1230 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 1231 | MPI_COMM_WORLD); | 
| 1232 | #else | 
| 1233 | nGlobalConstraints =  nConstraints_; | 
| 1234 | #endif | 
| 1235 | return nGlobalConstraints; | 
| 1236 | } | 
| 1237 |  | 
| 1238 | }//end namespace OpenMD | 
| 1239 |  |