| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 | #include <map> | 
| 52 |  | 
| 53 | #include "brains/SimInfo.hpp" | 
| 54 | #include "math/Vector3.hpp" | 
| 55 | #include "primitives/Molecule.hpp" | 
| 56 | #include "primitives/StuntDouble.hpp" | 
| 57 | #include "UseTheForce/fCutoffPolicy.h" | 
| 58 | #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" | 
| 59 | #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" | 
| 60 | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" | 
| 61 | #include "UseTheForce/doForces_interface.h" | 
| 62 | #include "UseTheForce/DarkSide/neighborLists_interface.h" | 
| 63 | #include "UseTheForce/DarkSide/electrostatic_interface.h" | 
| 64 | #include "UseTheForce/DarkSide/switcheroo_interface.h" | 
| 65 | #include "utils/MemoryUtils.hpp" | 
| 66 | #include "utils/simError.h" | 
| 67 | #include "selection/SelectionManager.hpp" | 
| 68 | #include "io/ForceFieldOptions.hpp" | 
| 69 | #include "UseTheForce/ForceField.hpp" | 
| 70 |  | 
| 71 |  | 
| 72 | #ifdef IS_MPI | 
| 73 | #include "UseTheForce/mpiComponentPlan.h" | 
| 74 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 75 | #endif | 
| 76 |  | 
| 77 | namespace oopse { | 
| 78 | std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { | 
| 79 | std::map<int, std::set<int> >::iterator i = container.find(index); | 
| 80 | std::set<int> result; | 
| 81 | if (i != container.end()) { | 
| 82 | result = i->second; | 
| 83 | } | 
| 84 |  | 
| 85 | return result; | 
| 86 | } | 
| 87 |  | 
| 88 | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 89 | forceField_(ff), simParams_(simParams), | 
| 90 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 91 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 92 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 93 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0), | 
| 94 | nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0), | 
| 95 | sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false), | 
| 96 | useAtomicVirial_(true) { | 
| 97 |  | 
| 98 | MoleculeStamp* molStamp; | 
| 99 | int nMolWithSameStamp; | 
| 100 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 101 | int nGroups = 0;      //total cutoff groups defined in meta-data file | 
| 102 | CutoffGroupStamp* cgStamp; | 
| 103 | RigidBodyStamp* rbStamp; | 
| 104 | int nRigidAtoms = 0; | 
| 105 | std::vector<Component*> components = simParams->getComponents(); | 
| 106 |  | 
| 107 | for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { | 
| 108 | molStamp = (*i)->getMoleculeStamp(); | 
| 109 | nMolWithSameStamp = (*i)->getNMol(); | 
| 110 |  | 
| 111 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 112 |  | 
| 113 | //calculate atoms in molecules | 
| 114 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 115 |  | 
| 116 | //calculate atoms in cutoff groups | 
| 117 | int nAtomsInGroups = 0; | 
| 118 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 119 |  | 
| 120 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 121 | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 122 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 123 | } | 
| 124 |  | 
| 125 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 126 |  | 
| 127 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 128 |  | 
| 129 | //calculate atoms in rigid bodies | 
| 130 | int nAtomsInRigidBodies = 0; | 
| 131 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 132 |  | 
| 133 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 134 | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 135 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 136 | } | 
| 137 |  | 
| 138 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 139 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 140 |  | 
| 141 | } | 
| 142 |  | 
| 143 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 144 | //group therefore the total number of cutoff groups in the system is | 
| 145 | //equal to the total number of atoms minus number of atoms belong to | 
| 146 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 147 | //groups defined in meta-data file | 
| 148 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 149 |  | 
| 150 | //every free atom (atom does not belong to rigid bodies) is an | 
| 151 | //integrable object therefore the total number of integrable objects | 
| 152 | //in the system is equal to the total number of atoms minus number of | 
| 153 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 154 | //of rigid bodies defined in meta-data file | 
| 155 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 156 | + nGlobalRigidBodies_; | 
| 157 |  | 
| 158 | nGlobalMols_ = molStampIds_.size(); | 
| 159 |  | 
| 160 | #ifdef IS_MPI | 
| 161 | molToProcMap_.resize(nGlobalMols_); | 
| 162 | #endif | 
| 163 |  | 
| 164 | } | 
| 165 |  | 
| 166 | SimInfo::~SimInfo() { | 
| 167 | std::map<int, Molecule*>::iterator i; | 
| 168 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 169 | delete i->second; | 
| 170 | } | 
| 171 | molecules_.clear(); | 
| 172 |  | 
| 173 | delete sman_; | 
| 174 | delete simParams_; | 
| 175 | delete forceField_; | 
| 176 | } | 
| 177 |  | 
| 178 | int SimInfo::getNGlobalConstraints() { | 
| 179 | int nGlobalConstraints; | 
| 180 | #ifdef IS_MPI | 
| 181 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 182 | MPI_COMM_WORLD); | 
| 183 | #else | 
| 184 | nGlobalConstraints =  nConstraints_; | 
| 185 | #endif | 
| 186 | return nGlobalConstraints; | 
| 187 | } | 
| 188 |  | 
| 189 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 190 | MoleculeIterator i; | 
| 191 |  | 
| 192 | i = molecules_.find(mol->getGlobalIndex()); | 
| 193 | if (i == molecules_.end() ) { | 
| 194 |  | 
| 195 | molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); | 
| 196 |  | 
| 197 | nAtoms_ += mol->getNAtoms(); | 
| 198 | nBonds_ += mol->getNBonds(); | 
| 199 | nBends_ += mol->getNBends(); | 
| 200 | nTorsions_ += mol->getNTorsions(); | 
| 201 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 202 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 203 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 204 | nConstraints_ += mol->getNConstraintPairs(); | 
| 205 |  | 
| 206 | addExcludePairs(mol); | 
| 207 |  | 
| 208 | return true; | 
| 209 | } else { | 
| 210 | return false; | 
| 211 | } | 
| 212 | } | 
| 213 |  | 
| 214 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 215 | MoleculeIterator i; | 
| 216 | i = molecules_.find(mol->getGlobalIndex()); | 
| 217 |  | 
| 218 | if (i != molecules_.end() ) { | 
| 219 |  | 
| 220 | assert(mol == i->second); | 
| 221 |  | 
| 222 | nAtoms_ -= mol->getNAtoms(); | 
| 223 | nBonds_ -= mol->getNBonds(); | 
| 224 | nBends_ -= mol->getNBends(); | 
| 225 | nTorsions_ -= mol->getNTorsions(); | 
| 226 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 227 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 228 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 229 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 230 |  | 
| 231 | removeExcludePairs(mol); | 
| 232 | molecules_.erase(mol->getGlobalIndex()); | 
| 233 |  | 
| 234 | delete mol; | 
| 235 |  | 
| 236 | return true; | 
| 237 | } else { | 
| 238 | return false; | 
| 239 | } | 
| 240 |  | 
| 241 |  | 
| 242 | } | 
| 243 |  | 
| 244 |  | 
| 245 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 246 | i = molecules_.begin(); | 
| 247 | return i == molecules_.end() ? NULL : i->second; | 
| 248 | } | 
| 249 |  | 
| 250 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 251 | ++i; | 
| 252 | return i == molecules_.end() ? NULL : i->second; | 
| 253 | } | 
| 254 |  | 
| 255 |  | 
| 256 | void SimInfo::calcNdf() { | 
| 257 | int ndf_local; | 
| 258 | MoleculeIterator i; | 
| 259 | std::vector<StuntDouble*>::iterator j; | 
| 260 | Molecule* mol; | 
| 261 | StuntDouble* integrableObject; | 
| 262 |  | 
| 263 | ndf_local = 0; | 
| 264 |  | 
| 265 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 266 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 267 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 268 |  | 
| 269 | ndf_local += 3; | 
| 270 |  | 
| 271 | if (integrableObject->isDirectional()) { | 
| 272 | if (integrableObject->isLinear()) { | 
| 273 | ndf_local += 2; | 
| 274 | } else { | 
| 275 | ndf_local += 3; | 
| 276 | } | 
| 277 | } | 
| 278 |  | 
| 279 | } | 
| 280 | } | 
| 281 |  | 
| 282 | // n_constraints is local, so subtract them on each processor | 
| 283 | ndf_local -= nConstraints_; | 
| 284 |  | 
| 285 | #ifdef IS_MPI | 
| 286 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 287 | #else | 
| 288 | ndf_ = ndf_local; | 
| 289 | #endif | 
| 290 |  | 
| 291 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 292 | // entire system: | 
| 293 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 294 |  | 
| 295 | } | 
| 296 |  | 
| 297 | int SimInfo::getFdf() { | 
| 298 | #ifdef IS_MPI | 
| 299 | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 300 | #else | 
| 301 | fdf_ = fdf_local; | 
| 302 | #endif | 
| 303 | return fdf_; | 
| 304 | } | 
| 305 |  | 
| 306 | void SimInfo::calcNdfRaw() { | 
| 307 | int ndfRaw_local; | 
| 308 |  | 
| 309 | MoleculeIterator i; | 
| 310 | std::vector<StuntDouble*>::iterator j; | 
| 311 | Molecule* mol; | 
| 312 | StuntDouble* integrableObject; | 
| 313 |  | 
| 314 | // Raw degrees of freedom that we have to set | 
| 315 | ndfRaw_local = 0; | 
| 316 |  | 
| 317 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 318 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 319 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 320 |  | 
| 321 | ndfRaw_local += 3; | 
| 322 |  | 
| 323 | if (integrableObject->isDirectional()) { | 
| 324 | if (integrableObject->isLinear()) { | 
| 325 | ndfRaw_local += 2; | 
| 326 | } else { | 
| 327 | ndfRaw_local += 3; | 
| 328 | } | 
| 329 | } | 
| 330 |  | 
| 331 | } | 
| 332 | } | 
| 333 |  | 
| 334 | #ifdef IS_MPI | 
| 335 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 336 | #else | 
| 337 | ndfRaw_ = ndfRaw_local; | 
| 338 | #endif | 
| 339 | } | 
| 340 |  | 
| 341 | void SimInfo::calcNdfTrans() { | 
| 342 | int ndfTrans_local; | 
| 343 |  | 
| 344 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 345 |  | 
| 346 |  | 
| 347 | #ifdef IS_MPI | 
| 348 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 349 | #else | 
| 350 | ndfTrans_ = ndfTrans_local; | 
| 351 | #endif | 
| 352 |  | 
| 353 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 354 |  | 
| 355 | } | 
| 356 |  | 
| 357 | void SimInfo::addExcludePairs(Molecule* mol) { | 
| 358 | std::vector<Bond*>::iterator bondIter; | 
| 359 | std::vector<Bend*>::iterator bendIter; | 
| 360 | std::vector<Torsion*>::iterator torsionIter; | 
| 361 | Bond* bond; | 
| 362 | Bend* bend; | 
| 363 | Torsion* torsion; | 
| 364 | int a; | 
| 365 | int b; | 
| 366 | int c; | 
| 367 | int d; | 
| 368 |  | 
| 369 | std::map<int, std::set<int> > atomGroups; | 
| 370 |  | 
| 371 | Molecule::RigidBodyIterator rbIter; | 
| 372 | RigidBody* rb; | 
| 373 | Molecule::IntegrableObjectIterator ii; | 
| 374 | StuntDouble* integrableObject; | 
| 375 |  | 
| 376 | for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; | 
| 377 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 378 |  | 
| 379 | if (integrableObject->isRigidBody()) { | 
| 380 | rb = static_cast<RigidBody*>(integrableObject); | 
| 381 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 382 | std::set<int> rigidAtoms; | 
| 383 | for (int i = 0; i < atoms.size(); ++i) { | 
| 384 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 385 | } | 
| 386 | for (int i = 0; i < atoms.size(); ++i) { | 
| 387 | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 388 | } | 
| 389 | } else { | 
| 390 | std::set<int> oneAtomSet; | 
| 391 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 392 | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 393 | } | 
| 394 | } | 
| 395 |  | 
| 396 |  | 
| 397 |  | 
| 398 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 399 | a = bond->getAtomA()->getGlobalIndex(); | 
| 400 | b = bond->getAtomB()->getGlobalIndex(); | 
| 401 | exclude_.addPair(a, b); | 
| 402 | } | 
| 403 |  | 
| 404 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 405 | a = bend->getAtomA()->getGlobalIndex(); | 
| 406 | b = bend->getAtomB()->getGlobalIndex(); | 
| 407 | c = bend->getAtomC()->getGlobalIndex(); | 
| 408 | std::set<int> rigidSetA = getRigidSet(a, atomGroups); | 
| 409 | std::set<int> rigidSetB = getRigidSet(b, atomGroups); | 
| 410 | std::set<int> rigidSetC = getRigidSet(c, atomGroups); | 
| 411 |  | 
| 412 | exclude_.addPairs(rigidSetA, rigidSetB); | 
| 413 | exclude_.addPairs(rigidSetA, rigidSetC); | 
| 414 | exclude_.addPairs(rigidSetB, rigidSetC); | 
| 415 |  | 
| 416 | //exclude_.addPair(a, b); | 
| 417 | //exclude_.addPair(a, c); | 
| 418 | //exclude_.addPair(b, c); | 
| 419 | } | 
| 420 |  | 
| 421 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 422 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 423 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 424 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 425 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 426 | std::set<int> rigidSetA = getRigidSet(a, atomGroups); | 
| 427 | std::set<int> rigidSetB = getRigidSet(b, atomGroups); | 
| 428 | std::set<int> rigidSetC = getRigidSet(c, atomGroups); | 
| 429 | std::set<int> rigidSetD = getRigidSet(d, atomGroups); | 
| 430 |  | 
| 431 | exclude_.addPairs(rigidSetA, rigidSetB); | 
| 432 | exclude_.addPairs(rigidSetA, rigidSetC); | 
| 433 | exclude_.addPairs(rigidSetA, rigidSetD); | 
| 434 | exclude_.addPairs(rigidSetB, rigidSetC); | 
| 435 | exclude_.addPairs(rigidSetB, rigidSetD); | 
| 436 | exclude_.addPairs(rigidSetC, rigidSetD); | 
| 437 |  | 
| 438 | /* | 
| 439 | exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); | 
| 440 | exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); | 
| 441 | exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 442 | exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); | 
| 443 | exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 444 | exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 445 |  | 
| 446 |  | 
| 447 | exclude_.addPair(a, b); | 
| 448 | exclude_.addPair(a, c); | 
| 449 | exclude_.addPair(a, d); | 
| 450 | exclude_.addPair(b, c); | 
| 451 | exclude_.addPair(b, d); | 
| 452 | exclude_.addPair(c, d); | 
| 453 | */ | 
| 454 | } | 
| 455 |  | 
| 456 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 457 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 458 | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 459 | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 460 | a = atoms[i]->getGlobalIndex(); | 
| 461 | b = atoms[j]->getGlobalIndex(); | 
| 462 | exclude_.addPair(a, b); | 
| 463 | } | 
| 464 | } | 
| 465 | } | 
| 466 |  | 
| 467 | } | 
| 468 |  | 
| 469 | void SimInfo::removeExcludePairs(Molecule* mol) { | 
| 470 | std::vector<Bond*>::iterator bondIter; | 
| 471 | std::vector<Bend*>::iterator bendIter; | 
| 472 | std::vector<Torsion*>::iterator torsionIter; | 
| 473 | Bond* bond; | 
| 474 | Bend* bend; | 
| 475 | Torsion* torsion; | 
| 476 | int a; | 
| 477 | int b; | 
| 478 | int c; | 
| 479 | int d; | 
| 480 |  | 
| 481 | std::map<int, std::set<int> > atomGroups; | 
| 482 |  | 
| 483 | Molecule::RigidBodyIterator rbIter; | 
| 484 | RigidBody* rb; | 
| 485 | Molecule::IntegrableObjectIterator ii; | 
| 486 | StuntDouble* integrableObject; | 
| 487 |  | 
| 488 | for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; | 
| 489 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 490 |  | 
| 491 | if (integrableObject->isRigidBody()) { | 
| 492 | rb = static_cast<RigidBody*>(integrableObject); | 
| 493 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 494 | std::set<int> rigidAtoms; | 
| 495 | for (int i = 0; i < atoms.size(); ++i) { | 
| 496 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 497 | } | 
| 498 | for (int i = 0; i < atoms.size(); ++i) { | 
| 499 | atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 500 | } | 
| 501 | } else { | 
| 502 | std::set<int> oneAtomSet; | 
| 503 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 504 | atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 505 | } | 
| 506 | } | 
| 507 |  | 
| 508 |  | 
| 509 | for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { | 
| 510 | a = bond->getAtomA()->getGlobalIndex(); | 
| 511 | b = bond->getAtomB()->getGlobalIndex(); | 
| 512 | exclude_.removePair(a, b); | 
| 513 | } | 
| 514 |  | 
| 515 | for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { | 
| 516 | a = bend->getAtomA()->getGlobalIndex(); | 
| 517 | b = bend->getAtomB()->getGlobalIndex(); | 
| 518 | c = bend->getAtomC()->getGlobalIndex(); | 
| 519 |  | 
| 520 | std::set<int> rigidSetA = getRigidSet(a, atomGroups); | 
| 521 | std::set<int> rigidSetB = getRigidSet(b, atomGroups); | 
| 522 | std::set<int> rigidSetC = getRigidSet(c, atomGroups); | 
| 523 |  | 
| 524 | exclude_.removePairs(rigidSetA, rigidSetB); | 
| 525 | exclude_.removePairs(rigidSetA, rigidSetC); | 
| 526 | exclude_.removePairs(rigidSetB, rigidSetC); | 
| 527 |  | 
| 528 | //exclude_.removePair(a, b); | 
| 529 | //exclude_.removePair(a, c); | 
| 530 | //exclude_.removePair(b, c); | 
| 531 | } | 
| 532 |  | 
| 533 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { | 
| 534 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 535 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 536 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 537 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 538 |  | 
| 539 | std::set<int> rigidSetA = getRigidSet(a, atomGroups); | 
| 540 | std::set<int> rigidSetB = getRigidSet(b, atomGroups); | 
| 541 | std::set<int> rigidSetC = getRigidSet(c, atomGroups); | 
| 542 | std::set<int> rigidSetD = getRigidSet(d, atomGroups); | 
| 543 |  | 
| 544 | exclude_.removePairs(rigidSetA, rigidSetB); | 
| 545 | exclude_.removePairs(rigidSetA, rigidSetC); | 
| 546 | exclude_.removePairs(rigidSetA, rigidSetD); | 
| 547 | exclude_.removePairs(rigidSetB, rigidSetC); | 
| 548 | exclude_.removePairs(rigidSetB, rigidSetD); | 
| 549 | exclude_.removePairs(rigidSetC, rigidSetD); | 
| 550 |  | 
| 551 | /* | 
| 552 | exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); | 
| 553 | exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); | 
| 554 | exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 555 | exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); | 
| 556 | exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 557 | exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); | 
| 558 |  | 
| 559 |  | 
| 560 | exclude_.removePair(a, b); | 
| 561 | exclude_.removePair(a, c); | 
| 562 | exclude_.removePair(a, d); | 
| 563 | exclude_.removePair(b, c); | 
| 564 | exclude_.removePair(b, d); | 
| 565 | exclude_.removePair(c, d); | 
| 566 | */ | 
| 567 | } | 
| 568 |  | 
| 569 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 570 | std::vector<Atom*> atoms = rb->getAtoms(); | 
| 571 | for (int i = 0; i < atoms.size() -1 ; ++i) { | 
| 572 | for (int j = i + 1; j < atoms.size(); ++j) { | 
| 573 | a = atoms[i]->getGlobalIndex(); | 
| 574 | b = atoms[j]->getGlobalIndex(); | 
| 575 | exclude_.removePair(a, b); | 
| 576 | } | 
| 577 | } | 
| 578 | } | 
| 579 |  | 
| 580 | } | 
| 581 |  | 
| 582 |  | 
| 583 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 584 | int curStampId; | 
| 585 |  | 
| 586 | //index from 0 | 
| 587 | curStampId = moleculeStamps_.size(); | 
| 588 |  | 
| 589 | moleculeStamps_.push_back(molStamp); | 
| 590 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 591 | } | 
| 592 |  | 
| 593 | void SimInfo::update() { | 
| 594 |  | 
| 595 | setupSimType(); | 
| 596 |  | 
| 597 | #ifdef IS_MPI | 
| 598 | setupFortranParallel(); | 
| 599 | #endif | 
| 600 |  | 
| 601 | setupFortranSim(); | 
| 602 |  | 
| 603 | //setup fortran force field | 
| 604 | /** @deprecate */ | 
| 605 | int isError = 0; | 
| 606 |  | 
| 607 | setupCutoff(); | 
| 608 |  | 
| 609 | setupElectrostaticSummationMethod( isError ); | 
| 610 | setupSwitchingFunction(); | 
| 611 | setupAccumulateBoxDipole(); | 
| 612 |  | 
| 613 | if(isError){ | 
| 614 | sprintf( painCave.errMsg, | 
| 615 | "ForceField error: There was an error initializing the forceField in fortran.\n" ); | 
| 616 | painCave.isFatal = 1; | 
| 617 | simError(); | 
| 618 | } | 
| 619 |  | 
| 620 | calcNdf(); | 
| 621 | calcNdfRaw(); | 
| 622 | calcNdfTrans(); | 
| 623 |  | 
| 624 | fortranInitialized_ = true; | 
| 625 | } | 
| 626 |  | 
| 627 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() { | 
| 628 | SimInfo::MoleculeIterator mi; | 
| 629 | Molecule* mol; | 
| 630 | Molecule::AtomIterator ai; | 
| 631 | Atom* atom; | 
| 632 | std::set<AtomType*> atomTypes; | 
| 633 |  | 
| 634 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 635 |  | 
| 636 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 637 | atomTypes.insert(atom->getAtomType()); | 
| 638 | } | 
| 639 |  | 
| 640 | } | 
| 641 |  | 
| 642 | return atomTypes; | 
| 643 | } | 
| 644 |  | 
| 645 | void SimInfo::setupSimType() { | 
| 646 | std::set<AtomType*>::iterator i; | 
| 647 | std::set<AtomType*> atomTypes; | 
| 648 | atomTypes = getUniqueAtomTypes(); | 
| 649 |  | 
| 650 | int useLennardJones = 0; | 
| 651 | int useElectrostatic = 0; | 
| 652 | int useEAM = 0; | 
| 653 | int useSC = 0; | 
| 654 | int useCharge = 0; | 
| 655 | int useDirectional = 0; | 
| 656 | int useDipole = 0; | 
| 657 | int useGayBerne = 0; | 
| 658 | int useSticky = 0; | 
| 659 | int useStickyPower = 0; | 
| 660 | int useShape = 0; | 
| 661 | int useFLARB = 0; //it is not in AtomType yet | 
| 662 | int useDirectionalAtom = 0; | 
| 663 | int useElectrostatics = 0; | 
| 664 | //usePBC and useRF are from simParams | 
| 665 | int usePBC = simParams_->getUsePeriodicBoundaryConditions(); | 
| 666 | int useRF; | 
| 667 | int useSF; | 
| 668 | int useSP; | 
| 669 | int useBoxDipole; | 
| 670 |  | 
| 671 | std::string myMethod; | 
| 672 |  | 
| 673 | // set the useRF logical | 
| 674 | useRF = 0; | 
| 675 | useSF = 0; | 
| 676 | useSP = 0; | 
| 677 |  | 
| 678 |  | 
| 679 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 680 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 681 | toUpper(myMethod); | 
| 682 | if (myMethod == "REACTION_FIELD"){ | 
| 683 | useRF = 1; | 
| 684 | } else if (myMethod == "SHIFTED_FORCE"){ | 
| 685 | useSF = 1; | 
| 686 | } else if (myMethod == "SHIFTED_POTENTIAL"){ | 
| 687 | useSP = 1; | 
| 688 | } | 
| 689 | } | 
| 690 |  | 
| 691 | if (simParams_->haveAccumulateBoxDipole()) | 
| 692 | if (simParams_->getAccumulateBoxDipole()) | 
| 693 | useBoxDipole = 1; | 
| 694 |  | 
| 695 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 696 |  | 
| 697 | //loop over all of the atom types | 
| 698 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 699 | useLennardJones |= (*i)->isLennardJones(); | 
| 700 | useElectrostatic |= (*i)->isElectrostatic(); | 
| 701 | useEAM |= (*i)->isEAM(); | 
| 702 | useSC |= (*i)->isSC(); | 
| 703 | useCharge |= (*i)->isCharge(); | 
| 704 | useDirectional |= (*i)->isDirectional(); | 
| 705 | useDipole |= (*i)->isDipole(); | 
| 706 | useGayBerne |= (*i)->isGayBerne(); | 
| 707 | useSticky |= (*i)->isSticky(); | 
| 708 | useStickyPower |= (*i)->isStickyPower(); | 
| 709 | useShape |= (*i)->isShape(); | 
| 710 | } | 
| 711 |  | 
| 712 | if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { | 
| 713 | useDirectionalAtom = 1; | 
| 714 | } | 
| 715 |  | 
| 716 | if (useCharge || useDipole) { | 
| 717 | useElectrostatics = 1; | 
| 718 | } | 
| 719 |  | 
| 720 | #ifdef IS_MPI | 
| 721 | int temp; | 
| 722 |  | 
| 723 | temp = usePBC; | 
| 724 | MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 725 |  | 
| 726 | temp = useDirectionalAtom; | 
| 727 | MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 728 |  | 
| 729 | temp = useLennardJones; | 
| 730 | MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 731 |  | 
| 732 | temp = useElectrostatics; | 
| 733 | MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 734 |  | 
| 735 | temp = useCharge; | 
| 736 | MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 737 |  | 
| 738 | temp = useDipole; | 
| 739 | MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 740 |  | 
| 741 | temp = useSticky; | 
| 742 | MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 743 |  | 
| 744 | temp = useStickyPower; | 
| 745 | MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 746 |  | 
| 747 | temp = useGayBerne; | 
| 748 | MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 749 |  | 
| 750 | temp = useEAM; | 
| 751 | MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 752 |  | 
| 753 | temp = useSC; | 
| 754 | MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 755 |  | 
| 756 | temp = useShape; | 
| 757 | MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 758 |  | 
| 759 | temp = useFLARB; | 
| 760 | MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 761 |  | 
| 762 | temp = useRF; | 
| 763 | MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 764 |  | 
| 765 | temp = useSF; | 
| 766 | MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 767 |  | 
| 768 | temp = useSP; | 
| 769 | MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 770 |  | 
| 771 | temp = useBoxDipole; | 
| 772 | MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 773 |  | 
| 774 | temp = useAtomicVirial_; | 
| 775 | MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 776 |  | 
| 777 | #endif | 
| 778 |  | 
| 779 | fInfo_.SIM_uses_PBC = usePBC; | 
| 780 | fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; | 
| 781 | fInfo_.SIM_uses_LennardJones = useLennardJones; | 
| 782 | fInfo_.SIM_uses_Electrostatics = useElectrostatics; | 
| 783 | fInfo_.SIM_uses_Charges = useCharge; | 
| 784 | fInfo_.SIM_uses_Dipoles = useDipole; | 
| 785 | fInfo_.SIM_uses_Sticky = useSticky; | 
| 786 | fInfo_.SIM_uses_StickyPower = useStickyPower; | 
| 787 | fInfo_.SIM_uses_GayBerne = useGayBerne; | 
| 788 | fInfo_.SIM_uses_EAM = useEAM; | 
| 789 | fInfo_.SIM_uses_SC = useSC; | 
| 790 | fInfo_.SIM_uses_Shapes = useShape; | 
| 791 | fInfo_.SIM_uses_FLARB = useFLARB; | 
| 792 | fInfo_.SIM_uses_RF = useRF; | 
| 793 | fInfo_.SIM_uses_SF = useSF; | 
| 794 | fInfo_.SIM_uses_SP = useSP; | 
| 795 | fInfo_.SIM_uses_BoxDipole = useBoxDipole; | 
| 796 | fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; | 
| 797 | } | 
| 798 |  | 
| 799 | void SimInfo::setupFortranSim() { | 
| 800 | int isError; | 
| 801 | int nExclude; | 
| 802 | std::vector<int> fortranGlobalGroupMembership; | 
| 803 |  | 
| 804 | nExclude = exclude_.getSize(); | 
| 805 | isError = 0; | 
| 806 |  | 
| 807 | //globalGroupMembership_ is filled by SimCreator | 
| 808 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 809 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 810 | } | 
| 811 |  | 
| 812 | //calculate mass ratio of cutoff group | 
| 813 | std::vector<RealType> mfact; | 
| 814 | SimInfo::MoleculeIterator mi; | 
| 815 | Molecule* mol; | 
| 816 | Molecule::CutoffGroupIterator ci; | 
| 817 | CutoffGroup* cg; | 
| 818 | Molecule::AtomIterator ai; | 
| 819 | Atom* atom; | 
| 820 | RealType totalMass; | 
| 821 |  | 
| 822 | //to avoid memory reallocation, reserve enough space for mfact | 
| 823 | mfact.reserve(getNCutoffGroups()); | 
| 824 |  | 
| 825 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 826 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 827 |  | 
| 828 | totalMass = cg->getMass(); | 
| 829 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 830 | // Check for massless groups - set mfact to 1 if true | 
| 831 | if (totalMass != 0) | 
| 832 | mfact.push_back(atom->getMass()/totalMass); | 
| 833 | else | 
| 834 | mfact.push_back( 1.0 ); | 
| 835 | } | 
| 836 |  | 
| 837 | } | 
| 838 | } | 
| 839 |  | 
| 840 | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 841 | std::vector<int> identArray; | 
| 842 |  | 
| 843 | //to avoid memory reallocation, reserve enough space identArray | 
| 844 | identArray.reserve(getNAtoms()); | 
| 845 |  | 
| 846 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 847 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 848 | identArray.push_back(atom->getIdent()); | 
| 849 | } | 
| 850 | } | 
| 851 |  | 
| 852 | //fill molMembershipArray | 
| 853 | //molMembershipArray is filled by SimCreator | 
| 854 | std::vector<int> molMembershipArray(nGlobalAtoms_); | 
| 855 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 856 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 857 | } | 
| 858 |  | 
| 859 | //setup fortran simulation | 
| 860 | int nGlobalExcludes = 0; | 
| 861 | int* globalExcludes = NULL; | 
| 862 | int* excludeList = exclude_.getExcludeList(); | 
| 863 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , | 
| 864 | &nGlobalExcludes, globalExcludes, &molMembershipArray[0], | 
| 865 | &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); | 
| 866 |  | 
| 867 | if( isError ){ | 
| 868 |  | 
| 869 | sprintf( painCave.errMsg, | 
| 870 | "There was an error setting the simulation information in fortran.\n" ); | 
| 871 | painCave.isFatal = 1; | 
| 872 | painCave.severity = OOPSE_ERROR; | 
| 873 | simError(); | 
| 874 | } | 
| 875 |  | 
| 876 | #ifdef IS_MPI | 
| 877 | sprintf( checkPointMsg, | 
| 878 | "succesfully sent the simulation information to fortran.\n"); | 
| 879 | MPIcheckPoint(); | 
| 880 | #endif // is_mpi | 
| 881 |  | 
| 882 | // Setup number of neighbors in neighbor list if present | 
| 883 | if (simParams_->haveNeighborListNeighbors()) { | 
| 884 | int nlistNeighbors = simParams_->getNeighborListNeighbors(); | 
| 885 | setNeighbors(&nlistNeighbors); | 
| 886 | } | 
| 887 |  | 
| 888 |  | 
| 889 | } | 
| 890 |  | 
| 891 |  | 
| 892 | #ifdef IS_MPI | 
| 893 | void SimInfo::setupFortranParallel() { | 
| 894 |  | 
| 895 | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 896 | std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 897 | std::vector<int> localToGlobalCutoffGroupIndex; | 
| 898 | SimInfo::MoleculeIterator mi; | 
| 899 | Molecule::AtomIterator ai; | 
| 900 | Molecule::CutoffGroupIterator ci; | 
| 901 | Molecule* mol; | 
| 902 | Atom* atom; | 
| 903 | CutoffGroup* cg; | 
| 904 | mpiSimData parallelData; | 
| 905 | int isError; | 
| 906 |  | 
| 907 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 908 |  | 
| 909 | //local index(index in DataStorge) of atom is important | 
| 910 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 911 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 912 | } | 
| 913 |  | 
| 914 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 915 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 916 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 917 | } | 
| 918 |  | 
| 919 | } | 
| 920 |  | 
| 921 | //fill up mpiSimData struct | 
| 922 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 923 | parallelData.nMolLocal = getNMolecules(); | 
| 924 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 925 | parallelData.nAtomsLocal = getNAtoms(); | 
| 926 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 927 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 928 | parallelData.myNode = worldRank; | 
| 929 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 930 |  | 
| 931 | //pass mpiSimData struct and index arrays to fortran | 
| 932 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 933 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 934 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 935 |  | 
| 936 | if (isError) { | 
| 937 | sprintf(painCave.errMsg, | 
| 938 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 939 | painCave.isFatal = 1; | 
| 940 | simError(); | 
| 941 | } | 
| 942 |  | 
| 943 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 944 | MPIcheckPoint(); | 
| 945 |  | 
| 946 |  | 
| 947 | } | 
| 948 |  | 
| 949 | #endif | 
| 950 |  | 
| 951 | void SimInfo::setupCutoff() { | 
| 952 |  | 
| 953 | ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); | 
| 954 |  | 
| 955 | // Check the cutoff policy | 
| 956 | int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default | 
| 957 |  | 
| 958 | // Set LJ shifting bools to false | 
| 959 | ljsp_ = false; | 
| 960 | ljsf_ = false; | 
| 961 |  | 
| 962 | std::string myPolicy; | 
| 963 | if (forceFieldOptions_.haveCutoffPolicy()){ | 
| 964 | myPolicy = forceFieldOptions_.getCutoffPolicy(); | 
| 965 | }else if (simParams_->haveCutoffPolicy()) { | 
| 966 | myPolicy = simParams_->getCutoffPolicy(); | 
| 967 | } | 
| 968 |  | 
| 969 | if (!myPolicy.empty()){ | 
| 970 | toUpper(myPolicy); | 
| 971 | if (myPolicy == "MIX") { | 
| 972 | cp = MIX_CUTOFF_POLICY; | 
| 973 | } else { | 
| 974 | if (myPolicy == "MAX") { | 
| 975 | cp = MAX_CUTOFF_POLICY; | 
| 976 | } else { | 
| 977 | if (myPolicy == "TRADITIONAL") { | 
| 978 | cp = TRADITIONAL_CUTOFF_POLICY; | 
| 979 | } else { | 
| 980 | // throw error | 
| 981 | sprintf( painCave.errMsg, | 
| 982 | "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); | 
| 983 | painCave.isFatal = 1; | 
| 984 | simError(); | 
| 985 | } | 
| 986 | } | 
| 987 | } | 
| 988 | } | 
| 989 | notifyFortranCutoffPolicy(&cp); | 
| 990 |  | 
| 991 | // Check the Skin Thickness for neighborlists | 
| 992 | RealType skin; | 
| 993 | if (simParams_->haveSkinThickness()) { | 
| 994 | skin = simParams_->getSkinThickness(); | 
| 995 | notifyFortranSkinThickness(&skin); | 
| 996 | } | 
| 997 |  | 
| 998 | // Check if the cutoff was set explicitly: | 
| 999 | if (simParams_->haveCutoffRadius()) { | 
| 1000 | rcut_ = simParams_->getCutoffRadius(); | 
| 1001 | if (simParams_->haveSwitchingRadius()) { | 
| 1002 | rsw_  = simParams_->getSwitchingRadius(); | 
| 1003 | } else { | 
| 1004 | if (fInfo_.SIM_uses_Charges | | 
| 1005 | fInfo_.SIM_uses_Dipoles | | 
| 1006 | fInfo_.SIM_uses_RF) { | 
| 1007 |  | 
| 1008 | rsw_ = 0.85 * rcut_; | 
| 1009 | sprintf(painCave.errMsg, | 
| 1010 | "SimCreator Warning: No value was set for the switchingRadius.\n" | 
| 1011 | "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n" | 
| 1012 | "\tswitchingRadius = %f. for this simulation\n", rsw_); | 
| 1013 | painCave.isFatal = 0; | 
| 1014 | simError(); | 
| 1015 | } else { | 
| 1016 | rsw_ = rcut_; | 
| 1017 | sprintf(painCave.errMsg, | 
| 1018 | "SimCreator Warning: No value was set for the switchingRadius.\n" | 
| 1019 | "\tOOPSE will use the same value as the cutoffRadius.\n" | 
| 1020 | "\tswitchingRadius = %f. for this simulation\n", rsw_); | 
| 1021 | painCave.isFatal = 0; | 
| 1022 | simError(); | 
| 1023 | } | 
| 1024 | } | 
| 1025 |  | 
| 1026 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1027 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1028 | toUpper(myMethod); | 
| 1029 |  | 
| 1030 | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1031 | ljsp_ = true; | 
| 1032 | } else if (myMethod == "SHIFTED_FORCE") { | 
| 1033 | ljsf_ = true; | 
| 1034 | } | 
| 1035 | } | 
| 1036 | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); | 
| 1037 |  | 
| 1038 | } else { | 
| 1039 |  | 
| 1040 | // For electrostatic atoms, we'll assume a large safe value: | 
| 1041 | if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { | 
| 1042 | sprintf(painCave.errMsg, | 
| 1043 | "SimCreator Warning: No value was set for the cutoffRadius.\n" | 
| 1044 | "\tOOPSE will use a default value of 15.0 angstroms" | 
| 1045 | "\tfor the cutoffRadius.\n"); | 
| 1046 | painCave.isFatal = 0; | 
| 1047 | simError(); | 
| 1048 | rcut_ = 15.0; | 
| 1049 |  | 
| 1050 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1051 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1052 | toUpper(myMethod); | 
| 1053 |  | 
| 1054 | // For the time being, we're tethering the LJ shifted behavior to the | 
| 1055 | // electrostaticSummationMethod keyword options | 
| 1056 | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1057 | ljsp_ = true; | 
| 1058 | } else if (myMethod == "SHIFTED_FORCE") { | 
| 1059 | ljsf_ = true; | 
| 1060 | } | 
| 1061 | if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { | 
| 1062 | if (simParams_->haveSwitchingRadius()){ | 
| 1063 | sprintf(painCave.errMsg, | 
| 1064 | "SimInfo Warning: A value was set for the switchingRadius\n" | 
| 1065 | "\teven though the electrostaticSummationMethod was\n" | 
| 1066 | "\tset to %s\n", myMethod.c_str()); | 
| 1067 | painCave.isFatal = 1; | 
| 1068 | simError(); | 
| 1069 | } | 
| 1070 | } | 
| 1071 | } | 
| 1072 |  | 
| 1073 | if (simParams_->haveSwitchingRadius()){ | 
| 1074 | rsw_ = simParams_->getSwitchingRadius(); | 
| 1075 | } else { | 
| 1076 | sprintf(painCave.errMsg, | 
| 1077 | "SimCreator Warning: No value was set for switchingRadius.\n" | 
| 1078 | "\tOOPSE will use a default value of\n" | 
| 1079 | "\t0.85 * cutoffRadius for the switchingRadius\n"); | 
| 1080 | painCave.isFatal = 0; | 
| 1081 | simError(); | 
| 1082 | rsw_ = 0.85 * rcut_; | 
| 1083 | } | 
| 1084 |  | 
| 1085 | notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); | 
| 1086 |  | 
| 1087 | } else { | 
| 1088 | // We didn't set rcut explicitly, and we don't have electrostatic atoms, so | 
| 1089 | // We'll punt and let fortran figure out the cutoffs later. | 
| 1090 |  | 
| 1091 | notifyFortranYouAreOnYourOwn(); | 
| 1092 |  | 
| 1093 | } | 
| 1094 | } | 
| 1095 | } | 
| 1096 |  | 
| 1097 | void SimInfo::setupElectrostaticSummationMethod( int isError ) { | 
| 1098 |  | 
| 1099 | int errorOut; | 
| 1100 | int esm =  NONE; | 
| 1101 | int sm = UNDAMPED; | 
| 1102 | RealType alphaVal; | 
| 1103 | RealType dielectric; | 
| 1104 |  | 
| 1105 | errorOut = isError; | 
| 1106 |  | 
| 1107 | if (simParams_->haveElectrostaticSummationMethod()) { | 
| 1108 | std::string myMethod = simParams_->getElectrostaticSummationMethod(); | 
| 1109 | toUpper(myMethod); | 
| 1110 | if (myMethod == "NONE") { | 
| 1111 | esm = NONE; | 
| 1112 | } else { | 
| 1113 | if (myMethod == "SWITCHING_FUNCTION") { | 
| 1114 | esm = SWITCHING_FUNCTION; | 
| 1115 | } else { | 
| 1116 | if (myMethod == "SHIFTED_POTENTIAL") { | 
| 1117 | esm = SHIFTED_POTENTIAL; | 
| 1118 | } else { | 
| 1119 | if (myMethod == "SHIFTED_FORCE") { | 
| 1120 | esm = SHIFTED_FORCE; | 
| 1121 | } else { | 
| 1122 | if (myMethod == "REACTION_FIELD") { | 
| 1123 | esm = REACTION_FIELD; | 
| 1124 | dielectric = simParams_->getDielectric(); | 
| 1125 | if (!simParams_->haveDielectric()) { | 
| 1126 | // throw warning | 
| 1127 | sprintf( painCave.errMsg, | 
| 1128 | "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" | 
| 1129 | "\tA default value of %f will be used for the dielectric.\n", dielectric); | 
| 1130 | painCave.isFatal = 0; | 
| 1131 | simError(); | 
| 1132 | } | 
| 1133 | } else { | 
| 1134 | // throw error | 
| 1135 | sprintf( painCave.errMsg, | 
| 1136 | "SimInfo error: Unknown electrostaticSummationMethod.\n" | 
| 1137 | "\t(Input file specified %s .)\n" | 
| 1138 | "\telectrostaticSummationMethod must be one of: \"none\",\n" | 
| 1139 | "\t\"shifted_potential\", \"shifted_force\", or \n" | 
| 1140 | "\t\"reaction_field\".\n", myMethod.c_str() ); | 
| 1141 | painCave.isFatal = 1; | 
| 1142 | simError(); | 
| 1143 | } | 
| 1144 | } | 
| 1145 | } | 
| 1146 | } | 
| 1147 | } | 
| 1148 | } | 
| 1149 |  | 
| 1150 | if (simParams_->haveElectrostaticScreeningMethod()) { | 
| 1151 | std::string myScreen = simParams_->getElectrostaticScreeningMethod(); | 
| 1152 | toUpper(myScreen); | 
| 1153 | if (myScreen == "UNDAMPED") { | 
| 1154 | sm = UNDAMPED; | 
| 1155 | } else { | 
| 1156 | if (myScreen == "DAMPED") { | 
| 1157 | sm = DAMPED; | 
| 1158 | if (!simParams_->haveDampingAlpha()) { | 
| 1159 | // first set a cutoff dependent alpha value | 
| 1160 | // we assume alpha depends linearly with rcut from 0 to 20.5 ang | 
| 1161 | alphaVal = 0.5125 - rcut_* 0.025; | 
| 1162 | // for values rcut > 20.5, alpha is zero | 
| 1163 | if (alphaVal < 0) alphaVal = 0; | 
| 1164 |  | 
| 1165 | // throw warning | 
| 1166 | sprintf( painCave.errMsg, | 
| 1167 | "SimInfo warning: dampingAlpha was not specified in the input file.\n" | 
| 1168 | "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); | 
| 1169 | painCave.isFatal = 0; | 
| 1170 | simError(); | 
| 1171 | } else { | 
| 1172 | alphaVal = simParams_->getDampingAlpha(); | 
| 1173 | } | 
| 1174 |  | 
| 1175 | } else { | 
| 1176 | // throw error | 
| 1177 | sprintf( painCave.errMsg, | 
| 1178 | "SimInfo error: Unknown electrostaticScreeningMethod.\n" | 
| 1179 | "\t(Input file specified %s .)\n" | 
| 1180 | "\telectrostaticScreeningMethod must be one of: \"undamped\"\n" | 
| 1181 | "or \"damped\".\n", myScreen.c_str() ); | 
| 1182 | painCave.isFatal = 1; | 
| 1183 | simError(); | 
| 1184 | } | 
| 1185 | } | 
| 1186 | } | 
| 1187 |  | 
| 1188 | // let's pass some summation method variables to fortran | 
| 1189 | setElectrostaticSummationMethod( &esm ); | 
| 1190 | setFortranElectrostaticMethod( &esm ); | 
| 1191 | setScreeningMethod( &sm ); | 
| 1192 | setDampingAlpha( &alphaVal ); | 
| 1193 | setReactionFieldDielectric( &dielectric ); | 
| 1194 | initFortranFF( &errorOut ); | 
| 1195 | } | 
| 1196 |  | 
| 1197 | void SimInfo::setupSwitchingFunction() { | 
| 1198 | int ft = CUBIC; | 
| 1199 |  | 
| 1200 | if (simParams_->haveSwitchingFunctionType()) { | 
| 1201 | std::string funcType = simParams_->getSwitchingFunctionType(); | 
| 1202 | toUpper(funcType); | 
| 1203 | if (funcType == "CUBIC") { | 
| 1204 | ft = CUBIC; | 
| 1205 | } else { | 
| 1206 | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 1207 | ft = FIFTH_ORDER_POLY; | 
| 1208 | } else { | 
| 1209 | // throw error | 
| 1210 | sprintf( painCave.errMsg, | 
| 1211 | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); | 
| 1212 | painCave.isFatal = 1; | 
| 1213 | simError(); | 
| 1214 | } | 
| 1215 | } | 
| 1216 | } | 
| 1217 |  | 
| 1218 | // send switching function notification to switcheroo | 
| 1219 | setFunctionType(&ft); | 
| 1220 |  | 
| 1221 | } | 
| 1222 |  | 
| 1223 | void SimInfo::setupAccumulateBoxDipole() { | 
| 1224 |  | 
| 1225 | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true | 
| 1226 | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 1227 | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 1228 | setAccumulateBoxDipole(); | 
| 1229 | calcBoxDipole_ = true; | 
| 1230 | } | 
| 1231 |  | 
| 1232 | } | 
| 1233 |  | 
| 1234 | void SimInfo::addProperty(GenericData* genData) { | 
| 1235 | properties_.addProperty(genData); | 
| 1236 | } | 
| 1237 |  | 
| 1238 | void SimInfo::removeProperty(const std::string& propName) { | 
| 1239 | properties_.removeProperty(propName); | 
| 1240 | } | 
| 1241 |  | 
| 1242 | void SimInfo::clearProperties() { | 
| 1243 | properties_.clearProperties(); | 
| 1244 | } | 
| 1245 |  | 
| 1246 | std::vector<std::string> SimInfo::getPropertyNames() { | 
| 1247 | return properties_.getPropertyNames(); | 
| 1248 | } | 
| 1249 |  | 
| 1250 | std::vector<GenericData*> SimInfo::getProperties() { | 
| 1251 | return properties_.getProperties(); | 
| 1252 | } | 
| 1253 |  | 
| 1254 | GenericData* SimInfo::getPropertyByName(const std::string& propName) { | 
| 1255 | return properties_.getPropertyByName(propName); | 
| 1256 | } | 
| 1257 |  | 
| 1258 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 1259 | if (sman_ == sman) { | 
| 1260 | return; | 
| 1261 | } | 
| 1262 | delete sman_; | 
| 1263 | sman_ = sman; | 
| 1264 |  | 
| 1265 | Molecule* mol; | 
| 1266 | RigidBody* rb; | 
| 1267 | Atom* atom; | 
| 1268 | SimInfo::MoleculeIterator mi; | 
| 1269 | Molecule::RigidBodyIterator rbIter; | 
| 1270 | Molecule::AtomIterator atomIter;; | 
| 1271 |  | 
| 1272 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1273 |  | 
| 1274 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 1275 | atom->setSnapshotManager(sman_); | 
| 1276 | } | 
| 1277 |  | 
| 1278 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 1279 | rb->setSnapshotManager(sman_); | 
| 1280 | } | 
| 1281 | } | 
| 1282 |  | 
| 1283 | } | 
| 1284 |  | 
| 1285 | Vector3d SimInfo::getComVel(){ | 
| 1286 | SimInfo::MoleculeIterator i; | 
| 1287 | Molecule* mol; | 
| 1288 |  | 
| 1289 | Vector3d comVel(0.0); | 
| 1290 | RealType totalMass = 0.0; | 
| 1291 |  | 
| 1292 |  | 
| 1293 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1294 | RealType mass = mol->getMass(); | 
| 1295 | totalMass += mass; | 
| 1296 | comVel += mass * mol->getComVel(); | 
| 1297 | } | 
| 1298 |  | 
| 1299 | #ifdef IS_MPI | 
| 1300 | RealType tmpMass = totalMass; | 
| 1301 | Vector3d tmpComVel(comVel); | 
| 1302 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1303 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1304 | #endif | 
| 1305 |  | 
| 1306 | comVel /= totalMass; | 
| 1307 |  | 
| 1308 | return comVel; | 
| 1309 | } | 
| 1310 |  | 
| 1311 | Vector3d SimInfo::getCom(){ | 
| 1312 | SimInfo::MoleculeIterator i; | 
| 1313 | Molecule* mol; | 
| 1314 |  | 
| 1315 | Vector3d com(0.0); | 
| 1316 | RealType totalMass = 0.0; | 
| 1317 |  | 
| 1318 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1319 | RealType mass = mol->getMass(); | 
| 1320 | totalMass += mass; | 
| 1321 | com += mass * mol->getCom(); | 
| 1322 | } | 
| 1323 |  | 
| 1324 | #ifdef IS_MPI | 
| 1325 | RealType tmpMass = totalMass; | 
| 1326 | Vector3d tmpCom(com); | 
| 1327 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1328 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1329 | #endif | 
| 1330 |  | 
| 1331 | com /= totalMass; | 
| 1332 |  | 
| 1333 | return com; | 
| 1334 |  | 
| 1335 | } | 
| 1336 |  | 
| 1337 | std::ostream& operator <<(std::ostream& o, SimInfo& info) { | 
| 1338 |  | 
| 1339 | return o; | 
| 1340 | } | 
| 1341 |  | 
| 1342 |  | 
| 1343 | /* | 
| 1344 | Returns center of mass and center of mass velocity in one function call. | 
| 1345 | */ | 
| 1346 |  | 
| 1347 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1348 | SimInfo::MoleculeIterator i; | 
| 1349 | Molecule* mol; | 
| 1350 |  | 
| 1351 |  | 
| 1352 | RealType totalMass = 0.0; | 
| 1353 |  | 
| 1354 |  | 
| 1355 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1356 | RealType mass = mol->getMass(); | 
| 1357 | totalMass += mass; | 
| 1358 | com += mass * mol->getCom(); | 
| 1359 | comVel += mass * mol->getComVel(); | 
| 1360 | } | 
| 1361 |  | 
| 1362 | #ifdef IS_MPI | 
| 1363 | RealType tmpMass = totalMass; | 
| 1364 | Vector3d tmpCom(com); | 
| 1365 | Vector3d tmpComVel(comVel); | 
| 1366 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1367 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1368 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1369 | #endif | 
| 1370 |  | 
| 1371 | com /= totalMass; | 
| 1372 | comVel /= totalMass; | 
| 1373 | } | 
| 1374 |  | 
| 1375 | /* | 
| 1376 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1377 |  | 
| 1378 |  | 
| 1379 | [  Ixx -Ixy  -Ixz ] | 
| 1380 | J =| -Iyx  Iyy  -Iyz | | 
| 1381 | [ -Izx -Iyz   Izz ] | 
| 1382 | */ | 
| 1383 |  | 
| 1384 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1385 |  | 
| 1386 |  | 
| 1387 | RealType xx = 0.0; | 
| 1388 | RealType yy = 0.0; | 
| 1389 | RealType zz = 0.0; | 
| 1390 | RealType xy = 0.0; | 
| 1391 | RealType xz = 0.0; | 
| 1392 | RealType yz = 0.0; | 
| 1393 | Vector3d com(0.0); | 
| 1394 | Vector3d comVel(0.0); | 
| 1395 |  | 
| 1396 | getComAll(com, comVel); | 
| 1397 |  | 
| 1398 | SimInfo::MoleculeIterator i; | 
| 1399 | Molecule* mol; | 
| 1400 |  | 
| 1401 | Vector3d thisq(0.0); | 
| 1402 | Vector3d thisv(0.0); | 
| 1403 |  | 
| 1404 | RealType thisMass = 0.0; | 
| 1405 |  | 
| 1406 |  | 
| 1407 |  | 
| 1408 |  | 
| 1409 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1410 |  | 
| 1411 | thisq = mol->getCom()-com; | 
| 1412 | thisv = mol->getComVel()-comVel; | 
| 1413 | thisMass = mol->getMass(); | 
| 1414 | // Compute moment of intertia coefficients. | 
| 1415 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1416 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1417 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1418 |  | 
| 1419 | // compute products of intertia | 
| 1420 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1421 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1422 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1423 |  | 
| 1424 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1425 |  | 
| 1426 | } | 
| 1427 |  | 
| 1428 |  | 
| 1429 | inertiaTensor(0,0) = yy + zz; | 
| 1430 | inertiaTensor(0,1) = -xy; | 
| 1431 | inertiaTensor(0,2) = -xz; | 
| 1432 | inertiaTensor(1,0) = -xy; | 
| 1433 | inertiaTensor(1,1) = xx + zz; | 
| 1434 | inertiaTensor(1,2) = -yz; | 
| 1435 | inertiaTensor(2,0) = -xz; | 
| 1436 | inertiaTensor(2,1) = -yz; | 
| 1437 | inertiaTensor(2,2) = xx + yy; | 
| 1438 |  | 
| 1439 | #ifdef IS_MPI | 
| 1440 | Mat3x3d tmpI(inertiaTensor); | 
| 1441 | Vector3d tmpAngMom; | 
| 1442 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1443 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1444 | #endif | 
| 1445 |  | 
| 1446 | return; | 
| 1447 | } | 
| 1448 |  | 
| 1449 | //Returns the angular momentum of the system | 
| 1450 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1451 |  | 
| 1452 | Vector3d com(0.0); | 
| 1453 | Vector3d comVel(0.0); | 
| 1454 | Vector3d angularMomentum(0.0); | 
| 1455 |  | 
| 1456 | getComAll(com,comVel); | 
| 1457 |  | 
| 1458 | SimInfo::MoleculeIterator i; | 
| 1459 | Molecule* mol; | 
| 1460 |  | 
| 1461 | Vector3d thisr(0.0); | 
| 1462 | Vector3d thisp(0.0); | 
| 1463 |  | 
| 1464 | RealType thisMass; | 
| 1465 |  | 
| 1466 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1467 | thisMass = mol->getMass(); | 
| 1468 | thisr = mol->getCom()-com; | 
| 1469 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1470 |  | 
| 1471 | angularMomentum += cross( thisr, thisp ); | 
| 1472 |  | 
| 1473 | } | 
| 1474 |  | 
| 1475 | #ifdef IS_MPI | 
| 1476 | Vector3d tmpAngMom; | 
| 1477 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1478 | #endif | 
| 1479 |  | 
| 1480 | return angularMomentum; | 
| 1481 | } | 
| 1482 |  | 
| 1483 | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1484 | return IOIndexToIntegrableObject.at(index); | 
| 1485 | } | 
| 1486 |  | 
| 1487 | void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { | 
| 1488 | IOIndexToIntegrableObject= v; | 
| 1489 | } | 
| 1490 |  | 
| 1491 | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes | 
| 1492 | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1493 | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to | 
| 1494 | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1495 | */ | 
| 1496 | void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1497 | Mat3x3d intTensor; | 
| 1498 | RealType det; | 
| 1499 | Vector3d dummyAngMom; | 
| 1500 | RealType sysconstants; | 
| 1501 | RealType geomCnst; | 
| 1502 |  | 
| 1503 | geomCnst = 3.0/2.0; | 
| 1504 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1505 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1506 |  | 
| 1507 | det = intTensor.determinant(); | 
| 1508 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1509 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1510 | return; | 
| 1511 | } | 
| 1512 |  | 
| 1513 | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1514 | Mat3x3d intTensor; | 
| 1515 | Vector3d dummyAngMom; | 
| 1516 | RealType sysconstants; | 
| 1517 | RealType geomCnst; | 
| 1518 |  | 
| 1519 | geomCnst = 3.0/2.0; | 
| 1520 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1521 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1522 |  | 
| 1523 | detI = intTensor.determinant(); | 
| 1524 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1525 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1526 | return; | 
| 1527 | } | 
| 1528 | /* | 
| 1529 | void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { | 
| 1530 | assert( v.size() == nAtoms_ + nRigidBodies_); | 
| 1531 | sdByGlobalIndex_ = v; | 
| 1532 | } | 
| 1533 |  | 
| 1534 | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { | 
| 1535 | //assert(index < nAtoms_ + nRigidBodies_); | 
| 1536 | return sdByGlobalIndex_.at(index); | 
| 1537 | } | 
| 1538 | */ | 
| 1539 | }//end namespace oopse | 
| 1540 |  |