| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | /** | 
| 43 | * @file SimInfo.cpp | 
| 44 | * @author    tlin | 
| 45 | * @date  11/02/2004 | 
| 46 | * @version 1.0 | 
| 47 | */ | 
| 48 |  | 
| 49 | #include <algorithm> | 
| 50 | #include <set> | 
| 51 | #include <map> | 
| 52 |  | 
| 53 | #include "brains/SimInfo.hpp" | 
| 54 | #include "math/Vector3.hpp" | 
| 55 | #include "primitives/Molecule.hpp" | 
| 56 | #include "primitives/StuntDouble.hpp" | 
| 57 | #include "UseTheForce/fCutoffPolicy.h" | 
| 58 | #include "UseTheForce/DarkSide/fSwitchingFunctionType.h" | 
| 59 | #include "UseTheForce/doForces_interface.h" | 
| 60 | #include "UseTheForce/DarkSide/neighborLists_interface.h" | 
| 61 | #include "UseTheForce/DarkSide/switcheroo_interface.h" | 
| 62 | #include "utils/MemoryUtils.hpp" | 
| 63 | #include "utils/simError.h" | 
| 64 | #include "selection/SelectionManager.hpp" | 
| 65 | #include "io/ForceFieldOptions.hpp" | 
| 66 | #include "UseTheForce/ForceField.hpp" | 
| 67 | #include "nonbonded/InteractionManager.hpp" | 
| 68 |  | 
| 69 |  | 
| 70 | #ifdef IS_MPI | 
| 71 | #include "UseTheForce/mpiComponentPlan.h" | 
| 72 | #include "UseTheForce/DarkSide/simParallel_interface.h" | 
| 73 | #endif | 
| 74 |  | 
| 75 | using namespace std; | 
| 76 | namespace OpenMD { | 
| 77 |  | 
| 78 | SimInfo::SimInfo(ForceField* ff, Globals* simParams) : | 
| 79 | forceField_(ff), simParams_(simParams), | 
| 80 | ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), | 
| 81 | nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), | 
| 82 | nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), | 
| 83 | nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0), | 
| 84 | nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), | 
| 85 | nConstraints_(0), sman_(NULL), fortranInitialized_(false), | 
| 86 | calcBoxDipole_(false), useAtomicVirial_(true) { | 
| 87 |  | 
| 88 | MoleculeStamp* molStamp; | 
| 89 | int nMolWithSameStamp; | 
| 90 | int nCutoffAtoms = 0; // number of atoms belong to cutoff groups | 
| 91 | int nGroups = 0;       //total cutoff groups defined in meta-data file | 
| 92 | CutoffGroupStamp* cgStamp; | 
| 93 | RigidBodyStamp* rbStamp; | 
| 94 | int nRigidAtoms = 0; | 
| 95 |  | 
| 96 | vector<Component*> components = simParams->getComponents(); | 
| 97 |  | 
| 98 | for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { | 
| 99 | molStamp = (*i)->getMoleculeStamp(); | 
| 100 | nMolWithSameStamp = (*i)->getNMol(); | 
| 101 |  | 
| 102 | addMoleculeStamp(molStamp, nMolWithSameStamp); | 
| 103 |  | 
| 104 | //calculate atoms in molecules | 
| 105 | nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; | 
| 106 |  | 
| 107 | //calculate atoms in cutoff groups | 
| 108 | int nAtomsInGroups = 0; | 
| 109 | int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); | 
| 110 |  | 
| 111 | for (int j=0; j < nCutoffGroupsInStamp; j++) { | 
| 112 | cgStamp = molStamp->getCutoffGroupStamp(j); | 
| 113 | nAtomsInGroups += cgStamp->getNMembers(); | 
| 114 | } | 
| 115 |  | 
| 116 | nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; | 
| 117 |  | 
| 118 | nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; | 
| 119 |  | 
| 120 | //calculate atoms in rigid bodies | 
| 121 | int nAtomsInRigidBodies = 0; | 
| 122 | int nRigidBodiesInStamp = molStamp->getNRigidBodies(); | 
| 123 |  | 
| 124 | for (int j=0; j < nRigidBodiesInStamp; j++) { | 
| 125 | rbStamp = molStamp->getRigidBodyStamp(j); | 
| 126 | nAtomsInRigidBodies += rbStamp->getNMembers(); | 
| 127 | } | 
| 128 |  | 
| 129 | nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; | 
| 130 | nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; | 
| 131 |  | 
| 132 | } | 
| 133 |  | 
| 134 | //every free atom (atom does not belong to cutoff groups) is a cutoff | 
| 135 | //group therefore the total number of cutoff groups in the system is | 
| 136 | //equal to the total number of atoms minus number of atoms belong to | 
| 137 | //cutoff group defined in meta-data file plus the number of cutoff | 
| 138 | //groups defined in meta-data file | 
| 139 | nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; | 
| 140 |  | 
| 141 | //every free atom (atom does not belong to rigid bodies) is an | 
| 142 | //integrable object therefore the total number of integrable objects | 
| 143 | //in the system is equal to the total number of atoms minus number of | 
| 144 | //atoms belong to rigid body defined in meta-data file plus the number | 
| 145 | //of rigid bodies defined in meta-data file | 
| 146 | nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms | 
| 147 | + nGlobalRigidBodies_; | 
| 148 |  | 
| 149 | nGlobalMols_ = molStampIds_.size(); | 
| 150 | molToProcMap_.resize(nGlobalMols_); | 
| 151 | } | 
| 152 |  | 
| 153 | SimInfo::~SimInfo() { | 
| 154 | map<int, Molecule*>::iterator i; | 
| 155 | for (i = molecules_.begin(); i != molecules_.end(); ++i) { | 
| 156 | delete i->second; | 
| 157 | } | 
| 158 | molecules_.clear(); | 
| 159 |  | 
| 160 | delete sman_; | 
| 161 | delete simParams_; | 
| 162 | delete forceField_; | 
| 163 | } | 
| 164 |  | 
| 165 |  | 
| 166 | bool SimInfo::addMolecule(Molecule* mol) { | 
| 167 | MoleculeIterator i; | 
| 168 |  | 
| 169 | i = molecules_.find(mol->getGlobalIndex()); | 
| 170 | if (i == molecules_.end() ) { | 
| 171 |  | 
| 172 | molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); | 
| 173 |  | 
| 174 | nAtoms_ += mol->getNAtoms(); | 
| 175 | nBonds_ += mol->getNBonds(); | 
| 176 | nBends_ += mol->getNBends(); | 
| 177 | nTorsions_ += mol->getNTorsions(); | 
| 178 | nInversions_ += mol->getNInversions(); | 
| 179 | nRigidBodies_ += mol->getNRigidBodies(); | 
| 180 | nIntegrableObjects_ += mol->getNIntegrableObjects(); | 
| 181 | nCutoffGroups_ += mol->getNCutoffGroups(); | 
| 182 | nConstraints_ += mol->getNConstraintPairs(); | 
| 183 |  | 
| 184 | addInteractionPairs(mol); | 
| 185 |  | 
| 186 | return true; | 
| 187 | } else { | 
| 188 | return false; | 
| 189 | } | 
| 190 | } | 
| 191 |  | 
| 192 | bool SimInfo::removeMolecule(Molecule* mol) { | 
| 193 | MoleculeIterator i; | 
| 194 | i = molecules_.find(mol->getGlobalIndex()); | 
| 195 |  | 
| 196 | if (i != molecules_.end() ) { | 
| 197 |  | 
| 198 | assert(mol == i->second); | 
| 199 |  | 
| 200 | nAtoms_ -= mol->getNAtoms(); | 
| 201 | nBonds_ -= mol->getNBonds(); | 
| 202 | nBends_ -= mol->getNBends(); | 
| 203 | nTorsions_ -= mol->getNTorsions(); | 
| 204 | nInversions_ -= mol->getNInversions(); | 
| 205 | nRigidBodies_ -= mol->getNRigidBodies(); | 
| 206 | nIntegrableObjects_ -= mol->getNIntegrableObjects(); | 
| 207 | nCutoffGroups_ -= mol->getNCutoffGroups(); | 
| 208 | nConstraints_ -= mol->getNConstraintPairs(); | 
| 209 |  | 
| 210 | removeInteractionPairs(mol); | 
| 211 | molecules_.erase(mol->getGlobalIndex()); | 
| 212 |  | 
| 213 | delete mol; | 
| 214 |  | 
| 215 | return true; | 
| 216 | } else { | 
| 217 | return false; | 
| 218 | } | 
| 219 | } | 
| 220 |  | 
| 221 |  | 
| 222 | Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { | 
| 223 | i = molecules_.begin(); | 
| 224 | return i == molecules_.end() ? NULL : i->second; | 
| 225 | } | 
| 226 |  | 
| 227 | Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { | 
| 228 | ++i; | 
| 229 | return i == molecules_.end() ? NULL : i->second; | 
| 230 | } | 
| 231 |  | 
| 232 |  | 
| 233 | void SimInfo::calcNdf() { | 
| 234 | int ndf_local; | 
| 235 | MoleculeIterator i; | 
| 236 | vector<StuntDouble*>::iterator j; | 
| 237 | Molecule* mol; | 
| 238 | StuntDouble* integrableObject; | 
| 239 |  | 
| 240 | ndf_local = 0; | 
| 241 |  | 
| 242 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 243 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 244 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 245 |  | 
| 246 | ndf_local += 3; | 
| 247 |  | 
| 248 | if (integrableObject->isDirectional()) { | 
| 249 | if (integrableObject->isLinear()) { | 
| 250 | ndf_local += 2; | 
| 251 | } else { | 
| 252 | ndf_local += 3; | 
| 253 | } | 
| 254 | } | 
| 255 |  | 
| 256 | } | 
| 257 | } | 
| 258 |  | 
| 259 | // n_constraints is local, so subtract them on each processor | 
| 260 | ndf_local -= nConstraints_; | 
| 261 |  | 
| 262 | #ifdef IS_MPI | 
| 263 | MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 264 | #else | 
| 265 | ndf_ = ndf_local; | 
| 266 | #endif | 
| 267 |  | 
| 268 | // nZconstraints_ is global, as are the 3 COM translations for the | 
| 269 | // entire system: | 
| 270 | ndf_ = ndf_ - 3 - nZconstraint_; | 
| 271 |  | 
| 272 | } | 
| 273 |  | 
| 274 | int SimInfo::getFdf() { | 
| 275 | #ifdef IS_MPI | 
| 276 | MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 277 | #else | 
| 278 | fdf_ = fdf_local; | 
| 279 | #endif | 
| 280 | return fdf_; | 
| 281 | } | 
| 282 |  | 
| 283 | void SimInfo::calcNdfRaw() { | 
| 284 | int ndfRaw_local; | 
| 285 |  | 
| 286 | MoleculeIterator i; | 
| 287 | vector<StuntDouble*>::iterator j; | 
| 288 | Molecule* mol; | 
| 289 | StuntDouble* integrableObject; | 
| 290 |  | 
| 291 | // Raw degrees of freedom that we have to set | 
| 292 | ndfRaw_local = 0; | 
| 293 |  | 
| 294 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 295 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 296 | integrableObject = mol->nextIntegrableObject(j)) { | 
| 297 |  | 
| 298 | ndfRaw_local += 3; | 
| 299 |  | 
| 300 | if (integrableObject->isDirectional()) { | 
| 301 | if (integrableObject->isLinear()) { | 
| 302 | ndfRaw_local += 2; | 
| 303 | } else { | 
| 304 | ndfRaw_local += 3; | 
| 305 | } | 
| 306 | } | 
| 307 |  | 
| 308 | } | 
| 309 | } | 
| 310 |  | 
| 311 | #ifdef IS_MPI | 
| 312 | MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 313 | #else | 
| 314 | ndfRaw_ = ndfRaw_local; | 
| 315 | #endif | 
| 316 | } | 
| 317 |  | 
| 318 | void SimInfo::calcNdfTrans() { | 
| 319 | int ndfTrans_local; | 
| 320 |  | 
| 321 | ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; | 
| 322 |  | 
| 323 |  | 
| 324 | #ifdef IS_MPI | 
| 325 | MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 326 | #else | 
| 327 | ndfTrans_ = ndfTrans_local; | 
| 328 | #endif | 
| 329 |  | 
| 330 | ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; | 
| 331 |  | 
| 332 | } | 
| 333 |  | 
| 334 | void SimInfo::addInteractionPairs(Molecule* mol) { | 
| 335 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 336 | vector<Bond*>::iterator bondIter; | 
| 337 | vector<Bend*>::iterator bendIter; | 
| 338 | vector<Torsion*>::iterator torsionIter; | 
| 339 | vector<Inversion*>::iterator inversionIter; | 
| 340 | Bond* bond; | 
| 341 | Bend* bend; | 
| 342 | Torsion* torsion; | 
| 343 | Inversion* inversion; | 
| 344 | int a; | 
| 345 | int b; | 
| 346 | int c; | 
| 347 | int d; | 
| 348 |  | 
| 349 | // atomGroups can be used to add special interaction maps between | 
| 350 | // groups of atoms that are in two separate rigid bodies. | 
| 351 | // However, most site-site interactions between two rigid bodies | 
| 352 | // are probably not special, just the ones between the physically | 
| 353 | // bonded atoms.  Interactions *within* a single rigid body should | 
| 354 | // always be excluded.  These are done at the bottom of this | 
| 355 | // function. | 
| 356 |  | 
| 357 | map<int, set<int> > atomGroups; | 
| 358 | Molecule::RigidBodyIterator rbIter; | 
| 359 | RigidBody* rb; | 
| 360 | Molecule::IntegrableObjectIterator ii; | 
| 361 | StuntDouble* integrableObject; | 
| 362 |  | 
| 363 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 364 | integrableObject != NULL; | 
| 365 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 366 |  | 
| 367 | if (integrableObject->isRigidBody()) { | 
| 368 | rb = static_cast<RigidBody*>(integrableObject); | 
| 369 | vector<Atom*> atoms = rb->getAtoms(); | 
| 370 | set<int> rigidAtoms; | 
| 371 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 372 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 373 | } | 
| 374 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 375 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 376 | } | 
| 377 | } else { | 
| 378 | set<int> oneAtomSet; | 
| 379 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 380 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 381 | } | 
| 382 | } | 
| 383 |  | 
| 384 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 385 | bond = mol->nextBond(bondIter)) { | 
| 386 |  | 
| 387 | a = bond->getAtomA()->getGlobalIndex(); | 
| 388 | b = bond->getAtomB()->getGlobalIndex(); | 
| 389 |  | 
| 390 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 391 | oneTwoInteractions_.addPair(a, b); | 
| 392 | } else { | 
| 393 | excludedInteractions_.addPair(a, b); | 
| 394 | } | 
| 395 | } | 
| 396 |  | 
| 397 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 398 | bend = mol->nextBend(bendIter)) { | 
| 399 |  | 
| 400 | a = bend->getAtomA()->getGlobalIndex(); | 
| 401 | b = bend->getAtomB()->getGlobalIndex(); | 
| 402 | c = bend->getAtomC()->getGlobalIndex(); | 
| 403 |  | 
| 404 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 405 | oneTwoInteractions_.addPair(a, b); | 
| 406 | oneTwoInteractions_.addPair(b, c); | 
| 407 | } else { | 
| 408 | excludedInteractions_.addPair(a, b); | 
| 409 | excludedInteractions_.addPair(b, c); | 
| 410 | } | 
| 411 |  | 
| 412 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 413 | oneThreeInteractions_.addPair(a, c); | 
| 414 | } else { | 
| 415 | excludedInteractions_.addPair(a, c); | 
| 416 | } | 
| 417 | } | 
| 418 |  | 
| 419 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 420 | torsion = mol->nextTorsion(torsionIter)) { | 
| 421 |  | 
| 422 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 423 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 424 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 425 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 426 |  | 
| 427 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 428 | oneTwoInteractions_.addPair(a, b); | 
| 429 | oneTwoInteractions_.addPair(b, c); | 
| 430 | oneTwoInteractions_.addPair(c, d); | 
| 431 | } else { | 
| 432 | excludedInteractions_.addPair(a, b); | 
| 433 | excludedInteractions_.addPair(b, c); | 
| 434 | excludedInteractions_.addPair(c, d); | 
| 435 | } | 
| 436 |  | 
| 437 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 438 | oneThreeInteractions_.addPair(a, c); | 
| 439 | oneThreeInteractions_.addPair(b, d); | 
| 440 | } else { | 
| 441 | excludedInteractions_.addPair(a, c); | 
| 442 | excludedInteractions_.addPair(b, d); | 
| 443 | } | 
| 444 |  | 
| 445 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 446 | oneFourInteractions_.addPair(a, d); | 
| 447 | } else { | 
| 448 | excludedInteractions_.addPair(a, d); | 
| 449 | } | 
| 450 | } | 
| 451 |  | 
| 452 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 453 | inversion = mol->nextInversion(inversionIter)) { | 
| 454 |  | 
| 455 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 456 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 457 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 458 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 459 |  | 
| 460 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 461 | oneTwoInteractions_.addPair(a, b); | 
| 462 | oneTwoInteractions_.addPair(a, c); | 
| 463 | oneTwoInteractions_.addPair(a, d); | 
| 464 | } else { | 
| 465 | excludedInteractions_.addPair(a, b); | 
| 466 | excludedInteractions_.addPair(a, c); | 
| 467 | excludedInteractions_.addPair(a, d); | 
| 468 | } | 
| 469 |  | 
| 470 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 471 | oneThreeInteractions_.addPair(b, c); | 
| 472 | oneThreeInteractions_.addPair(b, d); | 
| 473 | oneThreeInteractions_.addPair(c, d); | 
| 474 | } else { | 
| 475 | excludedInteractions_.addPair(b, c); | 
| 476 | excludedInteractions_.addPair(b, d); | 
| 477 | excludedInteractions_.addPair(c, d); | 
| 478 | } | 
| 479 | } | 
| 480 |  | 
| 481 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 482 | rb = mol->nextRigidBody(rbIter)) { | 
| 483 | vector<Atom*> atoms = rb->getAtoms(); | 
| 484 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 485 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 486 | a = atoms[i]->getGlobalIndex(); | 
| 487 | b = atoms[j]->getGlobalIndex(); | 
| 488 | excludedInteractions_.addPair(a, b); | 
| 489 | } | 
| 490 | } | 
| 491 | } | 
| 492 |  | 
| 493 | } | 
| 494 |  | 
| 495 | void SimInfo::removeInteractionPairs(Molecule* mol) { | 
| 496 | ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); | 
| 497 | vector<Bond*>::iterator bondIter; | 
| 498 | vector<Bend*>::iterator bendIter; | 
| 499 | vector<Torsion*>::iterator torsionIter; | 
| 500 | vector<Inversion*>::iterator inversionIter; | 
| 501 | Bond* bond; | 
| 502 | Bend* bend; | 
| 503 | Torsion* torsion; | 
| 504 | Inversion* inversion; | 
| 505 | int a; | 
| 506 | int b; | 
| 507 | int c; | 
| 508 | int d; | 
| 509 |  | 
| 510 | map<int, set<int> > atomGroups; | 
| 511 | Molecule::RigidBodyIterator rbIter; | 
| 512 | RigidBody* rb; | 
| 513 | Molecule::IntegrableObjectIterator ii; | 
| 514 | StuntDouble* integrableObject; | 
| 515 |  | 
| 516 | for (integrableObject = mol->beginIntegrableObject(ii); | 
| 517 | integrableObject != NULL; | 
| 518 | integrableObject = mol->nextIntegrableObject(ii)) { | 
| 519 |  | 
| 520 | if (integrableObject->isRigidBody()) { | 
| 521 | rb = static_cast<RigidBody*>(integrableObject); | 
| 522 | vector<Atom*> atoms = rb->getAtoms(); | 
| 523 | set<int> rigidAtoms; | 
| 524 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 525 | rigidAtoms.insert(atoms[i]->getGlobalIndex()); | 
| 526 | } | 
| 527 | for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { | 
| 528 | atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); | 
| 529 | } | 
| 530 | } else { | 
| 531 | set<int> oneAtomSet; | 
| 532 | oneAtomSet.insert(integrableObject->getGlobalIndex()); | 
| 533 | atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); | 
| 534 | } | 
| 535 | } | 
| 536 |  | 
| 537 | for (bond= mol->beginBond(bondIter); bond != NULL; | 
| 538 | bond = mol->nextBond(bondIter)) { | 
| 539 |  | 
| 540 | a = bond->getAtomA()->getGlobalIndex(); | 
| 541 | b = bond->getAtomB()->getGlobalIndex(); | 
| 542 |  | 
| 543 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 544 | oneTwoInteractions_.removePair(a, b); | 
| 545 | } else { | 
| 546 | excludedInteractions_.removePair(a, b); | 
| 547 | } | 
| 548 | } | 
| 549 |  | 
| 550 | for (bend= mol->beginBend(bendIter); bend != NULL; | 
| 551 | bend = mol->nextBend(bendIter)) { | 
| 552 |  | 
| 553 | a = bend->getAtomA()->getGlobalIndex(); | 
| 554 | b = bend->getAtomB()->getGlobalIndex(); | 
| 555 | c = bend->getAtomC()->getGlobalIndex(); | 
| 556 |  | 
| 557 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 558 | oneTwoInteractions_.removePair(a, b); | 
| 559 | oneTwoInteractions_.removePair(b, c); | 
| 560 | } else { | 
| 561 | excludedInteractions_.removePair(a, b); | 
| 562 | excludedInteractions_.removePair(b, c); | 
| 563 | } | 
| 564 |  | 
| 565 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 566 | oneThreeInteractions_.removePair(a, c); | 
| 567 | } else { | 
| 568 | excludedInteractions_.removePair(a, c); | 
| 569 | } | 
| 570 | } | 
| 571 |  | 
| 572 | for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; | 
| 573 | torsion = mol->nextTorsion(torsionIter)) { | 
| 574 |  | 
| 575 | a = torsion->getAtomA()->getGlobalIndex(); | 
| 576 | b = torsion->getAtomB()->getGlobalIndex(); | 
| 577 | c = torsion->getAtomC()->getGlobalIndex(); | 
| 578 | d = torsion->getAtomD()->getGlobalIndex(); | 
| 579 |  | 
| 580 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 581 | oneTwoInteractions_.removePair(a, b); | 
| 582 | oneTwoInteractions_.removePair(b, c); | 
| 583 | oneTwoInteractions_.removePair(c, d); | 
| 584 | } else { | 
| 585 | excludedInteractions_.removePair(a, b); | 
| 586 | excludedInteractions_.removePair(b, c); | 
| 587 | excludedInteractions_.removePair(c, d); | 
| 588 | } | 
| 589 |  | 
| 590 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 591 | oneThreeInteractions_.removePair(a, c); | 
| 592 | oneThreeInteractions_.removePair(b, d); | 
| 593 | } else { | 
| 594 | excludedInteractions_.removePair(a, c); | 
| 595 | excludedInteractions_.removePair(b, d); | 
| 596 | } | 
| 597 |  | 
| 598 | if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { | 
| 599 | oneFourInteractions_.removePair(a, d); | 
| 600 | } else { | 
| 601 | excludedInteractions_.removePair(a, d); | 
| 602 | } | 
| 603 | } | 
| 604 |  | 
| 605 | for (inversion= mol->beginInversion(inversionIter); inversion != NULL; | 
| 606 | inversion = mol->nextInversion(inversionIter)) { | 
| 607 |  | 
| 608 | a = inversion->getAtomA()->getGlobalIndex(); | 
| 609 | b = inversion->getAtomB()->getGlobalIndex(); | 
| 610 | c = inversion->getAtomC()->getGlobalIndex(); | 
| 611 | d = inversion->getAtomD()->getGlobalIndex(); | 
| 612 |  | 
| 613 | if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { | 
| 614 | oneTwoInteractions_.removePair(a, b); | 
| 615 | oneTwoInteractions_.removePair(a, c); | 
| 616 | oneTwoInteractions_.removePair(a, d); | 
| 617 | } else { | 
| 618 | excludedInteractions_.removePair(a, b); | 
| 619 | excludedInteractions_.removePair(a, c); | 
| 620 | excludedInteractions_.removePair(a, d); | 
| 621 | } | 
| 622 |  | 
| 623 | if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { | 
| 624 | oneThreeInteractions_.removePair(b, c); | 
| 625 | oneThreeInteractions_.removePair(b, d); | 
| 626 | oneThreeInteractions_.removePair(c, d); | 
| 627 | } else { | 
| 628 | excludedInteractions_.removePair(b, c); | 
| 629 | excludedInteractions_.removePair(b, d); | 
| 630 | excludedInteractions_.removePair(c, d); | 
| 631 | } | 
| 632 | } | 
| 633 |  | 
| 634 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; | 
| 635 | rb = mol->nextRigidBody(rbIter)) { | 
| 636 | vector<Atom*> atoms = rb->getAtoms(); | 
| 637 | for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { | 
| 638 | for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { | 
| 639 | a = atoms[i]->getGlobalIndex(); | 
| 640 | b = atoms[j]->getGlobalIndex(); | 
| 641 | excludedInteractions_.removePair(a, b); | 
| 642 | } | 
| 643 | } | 
| 644 | } | 
| 645 |  | 
| 646 | } | 
| 647 |  | 
| 648 |  | 
| 649 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { | 
| 650 | int curStampId; | 
| 651 |  | 
| 652 | //index from 0 | 
| 653 | curStampId = moleculeStamps_.size(); | 
| 654 |  | 
| 655 | moleculeStamps_.push_back(molStamp); | 
| 656 | molStampIds_.insert(molStampIds_.end(), nmol, curStampId); | 
| 657 | } | 
| 658 |  | 
| 659 | void SimInfo::update() { | 
| 660 |  | 
| 661 | setupSimType(); | 
| 662 | setupCutoffRadius(); | 
| 663 | setupSwitchingRadius(); | 
| 664 | setupCutoffMethod(); | 
| 665 | setupSkinThickness(); | 
| 666 | setupSwitchingFunction(); | 
| 667 | setupAccumulateBoxDipole(); | 
| 668 |  | 
| 669 | #ifdef IS_MPI | 
| 670 | setupFortranParallel(); | 
| 671 | #endif | 
| 672 | setupFortranSim(); | 
| 673 | fortranInitialized_ = true; | 
| 674 |  | 
| 675 | calcNdf(); | 
| 676 | calcNdfRaw(); | 
| 677 | calcNdfTrans(); | 
| 678 | } | 
| 679 |  | 
| 680 | set<AtomType*> SimInfo::getSimulatedAtomTypes() { | 
| 681 | SimInfo::MoleculeIterator mi; | 
| 682 | Molecule* mol; | 
| 683 | Molecule::AtomIterator ai; | 
| 684 | Atom* atom; | 
| 685 | set<AtomType*> atomTypes; | 
| 686 |  | 
| 687 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 688 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 689 | atomTypes.insert(atom->getAtomType()); | 
| 690 | } | 
| 691 | } | 
| 692 | return atomTypes; | 
| 693 | } | 
| 694 |  | 
| 695 | /** | 
| 696 | * setupCutoffRadius | 
| 697 | * | 
| 698 | *  If the cutoffRadius was explicitly set, use that value. | 
| 699 | *  If the cutoffRadius was not explicitly set: | 
| 700 | *      Are there electrostatic atoms?  Use 12.0 Angstroms. | 
| 701 | *      No electrostatic atoms?  Poll the atom types present in the | 
| 702 | *      simulation for suggested cutoff values (e.g. 2.5 * sigma). | 
| 703 | *      Use the maximum suggested value that was found. | 
| 704 | */ | 
| 705 | void SimInfo::setupCutoffRadius() { | 
| 706 |  | 
| 707 | if (simParams_->haveCutoffRadius()) { | 
| 708 | cutoffRadius_ = simParams_->getCutoffRadius(); | 
| 709 | } else { | 
| 710 | if (usesElectrostaticAtoms_) { | 
| 711 | sprintf(painCave.errMsg, | 
| 712 | "SimInfo Warning: No value was set for the cutoffRadius.\n" | 
| 713 | "\tOpenMD will use a default value of 12.0 angstroms" | 
| 714 | "\tfor the cutoffRadius.\n"); | 
| 715 | painCave.isFatal = 0; | 
| 716 | simError(); | 
| 717 | cutoffRadius_ = 12.0; | 
| 718 | } else { | 
| 719 | RealType thisCut; | 
| 720 | set<AtomType*>::iterator i; | 
| 721 | set<AtomType*> atomTypes; | 
| 722 | atomTypes = getSimulatedAtomTypes(); | 
| 723 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 724 | thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); | 
| 725 | cutoffRadius_ = max(thisCut, cutoffRadius_); | 
| 726 | } | 
| 727 | sprintf(painCave.errMsg, | 
| 728 | "SimInfo Warning: No value was set for the cutoffRadius.\n" | 
| 729 | "\tOpenMD will use %lf angstroms.\n", | 
| 730 | cutoffRadius_); | 
| 731 | painCave.isFatal = 0; | 
| 732 | simError(); | 
| 733 | } | 
| 734 | } | 
| 735 |  | 
| 736 | InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); | 
| 737 | } | 
| 738 |  | 
| 739 | /** | 
| 740 | * setupSwitchingRadius | 
| 741 | * | 
| 742 | *  If the switchingRadius was explicitly set, use that value (but check it) | 
| 743 | *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ | 
| 744 | */ | 
| 745 | void SimInfo::setupSwitchingRadius() { | 
| 746 |  | 
| 747 | if (simParams_->haveSwitchingRadius()) { | 
| 748 | switchingRadius_ = simParams_->getSwitchingRadius(); | 
| 749 | if (switchingRadius_ > cutoffRadius_) { | 
| 750 | sprintf(painCave.errMsg, | 
| 751 | "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n", | 
| 752 | switchingRadius_, cutoffRadius_); | 
| 753 | painCave.isFatal = 1; | 
| 754 | simError(); | 
| 755 |  | 
| 756 | } | 
| 757 | } else { | 
| 758 | switchingRadius_ = 0.85 * cutoffRadius_; | 
| 759 | sprintf(painCave.errMsg, | 
| 760 | "SimInfo Warning: No value was set for the switchingRadius.\n" | 
| 761 | "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" | 
| 762 | "\tswitchingRadius = %f. for this simulation\n", switchingRadius_); | 
| 763 | painCave.isFatal = 0; | 
| 764 | simError(); | 
| 765 | } | 
| 766 | InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); | 
| 767 | } | 
| 768 |  | 
| 769 | /** | 
| 770 | * setupSkinThickness | 
| 771 | * | 
| 772 | *  If the skinThickness was explicitly set, use that value (but check it) | 
| 773 | *  If the skinThickness was not explicitly set: use 1.0 angstroms | 
| 774 | */ | 
| 775 | void SimInfo::setupSkinThickness() { | 
| 776 | if (simParams_->haveSkinThickness()) { | 
| 777 | skinThickness_ = simParams_->getSkinThickness(); | 
| 778 | } else { | 
| 779 | skinThickness_ = 1.0; | 
| 780 | sprintf(painCave.errMsg, | 
| 781 | "SimInfo Warning: No value was set for the skinThickness.\n" | 
| 782 | "\tOpenMD will use a default value of %f Angstroms\n" | 
| 783 | "\tfor this simulation\n", skinThickness_); | 
| 784 | painCave.isFatal = 0; | 
| 785 | simError(); | 
| 786 | } | 
| 787 | } | 
| 788 |  | 
| 789 | void SimInfo::setupSimType() { | 
| 790 | set<AtomType*>::iterator i; | 
| 791 | set<AtomType*> atomTypes; | 
| 792 | atomTypes = getSimulatedAtomTypes(); | 
| 793 |  | 
| 794 | useAtomicVirial_ = simParams_->getUseAtomicVirial(); | 
| 795 |  | 
| 796 | int usesElectrostatic = 0; | 
| 797 | int usesMetallic = 0; | 
| 798 | int usesDirectional = 0; | 
| 799 | //loop over all of the atom types | 
| 800 | for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { | 
| 801 | usesElectrostatic |= (*i)->isElectrostatic(); | 
| 802 | usesMetallic |= (*i)->isMetal(); | 
| 803 | usesDirectional |= (*i)->isDirectional(); | 
| 804 | } | 
| 805 |  | 
| 806 | #ifdef IS_MPI | 
| 807 | int temp; | 
| 808 | temp = usesDirectional; | 
| 809 | MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 810 |  | 
| 811 | temp = usesMetallic; | 
| 812 | MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 813 |  | 
| 814 | temp = usesElectrostatic; | 
| 815 | MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); | 
| 816 | #endif | 
| 817 | fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; | 
| 818 | fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; | 
| 819 | fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; | 
| 820 | fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; | 
| 821 | fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; | 
| 822 | fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; | 
| 823 | } | 
| 824 |  | 
| 825 | void SimInfo::setupFortranSim() { | 
| 826 | int isError; | 
| 827 | int nExclude, nOneTwo, nOneThree, nOneFour; | 
| 828 | vector<int> fortranGlobalGroupMembership; | 
| 829 |  | 
| 830 | notifyFortranSkinThickness(&skinThickness_); | 
| 831 |  | 
| 832 | int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; | 
| 833 | int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; | 
| 834 | notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); | 
| 835 |  | 
| 836 | isError = 0; | 
| 837 |  | 
| 838 | //globalGroupMembership_ is filled by SimCreator | 
| 839 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 840 | fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); | 
| 841 | } | 
| 842 |  | 
| 843 | //calculate mass ratio of cutoff group | 
| 844 | vector<RealType> mfact; | 
| 845 | SimInfo::MoleculeIterator mi; | 
| 846 | Molecule* mol; | 
| 847 | Molecule::CutoffGroupIterator ci; | 
| 848 | CutoffGroup* cg; | 
| 849 | Molecule::AtomIterator ai; | 
| 850 | Atom* atom; | 
| 851 | RealType totalMass; | 
| 852 |  | 
| 853 | //to avoid memory reallocation, reserve enough space for mfact | 
| 854 | mfact.reserve(getNCutoffGroups()); | 
| 855 |  | 
| 856 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 857 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 858 |  | 
| 859 | totalMass = cg->getMass(); | 
| 860 | for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { | 
| 861 | // Check for massless groups - set mfact to 1 if true | 
| 862 | if (totalMass != 0) | 
| 863 | mfact.push_back(atom->getMass()/totalMass); | 
| 864 | else | 
| 865 | mfact.push_back( 1.0 ); | 
| 866 | } | 
| 867 | } | 
| 868 | } | 
| 869 |  | 
| 870 | //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) | 
| 871 | vector<int> identArray; | 
| 872 |  | 
| 873 | //to avoid memory reallocation, reserve enough space identArray | 
| 874 | identArray.reserve(getNAtoms()); | 
| 875 |  | 
| 876 | for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 877 | for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 878 | identArray.push_back(atom->getIdent()); | 
| 879 | } | 
| 880 | } | 
| 881 |  | 
| 882 | //fill molMembershipArray | 
| 883 | //molMembershipArray is filled by SimCreator | 
| 884 | vector<int> molMembershipArray(nGlobalAtoms_); | 
| 885 | for (int i = 0; i < nGlobalAtoms_; i++) { | 
| 886 | molMembershipArray[i] = globalMolMembership_[i] + 1; | 
| 887 | } | 
| 888 |  | 
| 889 | //setup fortran simulation | 
| 890 |  | 
| 891 | nExclude = excludedInteractions_.getSize(); | 
| 892 | nOneTwo = oneTwoInteractions_.getSize(); | 
| 893 | nOneThree = oneThreeInteractions_.getSize(); | 
| 894 | nOneFour = oneFourInteractions_.getSize(); | 
| 895 |  | 
| 896 | int* excludeList = excludedInteractions_.getPairList(); | 
| 897 | int* oneTwoList = oneTwoInteractions_.getPairList(); | 
| 898 | int* oneThreeList = oneThreeInteractions_.getPairList(); | 
| 899 | int* oneFourList = oneFourInteractions_.getPairList(); | 
| 900 |  | 
| 901 | setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], | 
| 902 | &nExclude, excludeList, | 
| 903 | &nOneTwo, oneTwoList, | 
| 904 | &nOneThree, oneThreeList, | 
| 905 | &nOneFour, oneFourList, | 
| 906 | &molMembershipArray[0], &mfact[0], &nCutoffGroups_, | 
| 907 | &fortranGlobalGroupMembership[0], &isError); | 
| 908 |  | 
| 909 | if( isError ){ | 
| 910 |  | 
| 911 | sprintf( painCave.errMsg, | 
| 912 | "There was an error setting the simulation information in fortran.\n" ); | 
| 913 | painCave.isFatal = 1; | 
| 914 | painCave.severity = OPENMD_ERROR; | 
| 915 | simError(); | 
| 916 | } | 
| 917 |  | 
| 918 |  | 
| 919 | sprintf( checkPointMsg, | 
| 920 | "succesfully sent the simulation information to fortran.\n"); | 
| 921 |  | 
| 922 | errorCheckPoint(); | 
| 923 |  | 
| 924 | // Setup number of neighbors in neighbor list if present | 
| 925 | if (simParams_->haveNeighborListNeighbors()) { | 
| 926 | int nlistNeighbors = simParams_->getNeighborListNeighbors(); | 
| 927 | setNeighbors(&nlistNeighbors); | 
| 928 | } | 
| 929 |  | 
| 930 |  | 
| 931 | } | 
| 932 |  | 
| 933 |  | 
| 934 | void SimInfo::setupFortranParallel() { | 
| 935 | #ifdef IS_MPI | 
| 936 | //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex | 
| 937 | vector<int> localToGlobalAtomIndex(getNAtoms(), 0); | 
| 938 | vector<int> localToGlobalCutoffGroupIndex; | 
| 939 | SimInfo::MoleculeIterator mi; | 
| 940 | Molecule::AtomIterator ai; | 
| 941 | Molecule::CutoffGroupIterator ci; | 
| 942 | Molecule* mol; | 
| 943 | Atom* atom; | 
| 944 | CutoffGroup* cg; | 
| 945 | mpiSimData parallelData; | 
| 946 | int isError; | 
| 947 |  | 
| 948 | for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) { | 
| 949 |  | 
| 950 | //local index(index in DataStorge) of atom is important | 
| 951 | for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { | 
| 952 | localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; | 
| 953 | } | 
| 954 |  | 
| 955 | //local index of cutoff group is trivial, it only depends on the order of travesing | 
| 956 | for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { | 
| 957 | localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); | 
| 958 | } | 
| 959 |  | 
| 960 | } | 
| 961 |  | 
| 962 | //fill up mpiSimData struct | 
| 963 | parallelData.nMolGlobal = getNGlobalMolecules(); | 
| 964 | parallelData.nMolLocal = getNMolecules(); | 
| 965 | parallelData.nAtomsGlobal = getNGlobalAtoms(); | 
| 966 | parallelData.nAtomsLocal = getNAtoms(); | 
| 967 | parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); | 
| 968 | parallelData.nGroupsLocal = getNCutoffGroups(); | 
| 969 | parallelData.myNode = worldRank; | 
| 970 | MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); | 
| 971 |  | 
| 972 | //pass mpiSimData struct and index arrays to fortran | 
| 973 | setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), | 
| 974 | &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal), | 
| 975 | &localToGlobalCutoffGroupIndex[0], &isError); | 
| 976 |  | 
| 977 | if (isError) { | 
| 978 | sprintf(painCave.errMsg, | 
| 979 | "mpiRefresh errror: fortran didn't like something we gave it.\n"); | 
| 980 | painCave.isFatal = 1; | 
| 981 | simError(); | 
| 982 | } | 
| 983 |  | 
| 984 | sprintf(checkPointMsg, " mpiRefresh successful.\n"); | 
| 985 | errorCheckPoint(); | 
| 986 |  | 
| 987 | #endif | 
| 988 | } | 
| 989 |  | 
| 990 |  | 
| 991 | void SimInfo::setupSwitchingFunction() { | 
| 992 | int ft = CUBIC; | 
| 993 |  | 
| 994 | if (simParams_->haveSwitchingFunctionType()) { | 
| 995 | string funcType = simParams_->getSwitchingFunctionType(); | 
| 996 | toUpper(funcType); | 
| 997 | if (funcType == "CUBIC") { | 
| 998 | ft = CUBIC; | 
| 999 | } else { | 
| 1000 | if (funcType == "FIFTH_ORDER_POLYNOMIAL") { | 
| 1001 | ft = FIFTH_ORDER_POLY; | 
| 1002 | } else { | 
| 1003 | // throw error | 
| 1004 | sprintf( painCave.errMsg, | 
| 1005 | "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n" | 
| 1006 | "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", | 
| 1007 | funcType.c_str() ); | 
| 1008 | painCave.isFatal = 1; | 
| 1009 | simError(); | 
| 1010 | } | 
| 1011 | } | 
| 1012 | } | 
| 1013 |  | 
| 1014 | // send switching function notification to switcheroo | 
| 1015 | setFunctionType(&ft); | 
| 1016 |  | 
| 1017 | } | 
| 1018 |  | 
| 1019 | void SimInfo::setupAccumulateBoxDipole() { | 
| 1020 |  | 
| 1021 | // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true | 
| 1022 | if ( simParams_->haveAccumulateBoxDipole() ) | 
| 1023 | if ( simParams_->getAccumulateBoxDipole() ) { | 
| 1024 | calcBoxDipole_ = true; | 
| 1025 | } | 
| 1026 |  | 
| 1027 | } | 
| 1028 |  | 
| 1029 | void SimInfo::addProperty(GenericData* genData) { | 
| 1030 | properties_.addProperty(genData); | 
| 1031 | } | 
| 1032 |  | 
| 1033 | void SimInfo::removeProperty(const string& propName) { | 
| 1034 | properties_.removeProperty(propName); | 
| 1035 | } | 
| 1036 |  | 
| 1037 | void SimInfo::clearProperties() { | 
| 1038 | properties_.clearProperties(); | 
| 1039 | } | 
| 1040 |  | 
| 1041 | vector<string> SimInfo::getPropertyNames() { | 
| 1042 | return properties_.getPropertyNames(); | 
| 1043 | } | 
| 1044 |  | 
| 1045 | vector<GenericData*> SimInfo::getProperties() { | 
| 1046 | return properties_.getProperties(); | 
| 1047 | } | 
| 1048 |  | 
| 1049 | GenericData* SimInfo::getPropertyByName(const string& propName) { | 
| 1050 | return properties_.getPropertyByName(propName); | 
| 1051 | } | 
| 1052 |  | 
| 1053 | void SimInfo::setSnapshotManager(SnapshotManager* sman) { | 
| 1054 | if (sman_ == sman) { | 
| 1055 | return; | 
| 1056 | } | 
| 1057 | delete sman_; | 
| 1058 | sman_ = sman; | 
| 1059 |  | 
| 1060 | Molecule* mol; | 
| 1061 | RigidBody* rb; | 
| 1062 | Atom* atom; | 
| 1063 | SimInfo::MoleculeIterator mi; | 
| 1064 | Molecule::RigidBodyIterator rbIter; | 
| 1065 | Molecule::AtomIterator atomIter;; | 
| 1066 |  | 
| 1067 | for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { | 
| 1068 |  | 
| 1069 | for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { | 
| 1070 | atom->setSnapshotManager(sman_); | 
| 1071 | } | 
| 1072 |  | 
| 1073 | for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { | 
| 1074 | rb->setSnapshotManager(sman_); | 
| 1075 | } | 
| 1076 | } | 
| 1077 |  | 
| 1078 | } | 
| 1079 |  | 
| 1080 | Vector3d SimInfo::getComVel(){ | 
| 1081 | SimInfo::MoleculeIterator i; | 
| 1082 | Molecule* mol; | 
| 1083 |  | 
| 1084 | Vector3d comVel(0.0); | 
| 1085 | RealType totalMass = 0.0; | 
| 1086 |  | 
| 1087 |  | 
| 1088 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1089 | RealType mass = mol->getMass(); | 
| 1090 | totalMass += mass; | 
| 1091 | comVel += mass * mol->getComVel(); | 
| 1092 | } | 
| 1093 |  | 
| 1094 | #ifdef IS_MPI | 
| 1095 | RealType tmpMass = totalMass; | 
| 1096 | Vector3d tmpComVel(comVel); | 
| 1097 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1098 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1099 | #endif | 
| 1100 |  | 
| 1101 | comVel /= totalMass; | 
| 1102 |  | 
| 1103 | return comVel; | 
| 1104 | } | 
| 1105 |  | 
| 1106 | Vector3d SimInfo::getCom(){ | 
| 1107 | SimInfo::MoleculeIterator i; | 
| 1108 | Molecule* mol; | 
| 1109 |  | 
| 1110 | Vector3d com(0.0); | 
| 1111 | RealType totalMass = 0.0; | 
| 1112 |  | 
| 1113 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1114 | RealType mass = mol->getMass(); | 
| 1115 | totalMass += mass; | 
| 1116 | com += mass * mol->getCom(); | 
| 1117 | } | 
| 1118 |  | 
| 1119 | #ifdef IS_MPI | 
| 1120 | RealType tmpMass = totalMass; | 
| 1121 | Vector3d tmpCom(com); | 
| 1122 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1123 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1124 | #endif | 
| 1125 |  | 
| 1126 | com /= totalMass; | 
| 1127 |  | 
| 1128 | return com; | 
| 1129 |  | 
| 1130 | } | 
| 1131 |  | 
| 1132 | ostream& operator <<(ostream& o, SimInfo& info) { | 
| 1133 |  | 
| 1134 | return o; | 
| 1135 | } | 
| 1136 |  | 
| 1137 |  | 
| 1138 | /* | 
| 1139 | Returns center of mass and center of mass velocity in one function call. | 
| 1140 | */ | 
| 1141 |  | 
| 1142 | void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ | 
| 1143 | SimInfo::MoleculeIterator i; | 
| 1144 | Molecule* mol; | 
| 1145 |  | 
| 1146 |  | 
| 1147 | RealType totalMass = 0.0; | 
| 1148 |  | 
| 1149 |  | 
| 1150 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1151 | RealType mass = mol->getMass(); | 
| 1152 | totalMass += mass; | 
| 1153 | com += mass * mol->getCom(); | 
| 1154 | comVel += mass * mol->getComVel(); | 
| 1155 | } | 
| 1156 |  | 
| 1157 | #ifdef IS_MPI | 
| 1158 | RealType tmpMass = totalMass; | 
| 1159 | Vector3d tmpCom(com); | 
| 1160 | Vector3d tmpComVel(comVel); | 
| 1161 | MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1162 | MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1163 | MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1164 | #endif | 
| 1165 |  | 
| 1166 | com /= totalMass; | 
| 1167 | comVel /= totalMass; | 
| 1168 | } | 
| 1169 |  | 
| 1170 | /* | 
| 1171 | Return intertia tensor for entire system and angular momentum Vector. | 
| 1172 |  | 
| 1173 |  | 
| 1174 | [  Ixx -Ixy  -Ixz ] | 
| 1175 | J =| -Iyx  Iyy  -Iyz | | 
| 1176 | [ -Izx -Iyz   Izz ] | 
| 1177 | */ | 
| 1178 |  | 
| 1179 | void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ | 
| 1180 |  | 
| 1181 |  | 
| 1182 | RealType xx = 0.0; | 
| 1183 | RealType yy = 0.0; | 
| 1184 | RealType zz = 0.0; | 
| 1185 | RealType xy = 0.0; | 
| 1186 | RealType xz = 0.0; | 
| 1187 | RealType yz = 0.0; | 
| 1188 | Vector3d com(0.0); | 
| 1189 | Vector3d comVel(0.0); | 
| 1190 |  | 
| 1191 | getComAll(com, comVel); | 
| 1192 |  | 
| 1193 | SimInfo::MoleculeIterator i; | 
| 1194 | Molecule* mol; | 
| 1195 |  | 
| 1196 | Vector3d thisq(0.0); | 
| 1197 | Vector3d thisv(0.0); | 
| 1198 |  | 
| 1199 | RealType thisMass = 0.0; | 
| 1200 |  | 
| 1201 |  | 
| 1202 |  | 
| 1203 |  | 
| 1204 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1205 |  | 
| 1206 | thisq = mol->getCom()-com; | 
| 1207 | thisv = mol->getComVel()-comVel; | 
| 1208 | thisMass = mol->getMass(); | 
| 1209 | // Compute moment of intertia coefficients. | 
| 1210 | xx += thisq[0]*thisq[0]*thisMass; | 
| 1211 | yy += thisq[1]*thisq[1]*thisMass; | 
| 1212 | zz += thisq[2]*thisq[2]*thisMass; | 
| 1213 |  | 
| 1214 | // compute products of intertia | 
| 1215 | xy += thisq[0]*thisq[1]*thisMass; | 
| 1216 | xz += thisq[0]*thisq[2]*thisMass; | 
| 1217 | yz += thisq[1]*thisq[2]*thisMass; | 
| 1218 |  | 
| 1219 | angularMomentum += cross( thisq, thisv ) * thisMass; | 
| 1220 |  | 
| 1221 | } | 
| 1222 |  | 
| 1223 |  | 
| 1224 | inertiaTensor(0,0) = yy + zz; | 
| 1225 | inertiaTensor(0,1) = -xy; | 
| 1226 | inertiaTensor(0,2) = -xz; | 
| 1227 | inertiaTensor(1,0) = -xy; | 
| 1228 | inertiaTensor(1,1) = xx + zz; | 
| 1229 | inertiaTensor(1,2) = -yz; | 
| 1230 | inertiaTensor(2,0) = -xz; | 
| 1231 | inertiaTensor(2,1) = -yz; | 
| 1232 | inertiaTensor(2,2) = xx + yy; | 
| 1233 |  | 
| 1234 | #ifdef IS_MPI | 
| 1235 | Mat3x3d tmpI(inertiaTensor); | 
| 1236 | Vector3d tmpAngMom; | 
| 1237 | MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1238 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1239 | #endif | 
| 1240 |  | 
| 1241 | return; | 
| 1242 | } | 
| 1243 |  | 
| 1244 | //Returns the angular momentum of the system | 
| 1245 | Vector3d SimInfo::getAngularMomentum(){ | 
| 1246 |  | 
| 1247 | Vector3d com(0.0); | 
| 1248 | Vector3d comVel(0.0); | 
| 1249 | Vector3d angularMomentum(0.0); | 
| 1250 |  | 
| 1251 | getComAll(com,comVel); | 
| 1252 |  | 
| 1253 | SimInfo::MoleculeIterator i; | 
| 1254 | Molecule* mol; | 
| 1255 |  | 
| 1256 | Vector3d thisr(0.0); | 
| 1257 | Vector3d thisp(0.0); | 
| 1258 |  | 
| 1259 | RealType thisMass; | 
| 1260 |  | 
| 1261 | for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { | 
| 1262 | thisMass = mol->getMass(); | 
| 1263 | thisr = mol->getCom()-com; | 
| 1264 | thisp = (mol->getComVel()-comVel)*thisMass; | 
| 1265 |  | 
| 1266 | angularMomentum += cross( thisr, thisp ); | 
| 1267 |  | 
| 1268 | } | 
| 1269 |  | 
| 1270 | #ifdef IS_MPI | 
| 1271 | Vector3d tmpAngMom; | 
| 1272 | MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); | 
| 1273 | #endif | 
| 1274 |  | 
| 1275 | return angularMomentum; | 
| 1276 | } | 
| 1277 |  | 
| 1278 | StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { | 
| 1279 | return IOIndexToIntegrableObject.at(index); | 
| 1280 | } | 
| 1281 |  | 
| 1282 | void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { | 
| 1283 | IOIndexToIntegrableObject= v; | 
| 1284 | } | 
| 1285 |  | 
| 1286 | /* Returns the Volume of the simulation based on a ellipsoid with semi-axes | 
| 1287 | based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 1288 | where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to | 
| 1289 | V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 1290 | */ | 
| 1291 | void SimInfo::getGyrationalVolume(RealType &volume){ | 
| 1292 | Mat3x3d intTensor; | 
| 1293 | RealType det; | 
| 1294 | Vector3d dummyAngMom; | 
| 1295 | RealType sysconstants; | 
| 1296 | RealType geomCnst; | 
| 1297 |  | 
| 1298 | geomCnst = 3.0/2.0; | 
| 1299 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1300 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1301 |  | 
| 1302 | det = intTensor.determinant(); | 
| 1303 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1304 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); | 
| 1305 | return; | 
| 1306 | } | 
| 1307 |  | 
| 1308 | void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 1309 | Mat3x3d intTensor; | 
| 1310 | Vector3d dummyAngMom; | 
| 1311 | RealType sysconstants; | 
| 1312 | RealType geomCnst; | 
| 1313 |  | 
| 1314 | geomCnst = 3.0/2.0; | 
| 1315 | /* Get the inertial tensor and angular momentum for free*/ | 
| 1316 | getInertiaTensor(intTensor,dummyAngMom); | 
| 1317 |  | 
| 1318 | detI = intTensor.determinant(); | 
| 1319 | sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; | 
| 1320 | volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); | 
| 1321 | return; | 
| 1322 | } | 
| 1323 | /* | 
| 1324 | void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { | 
| 1325 | assert( v.size() == nAtoms_ + nRigidBodies_); | 
| 1326 | sdByGlobalIndex_ = v; | 
| 1327 | } | 
| 1328 |  | 
| 1329 | StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { | 
| 1330 | //assert(index < nAtoms_ + nRigidBodies_); | 
| 1331 | return sdByGlobalIndex_.at(index); | 
| 1332 | } | 
| 1333 | */ | 
| 1334 | int SimInfo::getNGlobalConstraints() { | 
| 1335 | int nGlobalConstraints; | 
| 1336 | #ifdef IS_MPI | 
| 1337 | MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, | 
| 1338 | MPI_COMM_WORLD); | 
| 1339 | #else | 
| 1340 | nGlobalConstraints =  nConstraints_; | 
| 1341 | #endif | 
| 1342 | return nGlobalConstraints; | 
| 1343 | } | 
| 1344 |  | 
| 1345 | }//end namespace OpenMD | 
| 1346 |  |