| 1 | gezelter | 507 | /* | 
| 2 | gezelter | 246 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 | gezelter | 1390 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 | gezelter | 1390 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 | gezelter | 1390 | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | gezelter | 1665 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | gezelter | 246 | */ | 
| 42 |  |  |  | 
| 43 | gezelter | 2 | #include <math.h> | 
| 44 |  |  | #include <iostream> | 
| 45 |  |  |  | 
| 46 |  |  | #ifdef IS_MPI | 
| 47 |  |  | #include <mpi.h> | 
| 48 |  |  | #endif //is_mpi | 
| 49 |  |  |  | 
| 50 | tim | 3 | #include "brains/Thermo.hpp" | 
| 51 | gezelter | 246 | #include "primitives/Molecule.hpp" | 
| 52 | tim | 3 | #include "utils/simError.h" | 
| 53 | gezelter | 1390 | #include "utils/PhysicalConstants.hpp" | 
| 54 | gezelter | 1710 | #include "types/MultipoleAdapter.hpp" | 
| 55 | gezelter | 2 |  | 
| 56 | gezelter | 1390 | namespace OpenMD { | 
| 57 | gezelter | 2 |  | 
| 58 | tim | 963 | RealType Thermo::getKinetic() { | 
| 59 | gezelter | 246 | SimInfo::MoleculeIterator miter; | 
| 60 |  |  | std::vector<StuntDouble*>::iterator iiter; | 
| 61 |  |  | Molecule* mol; | 
| 62 |  |  | StuntDouble* integrableObject; | 
| 63 |  |  | Vector3d vel; | 
| 64 |  |  | Vector3d angMom; | 
| 65 |  |  | Mat3x3d I; | 
| 66 |  |  | int i; | 
| 67 |  |  | int j; | 
| 68 |  |  | int k; | 
| 69 | chrisfen | 998 | RealType mass; | 
| 70 | tim | 963 | RealType kinetic = 0.0; | 
| 71 |  |  | RealType kinetic_global = 0.0; | 
| 72 | gezelter | 246 |  | 
| 73 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 74 | gezelter | 507 | for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; | 
| 75 |  |  | integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 76 | gezelter | 945 |  | 
| 77 | chrisfen | 998 | mass = integrableObject->getMass(); | 
| 78 |  |  | vel = integrableObject->getVel(); | 
| 79 | gezelter | 945 |  | 
| 80 | gezelter | 507 | kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 81 | gezelter | 945 |  | 
| 82 | gezelter | 507 | if (integrableObject->isDirectional()) { | 
| 83 |  |  | angMom = integrableObject->getJ(); | 
| 84 |  |  | I = integrableObject->getI(); | 
| 85 | gezelter | 2 |  | 
| 86 | gezelter | 507 | if (integrableObject->isLinear()) { | 
| 87 |  |  | i = integrableObject->linearAxis(); | 
| 88 |  |  | j = (i + 1) % 3; | 
| 89 |  |  | k = (i + 2) % 3; | 
| 90 |  |  | kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 91 |  |  | } else { | 
| 92 |  |  | kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) | 
| 93 |  |  | + angMom[2]*angMom[2]/I(2, 2); | 
| 94 |  |  | } | 
| 95 |  |  | } | 
| 96 | gezelter | 246 |  | 
| 97 | gezelter | 507 | } | 
| 98 | gezelter | 246 | } | 
| 99 |  |  |  | 
| 100 |  |  | #ifdef IS_MPI | 
| 101 | gezelter | 2 |  | 
| 102 | tim | 963 | MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 103 | gezelter | 246 | MPI_COMM_WORLD); | 
| 104 |  |  | kinetic = kinetic_global; | 
| 105 | gezelter | 2 |  | 
| 106 | gezelter | 246 | #endif //is_mpi | 
| 107 | gezelter | 2 |  | 
| 108 | gezelter | 1390 | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 109 | gezelter | 2 |  | 
| 110 | gezelter | 246 | return kinetic; | 
| 111 | gezelter | 507 | } | 
| 112 | gezelter | 2 |  | 
| 113 | tim | 963 | RealType Thermo::getPotential() { | 
| 114 |  |  | RealType potential = 0.0; | 
| 115 | gezelter | 246 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 116 | tim | 963 | RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 117 | gezelter | 2 |  | 
| 118 | gezelter | 246 | // Get total potential for entire system from MPI. | 
| 119 | gezelter | 2 |  | 
| 120 | gezelter | 246 | #ifdef IS_MPI | 
| 121 | gezelter | 2 |  | 
| 122 | tim | 963 | MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, | 
| 123 | gezelter | 246 | MPI_COMM_WORLD); | 
| 124 | tim | 833 | potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 125 | gezelter | 2 |  | 
| 126 | gezelter | 246 | #else | 
| 127 | gezelter | 2 |  | 
| 128 | tim | 833 | potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 129 | gezelter | 2 |  | 
| 130 |  |  | #endif // is_mpi | 
| 131 |  |  |  | 
| 132 | gezelter | 246 | return potential; | 
| 133 | gezelter | 507 | } | 
| 134 | gezelter | 2 |  | 
| 135 | tim | 963 | RealType Thermo::getTotalE() { | 
| 136 |  |  | RealType total; | 
| 137 | gezelter | 2 |  | 
| 138 | gezelter | 246 | total = this->getKinetic() + this->getPotential(); | 
| 139 |  |  | return total; | 
| 140 | gezelter | 507 | } | 
| 141 | gezelter | 2 |  | 
| 142 | tim | 963 | RealType Thermo::getTemperature() { | 
| 143 | gezelter | 246 |  | 
| 144 | gezelter | 1390 | RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); | 
| 145 | gezelter | 246 | return temperature; | 
| 146 | gezelter | 507 | } | 
| 147 | gezelter | 2 |  | 
| 148 | gezelter | 1715 | RealType Thermo::getElectronicTemperature() { | 
| 149 |  |  | SimInfo::MoleculeIterator miter; | 
| 150 |  |  | std::vector<Atom*>::iterator iiter; | 
| 151 |  |  | Molecule* mol; | 
| 152 |  |  | Atom* atom; | 
| 153 |  |  | RealType cvel; | 
| 154 |  |  | RealType cmass; | 
| 155 |  |  | RealType kinetic = 0.0; | 
| 156 |  |  | RealType kinetic_global = 0.0; | 
| 157 |  |  |  | 
| 158 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 159 |  |  | for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; | 
| 160 |  |  | atom = mol->nextFluctuatingCharge(iiter)) { | 
| 161 |  |  | cmass = atom->getChargeMass(); | 
| 162 |  |  | cvel = atom->getFlucQVel(); | 
| 163 |  |  |  | 
| 164 |  |  | kinetic += cmass * cvel * cvel; | 
| 165 |  |  |  | 
| 166 |  |  | } | 
| 167 |  |  | } | 
| 168 |  |  |  | 
| 169 |  |  | #ifdef IS_MPI | 
| 170 |  |  |  | 
| 171 |  |  | MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 172 |  |  | MPI_COMM_WORLD); | 
| 173 |  |  | kinetic = kinetic_global; | 
| 174 |  |  |  | 
| 175 |  |  | #endif //is_mpi | 
| 176 |  |  |  | 
| 177 |  |  | kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 178 |  |  | return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb ); | 
| 179 |  |  | } | 
| 180 |  |  |  | 
| 181 |  |  |  | 
| 182 |  |  |  | 
| 183 |  |  |  | 
| 184 | tim | 963 | RealType Thermo::getVolume() { | 
| 185 | gezelter | 246 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 186 |  |  | return curSnapshot->getVolume(); | 
| 187 | gezelter | 507 | } | 
| 188 | gezelter | 2 |  | 
| 189 | tim | 963 | RealType Thermo::getPressure() { | 
| 190 | gezelter | 2 |  | 
| 191 | gezelter | 246 | // Relies on the calculation of the full molecular pressure tensor | 
| 192 | gezelter | 2 |  | 
| 193 |  |  |  | 
| 194 | gezelter | 246 | Mat3x3d tensor; | 
| 195 | tim | 963 | RealType pressure; | 
| 196 | gezelter | 2 |  | 
| 197 | gezelter | 246 | tensor = getPressureTensor(); | 
| 198 | gezelter | 2 |  | 
| 199 | gezelter | 1390 | pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 200 | gezelter | 2 |  | 
| 201 | gezelter | 246 | return pressure; | 
| 202 | gezelter | 507 | } | 
| 203 | gezelter | 2 |  | 
| 204 | tim | 963 | RealType Thermo::getPressure(int direction) { | 
| 205 | tim | 538 |  | 
| 206 |  |  | // Relies on the calculation of the full molecular pressure tensor | 
| 207 |  |  |  | 
| 208 |  |  |  | 
| 209 |  |  | Mat3x3d tensor; | 
| 210 | tim | 963 | RealType pressure; | 
| 211 | tim | 538 |  | 
| 212 |  |  | tensor = getPressureTensor(); | 
| 213 |  |  |  | 
| 214 | gezelter | 1390 | pressure = PhysicalConstants::pressureConvert * tensor(direction, direction); | 
| 215 | tim | 538 |  | 
| 216 |  |  | return pressure; | 
| 217 |  |  | } | 
| 218 |  |  |  | 
| 219 | gezelter | 507 | Mat3x3d Thermo::getPressureTensor() { | 
| 220 | gezelter | 246 | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 221 |  |  | // routine derived via viral theorem description in: | 
| 222 |  |  | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 223 |  |  | Mat3x3d pressureTensor; | 
| 224 |  |  | Mat3x3d p_local(0.0); | 
| 225 |  |  | Mat3x3d p_global(0.0); | 
| 226 | gezelter | 2 |  | 
| 227 | gezelter | 246 | SimInfo::MoleculeIterator i; | 
| 228 |  |  | std::vector<StuntDouble*>::iterator j; | 
| 229 |  |  | Molecule* mol; | 
| 230 |  |  | StuntDouble* integrableObject; | 
| 231 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { | 
| 232 | gezelter | 507 | for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; | 
| 233 |  |  | integrableObject = mol->nextIntegrableObject(j)) { | 
| 234 | gezelter | 2 |  | 
| 235 | tim | 963 | RealType mass = integrableObject->getMass(); | 
| 236 | gezelter | 507 | Vector3d vcom = integrableObject->getVel(); | 
| 237 |  |  | p_local += mass * outProduct(vcom, vcom); | 
| 238 |  |  | } | 
| 239 | gezelter | 246 | } | 
| 240 | gezelter | 2 |  | 
| 241 |  |  | #ifdef IS_MPI | 
| 242 | tim | 963 | MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 243 | gezelter | 2 | #else | 
| 244 | gezelter | 246 | p_global = p_local; | 
| 245 | gezelter | 2 | #endif // is_mpi | 
| 246 |  |  |  | 
| 247 | tim | 963 | RealType volume = this->getVolume(); | 
| 248 | gezelter | 246 | Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 249 | gezelter | 1709 | Mat3x3d tau = curSnapshot->getTau(); | 
| 250 | gezelter | 1126 |  | 
| 251 | gezelter | 1390 | pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume; | 
| 252 | chrisfen | 998 |  | 
| 253 | gezelter | 246 | return pressureTensor; | 
| 254 | gezelter | 507 | } | 
| 255 | gezelter | 2 |  | 
| 256 | chrisfen | 998 |  | 
| 257 | gezelter | 507 | void Thermo::saveStat(){ | 
| 258 | gezelter | 246 | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 259 |  |  | Stats& stat = currSnapshot->statData; | 
| 260 | gezelter | 2 |  | 
| 261 | gezelter | 246 | stat[Stats::KINETIC_ENERGY] = getKinetic(); | 
| 262 |  |  | stat[Stats::POTENTIAL_ENERGY] = getPotential(); | 
| 263 |  |  | stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ; | 
| 264 |  |  | stat[Stats::TEMPERATURE] = getTemperature(); | 
| 265 |  |  | stat[Stats::PRESSURE] = getPressure(); | 
| 266 |  |  | stat[Stats::VOLUME] = getVolume(); | 
| 267 | gezelter | 2 |  | 
| 268 | tim | 541 | Mat3x3d tensor =getPressureTensor(); | 
| 269 | gezelter | 1126 | stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); | 
| 270 |  |  | stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); | 
| 271 |  |  | stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); | 
| 272 |  |  | stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); | 
| 273 |  |  | stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); | 
| 274 |  |  | stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); | 
| 275 |  |  | stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); | 
| 276 |  |  | stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); | 
| 277 |  |  | stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); | 
| 278 | tim | 541 |  | 
| 279 | gezelter | 1503 | // grab the simulation box dipole moment if specified | 
| 280 |  |  | if (info_->getCalcBoxDipole()){ | 
| 281 |  |  | Vector3d totalDipole = getBoxDipole(); | 
| 282 |  |  | stat[Stats::BOX_DIPOLE_X] = totalDipole(0); | 
| 283 |  |  | stat[Stats::BOX_DIPOLE_Y] = totalDipole(1); | 
| 284 |  |  | stat[Stats::BOX_DIPOLE_Z] = totalDipole(2); | 
| 285 |  |  | } | 
| 286 | tim | 541 |  | 
| 287 | gezelter | 1291 | Globals* simParams = info_->getSimParams(); | 
| 288 |  |  |  | 
| 289 |  |  | if (simParams->haveTaggedAtomPair() && | 
| 290 |  |  | simParams->havePrintTaggedPairDistance()) { | 
| 291 |  |  | if ( simParams->getPrintTaggedPairDistance()) { | 
| 292 |  |  |  | 
| 293 |  |  | std::pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 294 |  |  | Vector3d pos1, pos2, rab; | 
| 295 |  |  |  | 
| 296 |  |  | #ifdef IS_MPI | 
| 297 | gezelter | 1313 | std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl; | 
| 298 | gezelter | 1291 |  | 
| 299 | chuckv | 1292 | int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 300 |  |  | int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 301 | gezelter | 1313 | std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; | 
| 302 |  |  |  | 
| 303 | gezelter | 1291 | int proc1 = info_->getMolToProc(mol1); | 
| 304 |  |  | int proc2 = info_->getMolToProc(mol2); | 
| 305 |  |  |  | 
| 306 | gezelter | 1313 | std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; | 
| 307 |  |  |  | 
| 308 | chuckv | 1292 | RealType data[3]; | 
| 309 | gezelter | 1291 | if (proc1 == worldRank) { | 
| 310 |  |  | StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 311 | gezelter | 1313 | std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; | 
| 312 | gezelter | 1291 | pos1 = sd1->getPos(); | 
| 313 |  |  | data[0] = pos1.x(); | 
| 314 |  |  | data[1] = pos1.y(); | 
| 315 |  |  | data[2] = pos1.z(); | 
| 316 |  |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 317 |  |  | } else { | 
| 318 |  |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); | 
| 319 |  |  | pos1 = Vector3d(data); | 
| 320 |  |  | } | 
| 321 | chuckv | 1292 |  | 
| 322 |  |  |  | 
| 323 | gezelter | 1291 | if (proc2 == worldRank) { | 
| 324 |  |  | StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 325 | gezelter | 1313 | std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl; | 
| 326 | gezelter | 1291 | pos2 = sd2->getPos(); | 
| 327 |  |  | data[0] = pos2.x(); | 
| 328 |  |  | data[1] = pos2.y(); | 
| 329 |  |  | data[2] = pos2.z(); | 
| 330 |  |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 331 |  |  | } else { | 
| 332 |  |  | MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); | 
| 333 |  |  | pos2 = Vector3d(data); | 
| 334 |  |  | } | 
| 335 |  |  | #else | 
| 336 |  |  | StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 337 |  |  | StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 338 |  |  | pos1 = at1->getPos(); | 
| 339 |  |  | pos2 = at2->getPos(); | 
| 340 |  |  | #endif | 
| 341 |  |  | rab = pos2 - pos1; | 
| 342 |  |  | currSnapshot->wrapVector(rab); | 
| 343 |  |  | stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length(); | 
| 344 |  |  | } | 
| 345 |  |  | } | 
| 346 |  |  |  | 
| 347 | gezelter | 246 | /**@todo need refactorying*/ | 
| 348 |  |  | //Conserved Quantity is set by integrator and time is set by setTime | 
| 349 | gezelter | 2 |  | 
| 350 | gezelter | 507 | } | 
| 351 | gezelter | 2 |  | 
| 352 | gezelter | 1503 |  | 
| 353 |  |  | Vector3d Thermo::getBoxDipole() { | 
| 354 |  |  | Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 355 |  |  | SimInfo::MoleculeIterator miter; | 
| 356 |  |  | std::vector<Atom*>::iterator aiter; | 
| 357 |  |  | Molecule* mol; | 
| 358 |  |  | Atom* atom; | 
| 359 |  |  | RealType charge; | 
| 360 |  |  | RealType moment(0.0); | 
| 361 |  |  | Vector3d ri(0.0); | 
| 362 |  |  | Vector3d dipoleVector(0.0); | 
| 363 |  |  | Vector3d nPos(0.0); | 
| 364 |  |  | Vector3d pPos(0.0); | 
| 365 |  |  | RealType nChg(0.0); | 
| 366 |  |  | RealType pChg(0.0); | 
| 367 |  |  | int nCount = 0; | 
| 368 |  |  | int pCount = 0; | 
| 369 |  |  |  | 
| 370 |  |  | RealType chargeToC = 1.60217733e-19; | 
| 371 |  |  | RealType angstromToM = 1.0e-10; | 
| 372 |  |  | RealType debyeToCm = 3.33564095198e-30; | 
| 373 |  |  |  | 
| 374 |  |  | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 375 |  |  | mol = info_->nextMolecule(miter)) { | 
| 376 |  |  |  | 
| 377 |  |  | for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 378 |  |  | atom = mol->nextAtom(aiter)) { | 
| 379 |  |  |  | 
| 380 |  |  | if (atom->isCharge() ) { | 
| 381 |  |  | charge = 0.0; | 
| 382 |  |  | GenericData* data = atom->getAtomType()->getPropertyByName("Charge"); | 
| 383 |  |  | if (data != NULL) { | 
| 384 |  |  |  | 
| 385 |  |  | charge = (dynamic_cast<DoubleGenericData*>(data))->getData(); | 
| 386 |  |  | charge *= chargeToC; | 
| 387 |  |  |  | 
| 388 |  |  | ri = atom->getPos(); | 
| 389 |  |  | currSnapshot->wrapVector(ri); | 
| 390 |  |  | ri *= angstromToM; | 
| 391 |  |  |  | 
| 392 |  |  | if (charge < 0.0) { | 
| 393 |  |  | nPos += ri; | 
| 394 |  |  | nChg -= charge; | 
| 395 |  |  | nCount++; | 
| 396 |  |  | } else if (charge > 0.0) { | 
| 397 |  |  | pPos += ri; | 
| 398 |  |  | pChg += charge; | 
| 399 |  |  | pCount++; | 
| 400 |  |  | } | 
| 401 |  |  | } | 
| 402 |  |  | } | 
| 403 |  |  |  | 
| 404 | gezelter | 1710 | MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); | 
| 405 |  |  | if (ma.isDipole() ) { | 
| 406 | gezelter | 1503 | Vector3d u_i = atom->getElectroFrame().getColumn(2); | 
| 407 | gezelter | 1710 | moment = ma.getDipoleMoment(); | 
| 408 |  |  | moment *= debyeToCm; | 
| 409 |  |  | dipoleVector += u_i * moment; | 
| 410 | gezelter | 1503 | } | 
| 411 |  |  | } | 
| 412 |  |  | } | 
| 413 |  |  |  | 
| 414 |  |  |  | 
| 415 |  |  | #ifdef IS_MPI | 
| 416 |  |  | RealType pChg_global, nChg_global; | 
| 417 |  |  | int pCount_global, nCount_global; | 
| 418 |  |  | Vector3d pPos_global, nPos_global, dipVec_global; | 
| 419 |  |  |  | 
| 420 |  |  | MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 421 |  |  | MPI_COMM_WORLD); | 
| 422 |  |  | pChg = pChg_global; | 
| 423 |  |  | MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 424 |  |  | MPI_COMM_WORLD); | 
| 425 |  |  | nChg = nChg_global; | 
| 426 |  |  | MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM, | 
| 427 |  |  | MPI_COMM_WORLD); | 
| 428 |  |  | pCount = pCount_global; | 
| 429 |  |  | MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM, | 
| 430 |  |  | MPI_COMM_WORLD); | 
| 431 |  |  | nCount = nCount_global; | 
| 432 |  |  | MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3, | 
| 433 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 434 |  |  | pPos = pPos_global; | 
| 435 |  |  | MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3, | 
| 436 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 437 |  |  | nPos = nPos_global; | 
| 438 |  |  | MPI_Allreduce(dipoleVector.getArrayPointer(), | 
| 439 |  |  | dipVec_global.getArrayPointer(), 3, | 
| 440 |  |  | MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 441 |  |  | dipoleVector = dipVec_global; | 
| 442 |  |  | #endif //is_mpi | 
| 443 |  |  |  | 
| 444 |  |  | // first load the accumulated dipole moment (if dipoles were present) | 
| 445 |  |  | Vector3d boxDipole = dipoleVector; | 
| 446 |  |  | // now include the dipole moment due to charges | 
| 447 |  |  | // use the lesser of the positive and negative charge totals | 
| 448 |  |  | RealType chg_value = nChg <= pChg ? nChg : pChg; | 
| 449 |  |  |  | 
| 450 |  |  | // find the average positions | 
| 451 |  |  | if (pCount > 0 && nCount > 0 ) { | 
| 452 |  |  | pPos /= pCount; | 
| 453 |  |  | nPos /= nCount; | 
| 454 |  |  | } | 
| 455 |  |  |  | 
| 456 |  |  | // dipole is from the negative to the positive (physics notation) | 
| 457 |  |  | boxDipole += (pPos - nPos) * chg_value; | 
| 458 |  |  |  | 
| 459 |  |  | return boxDipole; | 
| 460 |  |  | } | 
| 461 | gezelter | 1390 | } //end namespace OpenMD |