| 324 |
|
Molecule* mol; |
| 325 |
|
Atom* atom; |
| 326 |
|
RealType charge; |
| 327 |
– |
RealType moment(0.0); |
| 327 |
|
Vector3d ri(0.0); |
| 328 |
|
Vector3d dipoleVector(0.0); |
| 329 |
|
Vector3d nPos(0.0); |
| 371 |
|
pCount++; |
| 372 |
|
} |
| 373 |
|
|
| 374 |
< |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
| 375 |
< |
if (ma.isDipole() ) { |
| 377 |
< |
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
| 378 |
< |
moment = ma.getDipoleMoment(); |
| 379 |
< |
moment *= debyeToCm; |
| 380 |
< |
dipoleVector += u_i * moment; |
| 374 |
> |
if (atom->isDipole()) { |
| 375 |
> |
dipoleVector += atom->getDipole() * debyeToCm; |
| 376 |
|
} |
| 377 |
|
} |
| 378 |
|
} |
| 439 |
|
RealType kinetic; |
| 440 |
|
RealType potential; |
| 441 |
|
RealType eatom; |
| 447 |
– |
RealType AvgE_a_ = 0; |
| 442 |
|
// Convective portion of the heat flux |
| 443 |
|
Vector3d heatFluxJc = V3Zero; |
| 444 |
|
|
| 826 |
|
data[0] = pos1.x(); |
| 827 |
|
data[1] = pos1.y(); |
| 828 |
|
data[2] = pos1.z(); |
| 829 |
< |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
| 829 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); |
| 830 |
|
} else { |
| 831 |
< |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
| 831 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); |
| 832 |
|
pos1 = Vector3d(data); |
| 833 |
|
} |
| 834 |
|
|
| 837 |
|
pos2 = sd2->getPos(); |
| 838 |
|
data[0] = pos2.x(); |
| 839 |
|
data[1] = pos2.y(); |
| 840 |
< |
data[2] = pos2.z(); |
| 841 |
< |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
| 840 |
> |
data[2] = pos2.z(); |
| 841 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); |
| 842 |
|
} else { |
| 843 |
< |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
| 843 |
> |
MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); |
| 844 |
|
pos2 = Vector3d(data); |
| 845 |
|
} |
| 846 |
|
#else |