| 112 | 
  | 
 | 
| 113 | 
  | 
  RealType Thermo::getPotential() { | 
| 114 | 
  | 
    RealType potential = 0.0; | 
| 115 | 
– | 
    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 116 | 
– | 
    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 115 | 
  | 
 | 
| 116 | 
< | 
    // Get total potential for entire system from MPI. | 
| 117 | 
< | 
 | 
| 120 | 
< | 
#ifdef IS_MPI | 
| 121 | 
< | 
 | 
| 122 | 
< | 
    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM, | 
| 123 | 
< | 
                  MPI_COMM_WORLD); | 
| 124 | 
< | 
    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 125 | 
< | 
 | 
| 126 | 
< | 
#else | 
| 127 | 
< | 
 | 
| 128 | 
< | 
    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 129 | 
< | 
 | 
| 130 | 
< | 
#endif // is_mpi | 
| 131 | 
< | 
 | 
| 116 | 
> | 
    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 117 | 
> | 
    potential = curSnapshot->getShortRangePotential() + curSnapshot->getLongRangePotential(); | 
| 118 | 
  | 
    return potential; | 
| 119 | 
  | 
  } | 
| 120 | 
  | 
 | 
| 131 | 
  | 
    return temperature; | 
| 132 | 
  | 
  } | 
| 133 | 
  | 
 | 
| 134 | 
+ | 
  RealType Thermo::getElectronicTemperature() { | 
| 135 | 
+ | 
    SimInfo::MoleculeIterator miter; | 
| 136 | 
+ | 
    std::vector<Atom*>::iterator iiter; | 
| 137 | 
+ | 
    Molecule* mol; | 
| 138 | 
+ | 
    Atom* atom;     | 
| 139 | 
+ | 
    RealType cvel; | 
| 140 | 
+ | 
    RealType cmass; | 
| 141 | 
+ | 
    RealType kinetic = 0.0; | 
| 142 | 
+ | 
    RealType kinetic_global = 0.0; | 
| 143 | 
+ | 
     | 
| 144 | 
+ | 
    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 145 | 
+ | 
      for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;  | 
| 146 | 
+ | 
           atom = mol->nextFluctuatingCharge(iiter)) { | 
| 147 | 
+ | 
        cmass = atom->getChargeMass(); | 
| 148 | 
+ | 
        cvel = atom->getFlucQVel(); | 
| 149 | 
+ | 
         | 
| 150 | 
+ | 
        kinetic += cmass * cvel * cvel; | 
| 151 | 
+ | 
         | 
| 152 | 
+ | 
      } | 
| 153 | 
+ | 
    } | 
| 154 | 
+ | 
     | 
| 155 | 
+ | 
#ifdef IS_MPI | 
| 156 | 
+ | 
 | 
| 157 | 
+ | 
    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, | 
| 158 | 
+ | 
                  MPI_COMM_WORLD); | 
| 159 | 
+ | 
    kinetic = kinetic_global; | 
| 160 | 
+ | 
 | 
| 161 | 
+ | 
#endif //is_mpi | 
| 162 | 
+ | 
 | 
| 163 | 
+ | 
    kinetic = kinetic * 0.5; | 
| 164 | 
+ | 
    return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb );     | 
| 165 | 
+ | 
  } | 
| 166 | 
+ | 
 | 
| 167 | 
+ | 
 | 
| 168 | 
+ | 
 | 
| 169 | 
+ | 
 | 
| 170 | 
  | 
  RealType Thermo::getVolume() {  | 
| 171 | 
  | 
    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 172 | 
  | 
    return curSnapshot->getVolume(); | 
| 232 | 
  | 
 | 
| 233 | 
  | 
    RealType volume = this->getVolume(); | 
| 234 | 
  | 
    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 235 | 
< | 
    Mat3x3d tau = curSnapshot->getTau(); | 
| 235 | 
> | 
    Mat3x3d stressTensor = curSnapshot->getStressTensor(); | 
| 236 | 
  | 
 | 
| 237 | 
< | 
    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume; | 
| 237 | 
> | 
    pressureTensor =  (p_global +  | 
| 238 | 
> | 
                       PhysicalConstants::energyConvert * stressTensor)/volume; | 
| 239 | 
  | 
     | 
| 240 | 
  | 
    return pressureTensor; | 
| 241 | 
  | 
  } | 
| 272 | 
  | 
    } | 
| 273 | 
  | 
 | 
| 274 | 
  | 
    Globals* simParams = info_->getSimParams(); | 
| 275 | 
+ | 
    // grab the heat flux if desired | 
| 276 | 
+ | 
    if (simParams->havePrintHeatFlux()) { | 
| 277 | 
+ | 
      if (simParams->getPrintHeatFlux()){ | 
| 278 | 
+ | 
        Vector3d heatFlux = getHeatFlux(); | 
| 279 | 
+ | 
        stat[Stats::HEATFLUX_X] = heatFlux(0); | 
| 280 | 
+ | 
        stat[Stats::HEATFLUX_Y] = heatFlux(1); | 
| 281 | 
+ | 
        stat[Stats::HEATFLUX_Z] = heatFlux(2); | 
| 282 | 
+ | 
      } | 
| 283 | 
+ | 
    } | 
| 284 | 
  | 
 | 
| 285 | 
  | 
    if (simParams->haveTaggedAtomPair() &&  | 
| 286 | 
  | 
        simParams->havePrintTaggedPairDistance()) { | 
| 453 | 
  | 
    boxDipole += (pPos - nPos) * chg_value; | 
| 454 | 
  | 
 | 
| 455 | 
  | 
    return boxDipole; | 
| 456 | 
+ | 
  } | 
| 457 | 
+ | 
 | 
| 458 | 
+ | 
  // Returns the Heat Flux Vector for the system | 
| 459 | 
+ | 
  Vector3d Thermo::getHeatFlux(){ | 
| 460 | 
+ | 
    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 461 | 
+ | 
    SimInfo::MoleculeIterator miter; | 
| 462 | 
+ | 
    std::vector<StuntDouble*>::iterator iiter; | 
| 463 | 
+ | 
    Molecule* mol; | 
| 464 | 
+ | 
    StuntDouble* integrableObject;     | 
| 465 | 
+ | 
    RigidBody::AtomIterator ai;  | 
| 466 | 
+ | 
    Atom* atom;        | 
| 467 | 
+ | 
    Vector3d vel; | 
| 468 | 
+ | 
    Vector3d angMom; | 
| 469 | 
+ | 
    Mat3x3d I; | 
| 470 | 
+ | 
    int i; | 
| 471 | 
+ | 
    int j; | 
| 472 | 
+ | 
    int k; | 
| 473 | 
+ | 
    RealType mass; | 
| 474 | 
+ | 
 | 
| 475 | 
+ | 
    Vector3d x_a; | 
| 476 | 
+ | 
    RealType kinetic; | 
| 477 | 
+ | 
    RealType potential; | 
| 478 | 
+ | 
    RealType eatom; | 
| 479 | 
+ | 
    RealType AvgE_a_ = 0; | 
| 480 | 
+ | 
    // Convective portion of the heat flux | 
| 481 | 
+ | 
    Vector3d heatFluxJc = V3Zero; | 
| 482 | 
+ | 
 | 
| 483 | 
+ | 
    /* Calculate convective portion of the heat flux */ | 
| 484 | 
+ | 
    for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 485 | 
+ | 
         mol = info_->nextMolecule(miter)) { | 
| 486 | 
+ | 
       | 
| 487 | 
+ | 
      for (integrableObject = mol->beginIntegrableObject(iiter);  | 
| 488 | 
+ | 
           integrableObject != NULL;  | 
| 489 | 
+ | 
           integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 490 | 
+ | 
         | 
| 491 | 
+ | 
        mass = integrableObject->getMass(); | 
| 492 | 
+ | 
        vel = integrableObject->getVel(); | 
| 493 | 
+ | 
 | 
| 494 | 
+ | 
        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 495 | 
+ | 
         | 
| 496 | 
+ | 
        if (integrableObject->isDirectional()) { | 
| 497 | 
+ | 
          angMom = integrableObject->getJ(); | 
| 498 | 
+ | 
          I = integrableObject->getI(); | 
| 499 | 
+ | 
 | 
| 500 | 
+ | 
          if (integrableObject->isLinear()) { | 
| 501 | 
+ | 
            i = integrableObject->linearAxis(); | 
| 502 | 
+ | 
            j = (i + 1) % 3; | 
| 503 | 
+ | 
            k = (i + 2) % 3; | 
| 504 | 
+ | 
            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); | 
| 505 | 
+ | 
          } else {                         | 
| 506 | 
+ | 
            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)  | 
| 507 | 
+ | 
              + angMom[2]*angMom[2]/I(2, 2); | 
| 508 | 
+ | 
          } | 
| 509 | 
+ | 
        } | 
| 510 | 
+ | 
 | 
| 511 | 
+ | 
        potential = 0.0; | 
| 512 | 
+ | 
 | 
| 513 | 
+ | 
        if (integrableObject->isRigidBody()) { | 
| 514 | 
+ | 
          RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject); | 
| 515 | 
+ | 
          for (atom = rb->beginAtom(ai); atom != NULL;  | 
| 516 | 
+ | 
               atom = rb->nextAtom(ai)) { | 
| 517 | 
+ | 
            potential +=  atom->getParticlePot(); | 
| 518 | 
+ | 
          }           | 
| 519 | 
+ | 
        } else { | 
| 520 | 
+ | 
          potential = integrableObject->getParticlePot(); | 
| 521 | 
+ | 
          cerr << "ppot = "  << potential << "\n"; | 
| 522 | 
+ | 
        } | 
| 523 | 
+ | 
 | 
| 524 | 
+ | 
        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 | 
| 525 | 
+ | 
        // The potential may not be a 1/2 factor | 
| 526 | 
+ | 
        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2 | 
| 527 | 
+ | 
        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 | 
| 528 | 
+ | 
        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 | 
| 529 | 
+ | 
        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 | 
| 530 | 
+ | 
      } | 
| 531 | 
+ | 
    } | 
| 532 | 
+ | 
 | 
| 533 | 
+ | 
    std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl; | 
| 534 | 
+ | 
 | 
| 535 | 
+ | 
    /* The J_v vector is reduced in fortan so everyone has the global | 
| 536 | 
+ | 
     *  Jv. Jc is computed over the local atoms and must be reduced | 
| 537 | 
+ | 
     *  among all processors. | 
| 538 | 
+ | 
     */ | 
| 539 | 
+ | 
#ifdef IS_MPI | 
| 540 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,  | 
| 541 | 
+ | 
                              MPI::SUM); | 
| 542 | 
+ | 
#endif | 
| 543 | 
+ | 
     | 
| 544 | 
+ | 
    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 | 
| 545 | 
+ | 
 | 
| 546 | 
+ | 
    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *  | 
| 547 | 
+ | 
      PhysicalConstants::energyConvert; | 
| 548 | 
+ | 
     | 
| 549 | 
+ | 
    std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl; | 
| 550 | 
+ | 
    std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl; | 
| 551 | 
+ | 
     | 
| 552 | 
+ | 
    // Correct for the fact the flux is 1/V (Jc + Jv) | 
| 553 | 
+ | 
    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3  | 
| 554 | 
  | 
  } | 
| 555 | 
  | 
} //end namespace OpenMD |