| 70 | 
  | 
    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { | 
| 71 | 
  | 
      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;  | 
| 72 | 
  | 
           integrableObject = mol->nextIntegrableObject(iiter)) { | 
| 73 | 
< | 
 | 
| 73 | 
> | 
         | 
| 74 | 
  | 
        double mass = integrableObject->getMass(); | 
| 75 | 
  | 
        Vector3d vel = integrableObject->getVel(); | 
| 76 | 
< | 
 | 
| 76 | 
> | 
         | 
| 77 | 
  | 
        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 78 | 
< | 
 | 
| 78 | 
> | 
         | 
| 79 | 
  | 
        if (integrableObject->isDirectional()) { | 
| 80 | 
  | 
          angMom = integrableObject->getJ(); | 
| 81 | 
  | 
          I = integrableObject->getI(); | 
| 110 | 
  | 
  double Thermo::getPotential() { | 
| 111 | 
  | 
    double potential = 0.0; | 
| 112 | 
  | 
    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 113 | 
< | 
    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +  | 
| 114 | 
< | 
      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 113 | 
> | 
    double shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ; | 
| 114 | 
  | 
 | 
| 115 | 
  | 
    // Get total potential for entire system from MPI. | 
| 116 | 
  | 
 | 
| 117 | 
  | 
#ifdef IS_MPI | 
| 118 | 
  | 
 | 
| 119 | 
< | 
    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM, | 
| 119 | 
> | 
    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_DOUBLE, MPI_SUM, | 
| 120 | 
  | 
                  MPI_COMM_WORLD); | 
| 121 | 
+ | 
    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 122 | 
  | 
 | 
| 123 | 
  | 
#else | 
| 124 | 
  | 
 | 
| 125 | 
< | 
    potential = potential_local; | 
| 125 | 
> | 
    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL]; | 
| 126 | 
  | 
 | 
| 127 | 
  | 
#endif // is_mpi | 
| 128 | 
  | 
 | 
| 162 | 
  | 
    return pressure; | 
| 163 | 
  | 
  } | 
| 164 | 
  | 
 | 
| 165 | 
+ | 
  double Thermo::getPressure(int direction) { | 
| 166 | 
+ | 
 | 
| 167 | 
+ | 
    // Relies on the calculation of the full molecular pressure tensor | 
| 168 | 
+ | 
 | 
| 169 | 
+ | 
           | 
| 170 | 
+ | 
    Mat3x3d tensor; | 
| 171 | 
+ | 
    double pressure; | 
| 172 | 
+ | 
 | 
| 173 | 
+ | 
    tensor = getPressureTensor(); | 
| 174 | 
+ | 
 | 
| 175 | 
+ | 
    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction); | 
| 176 | 
+ | 
 | 
| 177 | 
+ | 
    return pressure; | 
| 178 | 
+ | 
  } | 
| 179 | 
+ | 
 | 
| 180 | 
+ | 
 | 
| 181 | 
+ | 
 | 
| 182 | 
  | 
  Mat3x3d Thermo::getPressureTensor() { | 
| 183 | 
  | 
    // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 184 | 
  | 
    // routine derived via viral theorem description in: | 
| 227 | 
  | 
    stat[Stats::PRESSURE] = getPressure(); | 
| 228 | 
  | 
    stat[Stats::VOLUME] = getVolume();       | 
| 229 | 
  | 
 | 
| 230 | 
+ | 
    Mat3x3d tensor =getPressureTensor(); | 
| 231 | 
+ | 
    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);       | 
| 232 | 
+ | 
    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);       | 
| 233 | 
+ | 
    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);       | 
| 234 | 
+ | 
 | 
| 235 | 
+ | 
 | 
| 236 | 
  | 
    /**@todo need refactorying*/ | 
| 237 | 
  | 
    //Conserved Quantity is set by integrator and time is set by setTime | 
| 238 | 
  | 
     |