| 51 |
|
#include "primitives/Molecule.hpp" |
| 52 |
|
#include "utils/simError.h" |
| 53 |
|
#include "utils/PhysicalConstants.hpp" |
| 54 |
+ |
#include "types/MultipoleAdapter.hpp" |
| 55 |
|
|
| 56 |
|
namespace OpenMD { |
| 57 |
|
|
| 145 |
|
return temperature; |
| 146 |
|
} |
| 147 |
|
|
| 148 |
+ |
RealType Thermo::getElectronicTemperature() { |
| 149 |
+ |
SimInfo::MoleculeIterator miter; |
| 150 |
+ |
std::vector<Atom*>::iterator iiter; |
| 151 |
+ |
Molecule* mol; |
| 152 |
+ |
Atom* atom; |
| 153 |
+ |
RealType cvel; |
| 154 |
+ |
RealType cmass; |
| 155 |
+ |
RealType kinetic = 0.0; |
| 156 |
+ |
RealType kinetic_global = 0.0; |
| 157 |
+ |
|
| 158 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
| 159 |
+ |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
| 160 |
+ |
atom = mol->nextFluctuatingCharge(iiter)) { |
| 161 |
+ |
cmass = atom->getChargeMass(); |
| 162 |
+ |
cvel = atom->getFlucQVel(); |
| 163 |
+ |
|
| 164 |
+ |
kinetic += cmass * cvel * cvel; |
| 165 |
+ |
|
| 166 |
+ |
} |
| 167 |
+ |
} |
| 168 |
+ |
|
| 169 |
+ |
#ifdef IS_MPI |
| 170 |
+ |
|
| 171 |
+ |
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
| 172 |
+ |
MPI_COMM_WORLD); |
| 173 |
+ |
kinetic = kinetic_global; |
| 174 |
+ |
|
| 175 |
+ |
#endif //is_mpi |
| 176 |
+ |
|
| 177 |
+ |
kinetic = kinetic * 0.5; |
| 178 |
+ |
return ( 2.0 * kinetic) / (info_->getNFluctuatingCharges()* PhysicalConstants::kb ); |
| 179 |
+ |
} |
| 180 |
+ |
|
| 181 |
+ |
|
| 182 |
+ |
|
| 183 |
+ |
|
| 184 |
|
RealType Thermo::getVolume() { |
| 185 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 186 |
|
return curSnapshot->getVolume(); |
| 246 |
|
|
| 247 |
|
RealType volume = this->getVolume(); |
| 248 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 249 |
< |
Mat3x3d tau = curSnapshot->getTau(); |
| 249 |
> |
Mat3x3d stressTensor = curSnapshot->getStressTensor(); |
| 250 |
|
|
| 251 |
< |
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
| 251 |
> |
pressureTensor = (p_global + |
| 252 |
> |
PhysicalConstants::energyConvert * stressTensor)/volume; |
| 253 |
|
|
| 254 |
|
return pressureTensor; |
| 255 |
|
} |
| 286 |
|
} |
| 287 |
|
|
| 288 |
|
Globals* simParams = info_->getSimParams(); |
| 289 |
+ |
// grab the heat flux if desired |
| 290 |
+ |
if (simParams->havePrintHeatFlux()) { |
| 291 |
+ |
if (simParams->getPrintHeatFlux()){ |
| 292 |
+ |
Vector3d heatFlux = getHeatFlux(); |
| 293 |
+ |
stat[Stats::HEATFLUX_X] = heatFlux(0); |
| 294 |
+ |
stat[Stats::HEATFLUX_Y] = heatFlux(1); |
| 295 |
+ |
stat[Stats::HEATFLUX_Z] = heatFlux(2); |
| 296 |
+ |
} |
| 297 |
+ |
} |
| 298 |
|
|
| 299 |
|
if (simParams->haveTaggedAtomPair() && |
| 300 |
|
simParams->havePrintTaggedPairDistance()) { |
| 411 |
|
} |
| 412 |
|
} |
| 413 |
|
|
| 414 |
< |
if (atom->isDipole() ) { |
| 414 |
> |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
| 415 |
> |
if (ma.isDipole() ) { |
| 416 |
|
Vector3d u_i = atom->getElectroFrame().getColumn(2); |
| 417 |
< |
GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole"); |
| 418 |
< |
if (data != NULL) { |
| 419 |
< |
moment = (dynamic_cast<DoubleGenericData*>(data))->getData(); |
| 372 |
< |
|
| 373 |
< |
moment *= debyeToCm; |
| 374 |
< |
dipoleVector += u_i * moment; |
| 375 |
< |
} |
| 417 |
> |
moment = ma.getDipoleMoment(); |
| 418 |
> |
moment *= debyeToCm; |
| 419 |
> |
dipoleVector += u_i * moment; |
| 420 |
|
} |
| 421 |
|
} |
| 422 |
|
} |
| 467 |
|
boxDipole += (pPos - nPos) * chg_value; |
| 468 |
|
|
| 469 |
|
return boxDipole; |
| 470 |
+ |
} |
| 471 |
+ |
|
| 472 |
+ |
// Returns the Heat Flux Vector for the system |
| 473 |
+ |
Vector3d Thermo::getHeatFlux(){ |
| 474 |
+ |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 475 |
+ |
SimInfo::MoleculeIterator miter; |
| 476 |
+ |
std::vector<StuntDouble*>::iterator iiter; |
| 477 |
+ |
Molecule* mol; |
| 478 |
+ |
StuntDouble* integrableObject; |
| 479 |
+ |
RigidBody::AtomIterator ai; |
| 480 |
+ |
Atom* atom; |
| 481 |
+ |
Vector3d vel; |
| 482 |
+ |
Vector3d angMom; |
| 483 |
+ |
Mat3x3d I; |
| 484 |
+ |
int i; |
| 485 |
+ |
int j; |
| 486 |
+ |
int k; |
| 487 |
+ |
RealType mass; |
| 488 |
+ |
|
| 489 |
+ |
Vector3d x_a; |
| 490 |
+ |
RealType kinetic; |
| 491 |
+ |
RealType potential; |
| 492 |
+ |
RealType eatom; |
| 493 |
+ |
RealType AvgE_a_ = 0; |
| 494 |
+ |
// Convective portion of the heat flux |
| 495 |
+ |
Vector3d heatFluxJc = V3Zero; |
| 496 |
+ |
|
| 497 |
+ |
/* Calculate convective portion of the heat flux */ |
| 498 |
+ |
for (mol = info_->beginMolecule(miter); mol != NULL; |
| 499 |
+ |
mol = info_->nextMolecule(miter)) { |
| 500 |
+ |
|
| 501 |
+ |
for (integrableObject = mol->beginIntegrableObject(iiter); |
| 502 |
+ |
integrableObject != NULL; |
| 503 |
+ |
integrableObject = mol->nextIntegrableObject(iiter)) { |
| 504 |
+ |
|
| 505 |
+ |
mass = integrableObject->getMass(); |
| 506 |
+ |
vel = integrableObject->getVel(); |
| 507 |
+ |
|
| 508 |
+ |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
| 509 |
+ |
|
| 510 |
+ |
if (integrableObject->isDirectional()) { |
| 511 |
+ |
angMom = integrableObject->getJ(); |
| 512 |
+ |
I = integrableObject->getI(); |
| 513 |
+ |
|
| 514 |
+ |
if (integrableObject->isLinear()) { |
| 515 |
+ |
i = integrableObject->linearAxis(); |
| 516 |
+ |
j = (i + 1) % 3; |
| 517 |
+ |
k = (i + 2) % 3; |
| 518 |
+ |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
| 519 |
+ |
} else { |
| 520 |
+ |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
| 521 |
+ |
+ angMom[2]*angMom[2]/I(2, 2); |
| 522 |
+ |
} |
| 523 |
+ |
} |
| 524 |
+ |
|
| 525 |
+ |
potential = 0.0; |
| 526 |
+ |
|
| 527 |
+ |
if (integrableObject->isRigidBody()) { |
| 528 |
+ |
RigidBody* rb = dynamic_cast<RigidBody*>(integrableObject); |
| 529 |
+ |
for (atom = rb->beginAtom(ai); atom != NULL; |
| 530 |
+ |
atom = rb->nextAtom(ai)) { |
| 531 |
+ |
potential += atom->getParticlePot(); |
| 532 |
+ |
} |
| 533 |
+ |
} else { |
| 534 |
+ |
potential = integrableObject->getParticlePot(); |
| 535 |
+ |
cerr << "ppot = " << potential << "\n"; |
| 536 |
+ |
} |
| 537 |
+ |
|
| 538 |
+ |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
| 539 |
+ |
// The potential may not be a 1/2 factor |
| 540 |
+ |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
| 541 |
+ |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
| 542 |
+ |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
| 543 |
+ |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
| 544 |
+ |
} |
| 545 |
+ |
} |
| 546 |
+ |
|
| 547 |
+ |
std::cerr << "Heat flux heatFluxJc is: " << heatFluxJc << std::endl; |
| 548 |
+ |
|
| 549 |
+ |
/* The J_v vector is reduced in fortan so everyone has the global |
| 550 |
+ |
* Jv. Jc is computed over the local atoms and must be reduced |
| 551 |
+ |
* among all processors. |
| 552 |
+ |
*/ |
| 553 |
+ |
#ifdef IS_MPI |
| 554 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE, |
| 555 |
+ |
MPI::SUM); |
| 556 |
+ |
#endif |
| 557 |
+ |
|
| 558 |
+ |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
| 559 |
+ |
|
| 560 |
+ |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
| 561 |
+ |
PhysicalConstants::energyConvert; |
| 562 |
+ |
|
| 563 |
+ |
std::cerr << "Heat flux Jc is: " << heatFluxJc << std::endl; |
| 564 |
+ |
std::cerr << "Heat flux Jv is: " << heatFluxJv << std::endl; |
| 565 |
+ |
|
| 566 |
+ |
// Correct for the fact the flux is 1/V (Jc + Jv) |
| 567 |
+ |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
| 568 |
|
} |
| 569 |
|
} //end namespace OpenMD |