| 1 | 
+ | 
/* | 
| 2 | 
+ | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
+ | 
 * | 
| 4 | 
+ | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
+ | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
+ | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
+ | 
 * that the following conditions are met: | 
| 8 | 
+ | 
 * | 
| 9 | 
+ | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
+ | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
+ | 
 * | 
| 12 | 
+ | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
+ | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
+ | 
 *    documentation and/or other materials provided with the | 
| 15 | 
+ | 
 *    distribution. | 
| 16 | 
+ | 
 * | 
| 17 | 
+ | 
 * This software is provided "AS IS," without a warranty of any | 
| 18 | 
+ | 
 * kind. All express or implied conditions, representations and | 
| 19 | 
+ | 
 * warranties, including any implied warranty of merchantability, | 
| 20 | 
+ | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | 
+ | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | 
+ | 
 * be liable for any damages suffered by licensee as a result of | 
| 23 | 
+ | 
 * using, modifying or distributing the software or its | 
| 24 | 
+ | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 25 | 
+ | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | 
+ | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 27 | 
+ | 
 * damages, however caused and regardless of the theory of liability, | 
| 28 | 
+ | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
+ | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
+ | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
+ | 
 */ | 
| 42 | 
+ | 
  | 
| 43 | 
  | 
#include <math.h> | 
| 44 | 
  | 
#include <iostream> | 
| 3 | 
– | 
using namespace std; | 
| 45 | 
  | 
 | 
| 46 | 
  | 
#ifdef IS_MPI | 
| 47 | 
  | 
#include <mpi.h> | 
| 48 | 
  | 
#endif //is_mpi | 
| 49 | 
  | 
 | 
| 50 | 
< | 
#include "Thermo.hpp" | 
| 51 | 
< | 
#include "SRI.hpp" | 
| 52 | 
< | 
#include "Integrator.hpp" | 
| 53 | 
< | 
#include "simError.h" | 
| 54 | 
< | 
#include "MatVec3.h" | 
| 50 | 
> | 
#include "brains/Thermo.hpp" | 
| 51 | 
> | 
#include "primitives/Molecule.hpp" | 
| 52 | 
> | 
#include "utils/simError.h" | 
| 53 | 
> | 
#include "utils/PhysicalConstants.hpp" | 
| 54 | 
> | 
#include "types/FixedChargeAdapter.hpp" | 
| 55 | 
> | 
#include "types/FluctuatingChargeAdapter.hpp" | 
| 56 | 
> | 
#include "types/MultipoleAdapter.hpp" | 
| 57 | 
> | 
#ifdef HAVE_QHULL | 
| 58 | 
> | 
#include "math/ConvexHull.hpp" | 
| 59 | 
> | 
#include "math/AlphaHull.hpp" | 
| 60 | 
> | 
#endif | 
| 61 | 
  | 
 | 
| 62 | 
< | 
#ifdef IS_MPI | 
| 63 | 
< | 
#define __C | 
| 17 | 
< | 
#include "mpiSimulation.hpp" | 
| 18 | 
< | 
#endif // is_mpi | 
| 62 | 
> | 
using namespace std; | 
| 63 | 
> | 
namespace OpenMD { | 
| 64 | 
  | 
 | 
| 65 | 
< | 
inline double roundMe( double x ){ | 
| 66 | 
< | 
          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 22 | 
< | 
} | 
| 65 | 
> | 
  RealType Thermo::getTranslationalKinetic() { | 
| 66 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 67 | 
  | 
 | 
| 68 | 
< | 
Thermo::Thermo( SimInfo* the_info ) {  | 
| 69 | 
< | 
  info = the_info; | 
| 70 | 
< | 
  int baseSeed = the_info->getSeed(); | 
| 71 | 
< | 
   | 
| 72 | 
< | 
  gaussStream = new gaussianSPRNG( baseSeed ); | 
| 73 | 
< | 
} | 
| 68 | 
> | 
    if (!snap->hasTranslationalKineticEnergy) { | 
| 69 | 
> | 
      SimInfo::MoleculeIterator miter; | 
| 70 | 
> | 
      vector<StuntDouble*>::iterator iiter; | 
| 71 | 
> | 
      Molecule* mol; | 
| 72 | 
> | 
      StuntDouble* sd;     | 
| 73 | 
> | 
      Vector3d vel; | 
| 74 | 
> | 
      RealType mass; | 
| 75 | 
> | 
      RealType kinetic(0.0); | 
| 76 | 
> | 
       | 
| 77 | 
> | 
      for (mol = info_->beginMolecule(miter); mol != NULL;  | 
| 78 | 
> | 
           mol = info_->nextMolecule(miter)) { | 
| 79 | 
> | 
         | 
| 80 | 
> | 
        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;  | 
| 81 | 
> | 
             sd = mol->nextIntegrableObject(iiter)) { | 
| 82 | 
> | 
           | 
| 83 | 
> | 
          mass = sd->getMass(); | 
| 84 | 
> | 
          vel = sd->getVel(); | 
| 85 | 
> | 
           | 
| 86 | 
> | 
          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 87 | 
> | 
           | 
| 88 | 
> | 
        } | 
| 89 | 
> | 
      } | 
| 90 | 
> | 
       | 
| 91 | 
> | 
#ifdef IS_MPI | 
| 92 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,  | 
| 93 | 
> | 
                                MPI::SUM); | 
| 94 | 
> | 
#endif | 
| 95 | 
> | 
       | 
| 96 | 
> | 
      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 97 | 
> | 
       | 
| 98 | 
> | 
       | 
| 99 | 
> | 
      snap->setTranslationalKineticEnergy(kinetic); | 
| 100 | 
> | 
    } | 
| 101 | 
> | 
    return snap->getTranslationalKineticEnergy(); | 
| 102 | 
> | 
  } | 
| 103 | 
  | 
 | 
| 104 | 
< | 
Thermo::~Thermo(){ | 
| 105 | 
< | 
  delete gaussStream; | 
| 33 | 
< | 
} | 
| 104 | 
> | 
  RealType Thermo::getRotationalKinetic() { | 
| 105 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 106 | 
  | 
 | 
| 107 | 
< | 
double Thermo::getKinetic(){ | 
| 108 | 
< | 
 | 
| 109 | 
< | 
  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 110 | 
< | 
  double kinetic; | 
| 111 | 
< | 
  double amass; | 
| 112 | 
< | 
  double aVel[3], aJ[3], I[3][3]; | 
| 113 | 
< | 
  int i, j, k, kl; | 
| 114 | 
< | 
 | 
| 115 | 
< | 
  double kinetic_global; | 
| 116 | 
< | 
  vector<StuntDouble *> integrableObjects = info->integrableObjects; | 
| 117 | 
< | 
   | 
| 118 | 
< | 
  kinetic = 0.0; | 
| 119 | 
< | 
  kinetic_global = 0.0; | 
| 120 | 
< | 
 | 
| 121 | 
< | 
  for (kl=0; kl<integrableObjects.size(); kl++) { | 
| 122 | 
< | 
    integrableObjects[kl]->getVel(aVel); | 
| 123 | 
< | 
    amass = integrableObjects[kl]->getMass(); | 
| 124 | 
< | 
 | 
| 125 | 
< | 
   for(j=0; j<3; j++)  | 
| 126 | 
< | 
      kinetic += amass*aVel[j]*aVel[j]; | 
| 127 | 
< | 
 | 
| 128 | 
< | 
   if (integrableObjects[kl]->isDirectional()){ | 
| 129 | 
< | 
  | 
| 130 | 
< | 
      integrableObjects[kl]->getJ( aJ ); | 
| 131 | 
< | 
      integrableObjects[kl]->getI( I ); | 
| 132 | 
< | 
 | 
| 133 | 
< | 
      if (integrableObjects[kl]->isLinear()) { | 
| 134 | 
< | 
        i = integrableObjects[kl]->linearAxis(); | 
| 135 | 
< | 
        j = (i+1)%3; | 
| 136 | 
< | 
        k = (i+2)%3; | 
| 137 | 
< | 
        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; | 
| 138 | 
< | 
      } else { | 
| 139 | 
< | 
        for (j=0; j<3; j++)  | 
| 68 | 
< | 
          kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 107 | 
> | 
    if (!snap->hasRotationalKineticEnergy) { | 
| 108 | 
> | 
      SimInfo::MoleculeIterator miter; | 
| 109 | 
> | 
      vector<StuntDouble*>::iterator iiter; | 
| 110 | 
> | 
      Molecule* mol; | 
| 111 | 
> | 
      StuntDouble* sd;     | 
| 112 | 
> | 
      Vector3d angMom; | 
| 113 | 
> | 
      Mat3x3d I; | 
| 114 | 
> | 
      int i, j, k; | 
| 115 | 
> | 
      RealType kinetic(0.0); | 
| 116 | 
> | 
       | 
| 117 | 
> | 
      for (mol = info_->beginMolecule(miter); mol != NULL;  | 
| 118 | 
> | 
           mol = info_->nextMolecule(miter)) { | 
| 119 | 
> | 
         | 
| 120 | 
> | 
        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;  | 
| 121 | 
> | 
             sd = mol->nextIntegrableObject(iiter)) { | 
| 122 | 
> | 
           | 
| 123 | 
> | 
          if (sd->isDirectional()) { | 
| 124 | 
> | 
            angMom = sd->getJ(); | 
| 125 | 
> | 
            I = sd->getI(); | 
| 126 | 
> | 
             | 
| 127 | 
> | 
            if (sd->isLinear()) { | 
| 128 | 
> | 
              i = sd->linearAxis(); | 
| 129 | 
> | 
              j = (i + 1) % 3; | 
| 130 | 
> | 
              k = (i + 2) % 3; | 
| 131 | 
> | 
              kinetic += angMom[j] * angMom[j] / I(j, j)  | 
| 132 | 
> | 
                + angMom[k] * angMom[k] / I(k, k); | 
| 133 | 
> | 
            } else {                         | 
| 134 | 
> | 
              kinetic += angMom[0]*angMom[0]/I(0, 0)  | 
| 135 | 
> | 
                + angMom[1]*angMom[1]/I(1, 1)  | 
| 136 | 
> | 
                + angMom[2]*angMom[2]/I(2, 2); | 
| 137 | 
> | 
            } | 
| 138 | 
> | 
          }            | 
| 139 | 
> | 
        } | 
| 140 | 
  | 
      } | 
| 141 | 
< | 
   } | 
| 71 | 
< | 
  } | 
| 141 | 
> | 
       | 
| 142 | 
  | 
#ifdef IS_MPI | 
| 143 | 
< | 
  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 144 | 
< | 
                MPI_SUM, MPI_COMM_WORLD); | 
| 145 | 
< | 
  kinetic = kinetic_global; | 
| 146 | 
< | 
#endif //is_mpi | 
| 147 | 
< | 
   | 
| 148 | 
< | 
  kinetic = kinetic * 0.5 / e_convert; | 
| 143 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,  | 
| 144 | 
> | 
                                MPI::SUM); | 
| 145 | 
> | 
#endif | 
| 146 | 
> | 
       | 
| 147 | 
> | 
      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; | 
| 148 | 
> | 
            | 
| 149 | 
> | 
      snap->setRotationalKineticEnergy(kinetic); | 
| 150 | 
> | 
    } | 
| 151 | 
> | 
    return snap->getRotationalKineticEnergy(); | 
| 152 | 
> | 
  } | 
| 153 | 
  | 
 | 
| 154 | 
< | 
  return kinetic; | 
| 81 | 
< | 
} | 
| 154 | 
> | 
       | 
| 155 | 
  | 
 | 
| 156 | 
< | 
double Thermo::getPotential(){ | 
| 157 | 
< | 
   | 
| 85 | 
< | 
  double potential_local; | 
| 86 | 
< | 
  double potential; | 
| 87 | 
< | 
  int el, nSRI; | 
| 88 | 
< | 
  Molecule* molecules; | 
| 156 | 
> | 
  RealType Thermo::getKinetic() { | 
| 157 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 158 | 
  | 
 | 
| 159 | 
< | 
  molecules = info->molecules; | 
| 160 | 
< | 
  nSRI = info->n_SRI; | 
| 161 | 
< | 
 | 
| 162 | 
< | 
  potential_local = 0.0; | 
| 163 | 
< | 
  potential = 0.0; | 
| 95 | 
< | 
  potential_local += info->lrPot; | 
| 96 | 
< | 
 | 
| 97 | 
< | 
  for( el=0; el<info->n_mol; el++ ){     | 
| 98 | 
< | 
    potential_local += molecules[el].getPotential(); | 
| 159 | 
> | 
    if (!snap->hasKineticEnergy) { | 
| 160 | 
> | 
      RealType ke = getTranslationalKinetic() + getRotationalKinetic(); | 
| 161 | 
> | 
      snap->setKineticEnergy(ke); | 
| 162 | 
> | 
    } | 
| 163 | 
> | 
    return snap->getKineticEnergy(); | 
| 164 | 
  | 
  } | 
| 165 | 
  | 
 | 
| 166 | 
< | 
  // Get total potential for entire system from MPI. | 
| 102 | 
< | 
#ifdef IS_MPI | 
| 103 | 
< | 
  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 104 | 
< | 
                MPI_SUM, MPI_COMM_WORLD); | 
| 105 | 
< | 
#else | 
| 106 | 
< | 
  potential = potential_local;  | 
| 107 | 
< | 
#endif // is_mpi | 
| 166 | 
> | 
  RealType Thermo::getPotential() { | 
| 167 | 
  | 
 | 
| 168 | 
< | 
  return potential; | 
| 169 | 
< | 
} | 
| 168 | 
> | 
    // ForceManager computes the potential and stores it in the | 
| 169 | 
> | 
    // Snapshot.  All we have to do is report it. | 
| 170 | 
  | 
 | 
| 171 | 
< | 
double Thermo::getTotalE(){ | 
| 171 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 172 | 
> | 
    return snap->getPotentialEnergy(); | 
| 173 | 
> | 
  } | 
| 174 | 
  | 
 | 
| 175 | 
< | 
  double total; | 
| 175 | 
> | 
  RealType Thermo::getTotalEnergy() { | 
| 176 | 
  | 
 | 
| 177 | 
< | 
  total = this->getKinetic() + this->getPotential(); | 
| 117 | 
< | 
  return total; | 
| 118 | 
< | 
} | 
| 177 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 178 | 
  | 
 | 
| 179 | 
< | 
double Thermo::getTemperature(){ | 
| 179 | 
> | 
    if (!snap->hasTotalEnergy) { | 
| 180 | 
> | 
      snap->setTotalEnergy(this->getKinetic() + this->getPotential()); | 
| 181 | 
> | 
    } | 
| 182 | 
  | 
 | 
| 183 | 
< | 
  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) | 
| 184 | 
< | 
  double temperature; | 
| 183 | 
> | 
    return snap->getTotalEnergy(); | 
| 184 | 
> | 
  } | 
| 185 | 
  | 
 | 
| 186 | 
< | 
  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); | 
| 126 | 
< | 
  return temperature; | 
| 127 | 
< | 
} | 
| 186 | 
> | 
  RealType Thermo::getTemperature() { | 
| 187 | 
  | 
 | 
| 188 | 
< | 
double Thermo::getVolume() { | 
| 188 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 189 | 
  | 
 | 
| 190 | 
< | 
  return info->boxVol; | 
| 132 | 
< | 
} | 
| 190 | 
> | 
    if (!snap->hasTemperature) { | 
| 191 | 
  | 
 | 
| 192 | 
< | 
double Thermo::getPressure() { | 
| 192 | 
> | 
      RealType temperature = ( 2.0 * this->getKinetic() )  | 
| 193 | 
> | 
        / (info_->getNdf()* PhysicalConstants::kb ); | 
| 194 | 
  | 
 | 
| 195 | 
< | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 196 | 
< | 
   | 
| 197 | 
< | 
  const double p_convert = 1.63882576e8; | 
| 198 | 
< | 
  double press[3][3]; | 
| 199 | 
< | 
  double pressure; | 
| 195 | 
> | 
      snap->setTemperature(temperature); | 
| 196 | 
> | 
    } | 
| 197 | 
> | 
     | 
| 198 | 
> | 
    return snap->getTemperature(); | 
| 199 | 
> | 
  } | 
| 200 | 
  | 
 | 
| 201 | 
< | 
  this->getPressureTensor(press); | 
| 201 | 
> | 
  RealType Thermo::getElectronicTemperature() { | 
| 202 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 203 | 
  | 
 | 
| 204 | 
< | 
  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 204 | 
> | 
    if (!snap->hasElectronicTemperature) { | 
| 205 | 
> | 
       | 
| 206 | 
> | 
      SimInfo::MoleculeIterator miter; | 
| 207 | 
> | 
      vector<Atom*>::iterator iiter; | 
| 208 | 
> | 
      Molecule* mol; | 
| 209 | 
> | 
      Atom* atom;     | 
| 210 | 
> | 
      RealType cvel; | 
| 211 | 
> | 
      RealType cmass; | 
| 212 | 
> | 
      RealType kinetic(0.0); | 
| 213 | 
> | 
      RealType eTemp; | 
| 214 | 
> | 
       | 
| 215 | 
> | 
      for (mol = info_->beginMolecule(miter); mol != NULL;  | 
| 216 | 
> | 
           mol = info_->nextMolecule(miter)) { | 
| 217 | 
> | 
         | 
| 218 | 
> | 
        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;  | 
| 219 | 
> | 
             atom = mol->nextFluctuatingCharge(iiter)) { | 
| 220 | 
> | 
           | 
| 221 | 
> | 
          cmass = atom->getChargeMass(); | 
| 222 | 
> | 
          cvel = atom->getFlucQVel(); | 
| 223 | 
> | 
           | 
| 224 | 
> | 
          kinetic += cmass * cvel * cvel; | 
| 225 | 
> | 
           | 
| 226 | 
> | 
        } | 
| 227 | 
> | 
      } | 
| 228 | 
> | 
     | 
| 229 | 
> | 
#ifdef IS_MPI | 
| 230 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,  | 
| 231 | 
> | 
                                MPI::SUM); | 
| 232 | 
> | 
#endif | 
| 233 | 
  | 
 | 
| 234 | 
< | 
  return pressure; | 
| 235 | 
< | 
} | 
| 234 | 
> | 
      kinetic *= 0.5; | 
| 235 | 
> | 
      eTemp =  (2.0 * kinetic) /  | 
| 236 | 
> | 
        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );             | 
| 237 | 
> | 
      | 
| 238 | 
> | 
      snap->setElectronicTemperature(eTemp); | 
| 239 | 
> | 
    } | 
| 240 | 
  | 
 | 
| 241 | 
< | 
double Thermo::getPressureX() { | 
| 241 | 
> | 
    return snap->getElectronicTemperature(); | 
| 242 | 
> | 
  } | 
| 243 | 
  | 
 | 
| 151 | 
– | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 152 | 
– | 
   | 
| 153 | 
– | 
  const double p_convert = 1.63882576e8; | 
| 154 | 
– | 
  double press[3][3]; | 
| 155 | 
– | 
  double pressureX; | 
| 244 | 
  | 
 | 
| 245 | 
< | 
  this->getPressureTensor(press); | 
| 245 | 
> | 
  RealType Thermo::getVolume() {  | 
| 246 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 247 | 
> | 
    return snap->getVolume(); | 
| 248 | 
> | 
  } | 
| 249 | 
  | 
 | 
| 250 | 
< | 
  pressureX = p_convert * press[0][0]; | 
| 250 | 
> | 
  RealType Thermo::getPressure() { | 
| 251 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 252 | 
  | 
 | 
| 253 | 
< | 
  return pressureX; | 
| 254 | 
< | 
} | 
| 255 | 
< | 
 | 
| 256 | 
< | 
double Thermo::getPressureY() { | 
| 253 | 
> | 
    if (!snap->hasPressure) { | 
| 254 | 
> | 
      // Relies on the calculation of the full molecular pressure tensor | 
| 255 | 
> | 
       | 
| 256 | 
> | 
      Mat3x3d tensor; | 
| 257 | 
> | 
      RealType pressure; | 
| 258 | 
> | 
       | 
| 259 | 
> | 
      tensor = getPressureTensor(); | 
| 260 | 
> | 
       | 
| 261 | 
> | 
      pressure = PhysicalConstants::pressureConvert *  | 
| 262 | 
> | 
        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; | 
| 263 | 
> | 
       | 
| 264 | 
> | 
      snap->setPressure(pressure); | 
| 265 | 
> | 
    } | 
| 266 | 
> | 
     | 
| 267 | 
> | 
    return snap->getPressure();     | 
| 268 | 
> | 
  } | 
| 269 | 
  | 
 | 
| 270 | 
< | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 271 | 
< | 
   | 
| 272 | 
< | 
  const double p_convert = 1.63882576e8; | 
| 273 | 
< | 
  double press[3][3]; | 
| 274 | 
< | 
  double pressureY; | 
| 270 | 
> | 
  Mat3x3d Thermo::getPressureTensor() { | 
| 271 | 
> | 
    // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 272 | 
> | 
    // routine derived via viral theorem description in: | 
| 273 | 
> | 
    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 274 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 275 | 
  | 
 | 
| 276 | 
< | 
  this->getPressureTensor(press); | 
| 276 | 
> | 
    if (!snap->hasPressureTensor) { | 
| 277 | 
  | 
 | 
| 278 | 
< | 
  pressureY = p_convert * press[1][1]; | 
| 278 | 
> | 
      Mat3x3d pressureTensor; | 
| 279 | 
> | 
      Mat3x3d p_tens(0.0); | 
| 280 | 
> | 
      RealType mass; | 
| 281 | 
> | 
      Vector3d vcom; | 
| 282 | 
> | 
       | 
| 283 | 
> | 
      SimInfo::MoleculeIterator i; | 
| 284 | 
> | 
      vector<StuntDouble*>::iterator j; | 
| 285 | 
> | 
      Molecule* mol; | 
| 286 | 
> | 
      StuntDouble* sd;     | 
| 287 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 288 | 
> | 
           mol = info_->nextMolecule(i)) { | 
| 289 | 
> | 
         | 
| 290 | 
> | 
        for (sd = mol->beginIntegrableObject(j); sd != NULL;  | 
| 291 | 
> | 
             sd = mol->nextIntegrableObject(j)) { | 
| 292 | 
> | 
           | 
| 293 | 
> | 
          mass = sd->getMass(); | 
| 294 | 
> | 
          vcom = sd->getVel(); | 
| 295 | 
> | 
          p_tens += mass * outProduct(vcom, vcom);          | 
| 296 | 
> | 
        } | 
| 297 | 
> | 
      } | 
| 298 | 
> | 
       | 
| 299 | 
> | 
#ifdef IS_MPI | 
| 300 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,  | 
| 301 | 
> | 
                                MPI::REALTYPE, MPI::SUM); | 
| 302 | 
> | 
#endif | 
| 303 | 
> | 
       | 
| 304 | 
> | 
      RealType volume = this->getVolume(); | 
| 305 | 
> | 
      Mat3x3d stressTensor = snap->getStressTensor(); | 
| 306 | 
> | 
       | 
| 307 | 
> | 
      pressureTensor =  (p_tens +  | 
| 308 | 
> | 
                         PhysicalConstants::energyConvert * stressTensor)/volume; | 
| 309 | 
> | 
       | 
| 310 | 
> | 
      snap->setPressureTensor(pressureTensor); | 
| 311 | 
> | 
    } | 
| 312 | 
> | 
    return snap->getPressureTensor(); | 
| 313 | 
> | 
  } | 
| 314 | 
  | 
 | 
| 176 | 
– | 
  return pressureY; | 
| 177 | 
– | 
} | 
| 315 | 
  | 
 | 
| 179 | 
– | 
double Thermo::getPressureZ() { | 
| 316 | 
  | 
 | 
| 181 | 
– | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 182 | 
– | 
   | 
| 183 | 
– | 
  const double p_convert = 1.63882576e8; | 
| 184 | 
– | 
  double press[3][3]; | 
| 185 | 
– | 
  double pressureZ; | 
| 317 | 
  | 
 | 
| 318 | 
< | 
  this->getPressureTensor(press); | 
| 318 | 
> | 
  Vector3d Thermo::getSystemDipole() { | 
| 319 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 320 | 
  | 
 | 
| 321 | 
< | 
  pressureZ = p_convert * press[2][2]; | 
| 321 | 
> | 
    if (!snap->hasSystemDipole) { | 
| 322 | 
> | 
      SimInfo::MoleculeIterator miter; | 
| 323 | 
> | 
      vector<Atom*>::iterator aiter; | 
| 324 | 
> | 
      Molecule* mol; | 
| 325 | 
> | 
      Atom* atom; | 
| 326 | 
> | 
      RealType charge; | 
| 327 | 
> | 
      Vector3d ri(0.0); | 
| 328 | 
> | 
      Vector3d dipoleVector(0.0); | 
| 329 | 
> | 
      Vector3d nPos(0.0); | 
| 330 | 
> | 
      Vector3d pPos(0.0); | 
| 331 | 
> | 
      RealType nChg(0.0); | 
| 332 | 
> | 
      RealType pChg(0.0); | 
| 333 | 
> | 
      int nCount = 0; | 
| 334 | 
> | 
      int pCount = 0; | 
| 335 | 
> | 
       | 
| 336 | 
> | 
      RealType chargeToC = 1.60217733e-19; | 
| 337 | 
> | 
      RealType angstromToM = 1.0e-10; | 
| 338 | 
> | 
      RealType debyeToCm = 3.33564095198e-30; | 
| 339 | 
> | 
       | 
| 340 | 
> | 
      for (mol = info_->beginMolecule(miter); mol != NULL;  | 
| 341 | 
> | 
           mol = info_->nextMolecule(miter)) { | 
| 342 | 
> | 
         | 
| 343 | 
> | 
        for (atom = mol->beginAtom(aiter); atom != NULL; | 
| 344 | 
> | 
             atom = mol->nextAtom(aiter)) { | 
| 345 | 
> | 
           | 
| 346 | 
> | 
          charge = 0.0; | 
| 347 | 
> | 
           | 
| 348 | 
> | 
          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); | 
| 349 | 
> | 
          if ( fca.isFixedCharge() ) { | 
| 350 | 
> | 
            charge = fca.getCharge(); | 
| 351 | 
> | 
          } | 
| 352 | 
> | 
           | 
| 353 | 
> | 
          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); | 
| 354 | 
> | 
          if ( fqa.isFluctuatingCharge() ) { | 
| 355 | 
> | 
            charge += atom->getFlucQPos(); | 
| 356 | 
> | 
          } | 
| 357 | 
> | 
           | 
| 358 | 
> | 
          charge *= chargeToC; | 
| 359 | 
> | 
           | 
| 360 | 
> | 
          ri = atom->getPos(); | 
| 361 | 
> | 
          snap->wrapVector(ri); | 
| 362 | 
> | 
          ri *= angstromToM; | 
| 363 | 
> | 
           | 
| 364 | 
> | 
          if (charge < 0.0) { | 
| 365 | 
> | 
            nPos += ri; | 
| 366 | 
> | 
            nChg -= charge; | 
| 367 | 
> | 
            nCount++; | 
| 368 | 
> | 
          } else if (charge > 0.0) { | 
| 369 | 
> | 
            pPos += ri; | 
| 370 | 
> | 
            pChg += charge; | 
| 371 | 
> | 
            pCount++; | 
| 372 | 
> | 
          } | 
| 373 | 
> | 
           | 
| 374 | 
> | 
          if (atom->isDipole()) { | 
| 375 | 
> | 
            dipoleVector += atom->getDipole() * debyeToCm; | 
| 376 | 
> | 
          } | 
| 377 | 
> | 
        } | 
| 378 | 
> | 
      } | 
| 379 | 
> | 
       | 
| 380 | 
> | 
       | 
| 381 | 
> | 
#ifdef IS_MPI | 
| 382 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,  | 
| 383 | 
> | 
                                MPI::SUM); | 
| 384 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,  | 
| 385 | 
> | 
                                MPI::SUM); | 
| 386 | 
  | 
 | 
| 387 | 
< | 
  return pressureZ; | 
| 388 | 
< | 
} | 
| 387 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,  | 
| 388 | 
> | 
                                MPI::SUM); | 
| 389 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,  | 
| 390 | 
> | 
                                MPI::SUM); | 
| 391 | 
  | 
 | 
| 392 | 
+ | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,  | 
| 393 | 
+ | 
                                MPI::REALTYPE, MPI::SUM); | 
| 394 | 
+ | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,  | 
| 395 | 
+ | 
                                MPI::REALTYPE, MPI::SUM); | 
| 396 | 
  | 
 | 
| 397 | 
< | 
void Thermo::getPressureTensor(double press[3][3]){ | 
| 398 | 
< | 
  // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 399 | 
< | 
  // routine derived via viral theorem description in: | 
| 400 | 
< | 
  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 397 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(), | 
| 398 | 
> | 
                                3, MPI::REALTYPE, MPI::SUM); | 
| 399 | 
> | 
#endif | 
| 400 | 
> | 
       | 
| 401 | 
> | 
      // first load the accumulated dipole moment (if dipoles were present) | 
| 402 | 
> | 
      Vector3d boxDipole = dipoleVector; | 
| 403 | 
> | 
      // now include the dipole moment due to charges | 
| 404 | 
> | 
      // use the lesser of the positive and negative charge totals | 
| 405 | 
> | 
      RealType chg_value = nChg <= pChg ? nChg : pChg; | 
| 406 | 
> | 
       | 
| 407 | 
> | 
      // find the average positions | 
| 408 | 
> | 
      if (pCount > 0 && nCount > 0 ) { | 
| 409 | 
> | 
        pPos /= pCount; | 
| 410 | 
> | 
        nPos /= nCount; | 
| 411 | 
> | 
      } | 
| 412 | 
> | 
       | 
| 413 | 
> | 
      // dipole is from the negative to the positive (physics notation) | 
| 414 | 
> | 
      boxDipole += (pPos - nPos) * chg_value; | 
| 415 | 
> | 
      snap->setSystemDipole(boxDipole); | 
| 416 | 
> | 
    } | 
| 417 | 
  | 
 | 
| 418 | 
< | 
  const double e_convert = 4.184e-4; | 
| 418 | 
> | 
    return snap->getSystemDipole(); | 
| 419 | 
> | 
  } | 
| 420 | 
  | 
 | 
| 421 | 
< | 
  double molmass, volume; | 
| 422 | 
< | 
  double vcom[3]; | 
| 423 | 
< | 
  double p_local[9], p_global[9]; | 
| 424 | 
< | 
  int i, j, k; | 
| 421 | 
> | 
  // Returns the Heat Flux Vector for the system | 
| 422 | 
> | 
  Vector3d Thermo::getHeatFlux(){ | 
| 423 | 
> | 
    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 424 | 
> | 
    SimInfo::MoleculeIterator miter; | 
| 425 | 
> | 
    vector<StuntDouble*>::iterator iiter; | 
| 426 | 
> | 
    Molecule* mol; | 
| 427 | 
> | 
    StuntDouble* sd;     | 
| 428 | 
> | 
    RigidBody::AtomIterator ai;  | 
| 429 | 
> | 
    Atom* atom;        | 
| 430 | 
> | 
    Vector3d vel; | 
| 431 | 
> | 
    Vector3d angMom; | 
| 432 | 
> | 
    Mat3x3d I; | 
| 433 | 
> | 
    int i; | 
| 434 | 
> | 
    int j; | 
| 435 | 
> | 
    int k; | 
| 436 | 
> | 
    RealType mass; | 
| 437 | 
  | 
 | 
| 438 | 
< | 
  for (i=0; i < 9; i++) {     | 
| 439 | 
< | 
    p_local[i] = 0.0; | 
| 440 | 
< | 
    p_global[i] = 0.0; | 
| 441 | 
< | 
  } | 
| 438 | 
> | 
    Vector3d x_a; | 
| 439 | 
> | 
    RealType kinetic; | 
| 440 | 
> | 
    RealType potential; | 
| 441 | 
> | 
    RealType eatom; | 
| 442 | 
> | 
    // Convective portion of the heat flux | 
| 443 | 
> | 
    Vector3d heatFluxJc = V3Zero; | 
| 444 | 
  | 
 | 
| 445 | 
< | 
  // use velocities of integrableObjects and their masses:   | 
| 445 | 
> | 
    /* Calculate convective portion of the heat flux */ | 
| 446 | 
> | 
    for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 447 | 
> | 
         mol = info_->nextMolecule(miter)) { | 
| 448 | 
> | 
       | 
| 449 | 
> | 
      for (sd = mol->beginIntegrableObject(iiter);  | 
| 450 | 
> | 
           sd != NULL;  | 
| 451 | 
> | 
           sd = mol->nextIntegrableObject(iiter)) { | 
| 452 | 
> | 
         | 
| 453 | 
> | 
        mass = sd->getMass(); | 
| 454 | 
> | 
        vel = sd->getVel(); | 
| 455 | 
  | 
 | 
| 456 | 
< | 
  for (i=0; i < info->integrableObjects.size(); i++) { | 
| 456 | 
> | 
        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); | 
| 457 | 
> | 
         | 
| 458 | 
> | 
        if (sd->isDirectional()) { | 
| 459 | 
> | 
          angMom = sd->getJ(); | 
| 460 | 
> | 
          I = sd->getI(); | 
| 461 | 
  | 
 | 
| 462 | 
< | 
    molmass = info->integrableObjects[i]->getMass(); | 
| 463 | 
< | 
     | 
| 464 | 
< | 
    info->integrableObjects[i]->getVel(vcom); | 
| 465 | 
< | 
     | 
| 466 | 
< | 
    p_local[0] += molmass * (vcom[0] * vcom[0]);  | 
| 467 | 
< | 
    p_local[1] += molmass * (vcom[0] * vcom[1]);  | 
| 468 | 
< | 
    p_local[2] += molmass * (vcom[0] * vcom[2]);  | 
| 469 | 
< | 
    p_local[3] += molmass * (vcom[1] * vcom[0]);  | 
| 470 | 
< | 
    p_local[4] += molmass * (vcom[1] * vcom[1]);  | 
| 471 | 
< | 
    p_local[5] += molmass * (vcom[1] * vcom[2]);  | 
| 472 | 
< | 
    p_local[6] += molmass * (vcom[2] * vcom[0]);  | 
| 473 | 
< | 
    p_local[7] += molmass * (vcom[2] * vcom[1]);  | 
| 228 | 
< | 
    p_local[8] += molmass * (vcom[2] * vcom[2]);  | 
| 462 | 
> | 
          if (sd->isLinear()) { | 
| 463 | 
> | 
            i = sd->linearAxis(); | 
| 464 | 
> | 
            j = (i + 1) % 3; | 
| 465 | 
> | 
            k = (i + 2) % 3; | 
| 466 | 
> | 
            kinetic += angMom[j] * angMom[j] / I(j, j)  | 
| 467 | 
> | 
              + angMom[k] * angMom[k] / I(k, k); | 
| 468 | 
> | 
          } else {                         | 
| 469 | 
> | 
            kinetic += angMom[0]*angMom[0]/I(0, 0)  | 
| 470 | 
> | 
              + angMom[1]*angMom[1]/I(1, 1)  | 
| 471 | 
> | 
              + angMom[2]*angMom[2]/I(2, 2); | 
| 472 | 
> | 
          } | 
| 473 | 
> | 
        } | 
| 474 | 
  | 
 | 
| 475 | 
< | 
  } | 
| 475 | 
> | 
        potential = 0.0; | 
| 476 | 
  | 
 | 
| 477 | 
< | 
  // Get total for entire system from MPI. | 
| 478 | 
< | 
   | 
| 479 | 
< | 
#ifdef IS_MPI | 
| 480 | 
< | 
  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 481 | 
< | 
#else | 
| 482 | 
< | 
  for (i=0; i<9; i++) { | 
| 483 | 
< | 
    p_global[i] = p_local[i];  | 
| 484 | 
< | 
  } | 
| 485 | 
< | 
#endif // is_mpi | 
| 477 | 
> | 
        if (sd->isRigidBody()) { | 
| 478 | 
> | 
          RigidBody* rb = dynamic_cast<RigidBody*>(sd); | 
| 479 | 
> | 
          for (atom = rb->beginAtom(ai); atom != NULL;  | 
| 480 | 
> | 
               atom = rb->nextAtom(ai)) { | 
| 481 | 
> | 
            potential +=  atom->getParticlePot(); | 
| 482 | 
> | 
          }           | 
| 483 | 
> | 
        } else { | 
| 484 | 
> | 
          potential = sd->getParticlePot(); | 
| 485 | 
> | 
        } | 
| 486 | 
  | 
 | 
| 487 | 
< | 
  volume = this->getVolume(); | 
| 487 | 
> | 
        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 | 
| 488 | 
> | 
        // The potential may not be a 1/2 factor | 
| 489 | 
> | 
        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2 | 
| 490 | 
> | 
        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 | 
| 491 | 
> | 
        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 | 
| 492 | 
> | 
        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 | 
| 493 | 
> | 
      } | 
| 494 | 
> | 
    } | 
| 495 | 
  | 
 | 
| 496 | 
+ | 
    /* The J_v vector is reduced in the forceManager so everyone has | 
| 497 | 
+ | 
     *  the global Jv. Jc is computed over the local atoms and must be | 
| 498 | 
+ | 
     *  reduced among all processors. | 
| 499 | 
+ | 
     */ | 
| 500 | 
+ | 
#ifdef IS_MPI | 
| 501 | 
+ | 
    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,  | 
| 502 | 
+ | 
                              MPI::SUM); | 
| 503 | 
+ | 
#endif | 
| 504 | 
+ | 
     | 
| 505 | 
+ | 
    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 | 
| 506 | 
  | 
 | 
| 507 | 
+ | 
    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *  | 
| 508 | 
+ | 
      PhysicalConstants::energyConvert; | 
| 509 | 
+ | 
         | 
| 510 | 
+ | 
    // Correct for the fact the flux is 1/V (Jc + Jv) | 
| 511 | 
+ | 
    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3  | 
| 512 | 
+ | 
  } | 
| 513 | 
  | 
 | 
| 514 | 
< | 
  for(i = 0; i < 3; i++) { | 
| 515 | 
< | 
    for (j = 0; j < 3; j++) { | 
| 516 | 
< | 
      k = 3*i + j; | 
| 517 | 
< | 
      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; | 
| 514 | 
> | 
 | 
| 515 | 
> | 
  Vector3d Thermo::getComVel(){  | 
| 516 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 517 | 
> | 
 | 
| 518 | 
> | 
    if (!snap->hasCOMvel) { | 
| 519 | 
> | 
 | 
| 520 | 
> | 
      SimInfo::MoleculeIterator i; | 
| 521 | 
> | 
      Molecule* mol; | 
| 522 | 
> | 
       | 
| 523 | 
> | 
      Vector3d comVel(0.0); | 
| 524 | 
> | 
      RealType totalMass(0.0); | 
| 525 | 
> | 
       | 
| 526 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 527 | 
> | 
           mol = info_->nextMolecule(i)) { | 
| 528 | 
> | 
        RealType mass = mol->getMass(); | 
| 529 | 
> | 
        totalMass += mass; | 
| 530 | 
> | 
        comVel += mass * mol->getComVel(); | 
| 531 | 
> | 
      }   | 
| 532 | 
> | 
       | 
| 533 | 
> | 
#ifdef IS_MPI | 
| 534 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,  | 
| 535 | 
> | 
                                MPI::SUM); | 
| 536 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,  | 
| 537 | 
> | 
                                MPI::REALTYPE, MPI::SUM); | 
| 538 | 
> | 
#endif | 
| 539 | 
> | 
       | 
| 540 | 
> | 
      comVel /= totalMass; | 
| 541 | 
> | 
      snap->setCOMvel(comVel); | 
| 542 | 
  | 
    } | 
| 543 | 
+ | 
    return snap->getCOMvel(); | 
| 544 | 
  | 
  } | 
| 252 | 
– | 
} | 
| 545 | 
  | 
 | 
| 546 | 
< | 
void Thermo::velocitize() { | 
| 547 | 
< | 
   | 
| 256 | 
< | 
  double aVel[3], aJ[3], I[3][3]; | 
| 257 | 
< | 
  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters | 
| 258 | 
< | 
  double vdrift[3]; | 
| 259 | 
< | 
  double vbar; | 
| 260 | 
< | 
  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 261 | 
< | 
  double av2; | 
| 262 | 
< | 
  double kebar; | 
| 263 | 
< | 
  double temperature; | 
| 264 | 
< | 
  int nobj; | 
| 546 | 
> | 
  Vector3d Thermo::getCom(){  | 
| 547 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 548 | 
  | 
 | 
| 549 | 
< | 
  if (!info->have_target_temp) { | 
| 550 | 
< | 
    sprintf( painCave.errMsg, | 
| 551 | 
< | 
             "You can't resample the velocities without a targetTemp!\n" | 
| 552 | 
< | 
             ); | 
| 553 | 
< | 
    painCave.isFatal = 1; | 
| 554 | 
< | 
    painCave.severity = OOPSE_ERROR; | 
| 555 | 
< | 
    simError(); | 
| 556 | 
< | 
    return; | 
| 557 | 
< | 
  } | 
| 549 | 
> | 
    if (!snap->hasCOM) { | 
| 550 | 
> | 
       | 
| 551 | 
> | 
      SimInfo::MoleculeIterator i; | 
| 552 | 
> | 
      Molecule* mol; | 
| 553 | 
> | 
       | 
| 554 | 
> | 
      Vector3d com(0.0); | 
| 555 | 
> | 
      RealType totalMass(0.0); | 
| 556 | 
> | 
       | 
| 557 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 558 | 
> | 
           mol = info_->nextMolecule(i)) { | 
| 559 | 
> | 
        RealType mass = mol->getMass(); | 
| 560 | 
> | 
        totalMass += mass; | 
| 561 | 
> | 
        com += mass * mol->getCom(); | 
| 562 | 
> | 
      }   | 
| 563 | 
> | 
       | 
| 564 | 
> | 
#ifdef IS_MPI | 
| 565 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,  | 
| 566 | 
> | 
                                MPI::SUM); | 
| 567 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,  | 
| 568 | 
> | 
                                MPI::REALTYPE, MPI::SUM); | 
| 569 | 
> | 
#endif | 
| 570 | 
> | 
       | 
| 571 | 
> | 
      com /= totalMass; | 
| 572 | 
> | 
      snap->setCOM(com); | 
| 573 | 
> | 
    } | 
| 574 | 
> | 
    return snap->getCOM(); | 
| 575 | 
> | 
  }         | 
| 576 | 
  | 
 | 
| 577 | 
< | 
  nobj = info->integrableObjects.size(); | 
| 578 | 
< | 
   | 
| 579 | 
< | 
  temperature   = info->target_temp; | 
| 580 | 
< | 
   | 
| 581 | 
< | 
  kebar = kb * temperature * (double)info->ndfRaw /  | 
| 582 | 
< | 
    ( 2.0 * (double)info->ndf ); | 
| 282 | 
< | 
   | 
| 283 | 
< | 
  for(vr = 0; vr < nobj; vr++){ | 
| 284 | 
< | 
     | 
| 285 | 
< | 
    // uses equipartition theory to solve for vbar in angstrom/fs | 
| 577 | 
> | 
  /**  | 
| 578 | 
> | 
   * Returns center of mass and center of mass velocity in one | 
| 579 | 
> | 
   * function call. | 
| 580 | 
> | 
   */    | 
| 581 | 
> | 
  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){  | 
| 582 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 583 | 
  | 
 | 
| 584 | 
< | 
    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); | 
| 288 | 
< | 
    vbar = sqrt( av2 ); | 
| 584 | 
> | 
    if (!(snap->hasCOM && snap->hasCOMvel)) { | 
| 585 | 
  | 
 | 
| 586 | 
< | 
    // picks random velocities from a gaussian distribution | 
| 587 | 
< | 
    // centered on vbar | 
| 586 | 
> | 
      SimInfo::MoleculeIterator i; | 
| 587 | 
> | 
      Molecule* mol; | 
| 588 | 
> | 
       | 
| 589 | 
> | 
      RealType totalMass(0.0); | 
| 590 | 
> | 
       | 
| 591 | 
> | 
      com = 0.0; | 
| 592 | 
> | 
      comVel = 0.0; | 
| 593 | 
> | 
       | 
| 594 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 595 | 
> | 
           mol = info_->nextMolecule(i)) { | 
| 596 | 
> | 
        RealType mass = mol->getMass(); | 
| 597 | 
> | 
        totalMass += mass; | 
| 598 | 
> | 
        com += mass * mol->getCom(); | 
| 599 | 
> | 
        comVel += mass * mol->getComVel();            | 
| 600 | 
> | 
      }   | 
| 601 | 
> | 
       | 
| 602 | 
> | 
#ifdef IS_MPI | 
| 603 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,  | 
| 604 | 
> | 
                                MPI::SUM); | 
| 605 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,  | 
| 606 | 
> | 
                                MPI::REALTYPE, MPI::SUM); | 
| 607 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,  | 
| 608 | 
> | 
                                MPI::REALTYPE, MPI::SUM); | 
| 609 | 
> | 
#endif | 
| 610 | 
> | 
       | 
| 611 | 
> | 
      com /= totalMass; | 
| 612 | 
> | 
      comVel /= totalMass; | 
| 613 | 
> | 
      snap->setCOM(com); | 
| 614 | 
> | 
      snap->setCOMvel(comVel); | 
| 615 | 
> | 
    }     | 
| 616 | 
> | 
    com = snap->getCOM(); | 
| 617 | 
> | 
    comVel = snap->getCOMvel(); | 
| 618 | 
> | 
    return; | 
| 619 | 
> | 
  }         | 
| 620 | 
> | 
    | 
| 621 | 
> | 
  /** | 
| 622 | 
> | 
   * \brief Return inertia tensor for entire system and angular momentum | 
| 623 | 
> | 
   *  Vector. | 
| 624 | 
> | 
   * | 
| 625 | 
> | 
   * | 
| 626 | 
> | 
   * | 
| 627 | 
> | 
   *    [  Ixx -Ixy  -Ixz ] | 
| 628 | 
> | 
   * I =| -Iyx  Iyy  -Iyz | | 
| 629 | 
> | 
   *    [ -Izx -Iyz   Izz ] | 
| 630 | 
> | 
   */ | 
| 631 | 
> | 
  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,  | 
| 632 | 
> | 
                                Vector3d &angularMomentum){ | 
| 633 | 
  | 
 | 
| 634 | 
< | 
    for (j=0; j<3; j++)  | 
| 294 | 
< | 
      aVel[j] = vbar * gaussStream->getGaussian(); | 
| 634 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 635 | 
  | 
     | 
| 636 | 
< | 
    info->integrableObjects[vr]->setVel( aVel ); | 
| 636 | 
> | 
    if (!(snap->hasInertiaTensor && snap->hasCOMw)) { | 
| 637 | 
> | 
        | 
| 638 | 
> | 
      RealType xx = 0.0; | 
| 639 | 
> | 
      RealType yy = 0.0; | 
| 640 | 
> | 
      RealType zz = 0.0; | 
| 641 | 
> | 
      RealType xy = 0.0; | 
| 642 | 
> | 
      RealType xz = 0.0; | 
| 643 | 
> | 
      RealType yz = 0.0; | 
| 644 | 
> | 
      Vector3d com(0.0); | 
| 645 | 
> | 
      Vector3d comVel(0.0); | 
| 646 | 
> | 
       | 
| 647 | 
> | 
      getComAll(com, comVel); | 
| 648 | 
> | 
       | 
| 649 | 
> | 
      SimInfo::MoleculeIterator i; | 
| 650 | 
> | 
      Molecule* mol; | 
| 651 | 
> | 
       | 
| 652 | 
> | 
      Vector3d thisq(0.0); | 
| 653 | 
> | 
      Vector3d thisv(0.0); | 
| 654 | 
> | 
       | 
| 655 | 
> | 
      RealType thisMass = 0.0; | 
| 656 | 
> | 
       | 
| 657 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 658 | 
> | 
           mol = info_->nextMolecule(i)) { | 
| 659 | 
> | 
         | 
| 660 | 
> | 
        thisq = mol->getCom()-com; | 
| 661 | 
> | 
        thisv = mol->getComVel()-comVel; | 
| 662 | 
> | 
        thisMass = mol->getMass(); | 
| 663 | 
> | 
        // Compute moment of intertia coefficients. | 
| 664 | 
> | 
        xx += thisq[0]*thisq[0]*thisMass; | 
| 665 | 
> | 
        yy += thisq[1]*thisq[1]*thisMass; | 
| 666 | 
> | 
        zz += thisq[2]*thisq[2]*thisMass; | 
| 667 | 
> | 
         | 
| 668 | 
> | 
        // compute products of intertia | 
| 669 | 
> | 
        xy += thisq[0]*thisq[1]*thisMass; | 
| 670 | 
> | 
        xz += thisq[0]*thisq[2]*thisMass; | 
| 671 | 
> | 
        yz += thisq[1]*thisq[2]*thisMass; | 
| 672 | 
> | 
         | 
| 673 | 
> | 
        angularMomentum += cross( thisq, thisv ) * thisMass;             | 
| 674 | 
> | 
      } | 
| 675 | 
> | 
       | 
| 676 | 
> | 
      inertiaTensor(0,0) = yy + zz; | 
| 677 | 
> | 
      inertiaTensor(0,1) = -xy; | 
| 678 | 
> | 
      inertiaTensor(0,2) = -xz; | 
| 679 | 
> | 
      inertiaTensor(1,0) = -xy; | 
| 680 | 
> | 
      inertiaTensor(1,1) = xx + zz; | 
| 681 | 
> | 
      inertiaTensor(1,2) = -yz; | 
| 682 | 
> | 
      inertiaTensor(2,0) = -xz; | 
| 683 | 
> | 
      inertiaTensor(2,1) = -yz; | 
| 684 | 
> | 
      inertiaTensor(2,2) = xx + yy; | 
| 685 | 
> | 
       | 
| 686 | 
> | 
#ifdef IS_MPI | 
| 687 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(), | 
| 688 | 
> | 
                                9, MPI::REALTYPE, MPI::SUM); | 
| 689 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,  | 
| 690 | 
> | 
                                angularMomentum.getArrayPointer(), 3, | 
| 691 | 
> | 
                                MPI::REALTYPE, MPI::SUM); | 
| 692 | 
> | 
#endif | 
| 693 | 
> | 
       | 
| 694 | 
> | 
      snap->setCOMw(angularMomentum); | 
| 695 | 
> | 
      snap->setInertiaTensor(inertiaTensor); | 
| 696 | 
> | 
    } | 
| 697 | 
  | 
     | 
| 698 | 
< | 
    if(info->integrableObjects[vr]->isDirectional()){ | 
| 698 | 
> | 
    angularMomentum = snap->getCOMw(); | 
| 699 | 
> | 
    inertiaTensor = snap->getInertiaTensor(); | 
| 700 | 
> | 
     | 
| 701 | 
> | 
    return; | 
| 702 | 
> | 
  } | 
| 703 | 
  | 
 | 
| 300 | 
– | 
      info->integrableObjects[vr]->getI( I ); | 
| 704 | 
  | 
 | 
| 705 | 
< | 
      if (info->integrableObjects[vr]->isLinear()) { | 
| 706 | 
< | 
 | 
| 707 | 
< | 
        l= info->integrableObjects[vr]->linearAxis(); | 
| 708 | 
< | 
        m = (l+1)%3; | 
| 709 | 
< | 
        n = (l+2)%3; | 
| 710 | 
< | 
 | 
| 711 | 
< | 
        aJ[l] = 0.0; | 
| 712 | 
< | 
        vbar = sqrt( 2.0 * kebar * I[m][m] ); | 
| 713 | 
< | 
        aJ[m] = vbar * gaussStream->getGaussian(); | 
| 714 | 
< | 
        vbar = sqrt( 2.0 * kebar * I[n][n] ); | 
| 715 | 
< | 
        aJ[n] = vbar * gaussStream->getGaussian(); | 
| 705 | 
> | 
  Mat3x3d Thermo::getBoundingBox(){ | 
| 706 | 
> | 
     | 
| 707 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 708 | 
> | 
     | 
| 709 | 
> | 
    if (!(snap->hasBoundingBox)) { | 
| 710 | 
> | 
       | 
| 711 | 
> | 
      SimInfo::MoleculeIterator i; | 
| 712 | 
> | 
      Molecule::RigidBodyIterator ri; | 
| 713 | 
> | 
      Molecule::AtomIterator ai; | 
| 714 | 
> | 
      Molecule* mol; | 
| 715 | 
> | 
      RigidBody* rb; | 
| 716 | 
> | 
      Atom* atom; | 
| 717 | 
> | 
      Vector3d pos, bMax, bMin; | 
| 718 | 
> | 
      int index = 0; | 
| 719 | 
> | 
       | 
| 720 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 721 | 
> | 
           mol = info_->nextMolecule(i)) { | 
| 722 | 
  | 
         | 
| 723 | 
< | 
      } else { | 
| 724 | 
< | 
        for (j = 0 ; j < 3; j++) { | 
| 725 | 
< | 
          vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 726 | 
< | 
          aJ[j] = vbar * gaussStream->getGaussian(); | 
| 727 | 
< | 
        }        | 
| 728 | 
< | 
      } // else isLinear | 
| 723 | 
> | 
        //change the positions of atoms which belong to the rigidbodies | 
| 724 | 
> | 
        for (rb = mol->beginRigidBody(ri); rb != NULL;  | 
| 725 | 
> | 
             rb = mol->nextRigidBody(ri)) {           | 
| 726 | 
> | 
          rb->updateAtoms(); | 
| 727 | 
> | 
        } | 
| 728 | 
> | 
         | 
| 729 | 
> | 
        for(atom = mol->beginAtom(ai); atom != NULL; | 
| 730 | 
> | 
            atom = mol->nextAtom(ai)) { | 
| 731 | 
> | 
           | 
| 732 | 
> | 
          pos = atom->getPos(); | 
| 733 | 
  | 
 | 
| 734 | 
< | 
      info->integrableObjects[vr]->setJ( aJ );  | 
| 734 | 
> | 
          if (index == 0) { | 
| 735 | 
> | 
            bMax = pos; | 
| 736 | 
> | 
            bMin = pos; | 
| 737 | 
> | 
          } else { | 
| 738 | 
> | 
            for (int i = 0; i < 3; i++) { | 
| 739 | 
> | 
              bMax[i] = max(bMax[i], pos[i]); | 
| 740 | 
> | 
              bMin[i] = min(bMin[i], pos[i]); | 
| 741 | 
> | 
            } | 
| 742 | 
> | 
          } | 
| 743 | 
> | 
          index++; | 
| 744 | 
> | 
        } | 
| 745 | 
> | 
      } | 
| 746 | 
  | 
       | 
| 747 | 
< | 
    }//isDirectional  | 
| 747 | 
> | 
#ifdef IS_MPI | 
| 748 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bMax[0], 3, MPI::REALTYPE,  | 
| 749 | 
> | 
                                MPI::MAX); | 
| 750 | 
  | 
 | 
| 751 | 
+ | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &bMin[0], 3, MPI::REALTYPE,  | 
| 752 | 
+ | 
                                MPI::MIN); | 
| 753 | 
+ | 
#endif | 
| 754 | 
+ | 
      Mat3x3d bBox = Mat3x3d(0.0); | 
| 755 | 
+ | 
      for (int i = 0; i < 3; i++) {            | 
| 756 | 
+ | 
        bBox(i,i) = bMax[i] - bMin[i]; | 
| 757 | 
+ | 
      } | 
| 758 | 
+ | 
      snap->setBoundingBox(bBox); | 
| 759 | 
+ | 
    } | 
| 760 | 
+ | 
     | 
| 761 | 
+ | 
    return snap->getBoundingBox();     | 
| 762 | 
  | 
  } | 
| 326 | 
– | 
 | 
| 327 | 
– | 
  // Get the Center of Mass drift velocity. | 
| 328 | 
– | 
 | 
| 329 | 
– | 
  getCOMVel(vdrift); | 
| 763 | 
  | 
   | 
| 764 | 
< | 
  //  Corrects for the center of mass drift. | 
| 765 | 
< | 
  // sums all the momentum and divides by total mass. | 
| 766 | 
< | 
 | 
| 767 | 
< | 
  for(vd = 0; vd < nobj; vd++){ | 
| 764 | 
> | 
   | 
| 765 | 
> | 
  // Returns the angular momentum of the system | 
| 766 | 
> | 
  Vector3d Thermo::getAngularMomentum(){ | 
| 767 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 768 | 
  | 
     | 
| 769 | 
< | 
    info->integrableObjects[vd]->getVel(aVel); | 
| 770 | 
< | 
     | 
| 771 | 
< | 
    for (j=0; j < 3; j++)  | 
| 772 | 
< | 
      aVel[j] -= vdrift[j]; | 
| 769 | 
> | 
    if (!snap->hasCOMw) { | 
| 770 | 
> | 
       | 
| 771 | 
> | 
      Vector3d com(0.0); | 
| 772 | 
> | 
      Vector3d comVel(0.0); | 
| 773 | 
> | 
      Vector3d angularMomentum(0.0); | 
| 774 | 
> | 
       | 
| 775 | 
> | 
      getComAll(com, comVel); | 
| 776 | 
> | 
       | 
| 777 | 
> | 
      SimInfo::MoleculeIterator i; | 
| 778 | 
> | 
      Molecule* mol; | 
| 779 | 
> | 
       | 
| 780 | 
> | 
      Vector3d thisr(0.0); | 
| 781 | 
> | 
      Vector3d thisp(0.0); | 
| 782 | 
> | 
       | 
| 783 | 
> | 
      RealType thisMass; | 
| 784 | 
> | 
       | 
| 785 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 786 | 
> | 
           mol = info_->nextMolecule(i)) { | 
| 787 | 
> | 
        thisMass = mol->getMass();  | 
| 788 | 
> | 
        thisr = mol->getCom() - com; | 
| 789 | 
> | 
        thisp = (mol->getComVel() - comVel) * thisMass; | 
| 790 | 
  | 
         | 
| 791 | 
< | 
    info->integrableObjects[vd]->setVel( aVel ); | 
| 791 | 
> | 
        angularMomentum += cross( thisr, thisp );       | 
| 792 | 
> | 
      }   | 
| 793 | 
> | 
       | 
| 794 | 
> | 
#ifdef IS_MPI | 
| 795 | 
> | 
      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,  | 
| 796 | 
> | 
                                angularMomentum.getArrayPointer(), 3, | 
| 797 | 
> | 
                                MPI::REALTYPE, MPI::SUM); | 
| 798 | 
> | 
#endif | 
| 799 | 
> | 
       | 
| 800 | 
> | 
      snap->setCOMw(angularMomentum); | 
| 801 | 
> | 
    } | 
| 802 | 
> | 
     | 
| 803 | 
> | 
    return snap->getCOMw(); | 
| 804 | 
  | 
  } | 
| 343 | 
– | 
 | 
| 344 | 
– | 
} | 
| 345 | 
– | 
 | 
| 346 | 
– | 
void Thermo::getCOMVel(double vdrift[3]){ | 
| 347 | 
– | 
 | 
| 348 | 
– | 
  double mtot, mtot_local; | 
| 349 | 
– | 
  double aVel[3], amass; | 
| 350 | 
– | 
  double vdrift_local[3]; | 
| 351 | 
– | 
  int vd, j; | 
| 352 | 
– | 
  int nobj; | 
| 353 | 
– | 
 | 
| 354 | 
– | 
  nobj   = info->integrableObjects.size(); | 
| 355 | 
– | 
 | 
| 356 | 
– | 
  mtot_local = 0.0; | 
| 357 | 
– | 
  vdrift_local[0] = 0.0; | 
| 358 | 
– | 
  vdrift_local[1] = 0.0; | 
| 359 | 
– | 
  vdrift_local[2] = 0.0; | 
| 805 | 
  | 
   | 
| 806 | 
< | 
  for(vd = 0; vd < nobj; vd++){ | 
| 806 | 
> | 
   | 
| 807 | 
> | 
  /** | 
| 808 | 
> | 
   * Returns the Volume of the system based on a ellipsoid with | 
| 809 | 
> | 
   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 | 
| 810 | 
> | 
   * where R_i are related to the principle inertia moments | 
| 811 | 
> | 
   *  R_i = sqrt(C*I_i/N), this reduces to  | 
| 812 | 
> | 
   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).  | 
| 813 | 
> | 
   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. | 
| 814 | 
> | 
   */ | 
| 815 | 
> | 
  RealType Thermo::getGyrationalVolume(){ | 
| 816 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 817 | 
  | 
     | 
| 818 | 
< | 
    amass = info->integrableObjects[vd]->getMass(); | 
| 819 | 
< | 
    info->integrableObjects[vd]->getVel( aVel ); | 
| 818 | 
> | 
    if (!snap->hasGyrationalVolume) { | 
| 819 | 
> | 
       | 
| 820 | 
> | 
      Mat3x3d intTensor; | 
| 821 | 
> | 
      RealType det; | 
| 822 | 
> | 
      Vector3d dummyAngMom;  | 
| 823 | 
> | 
      RealType sysconstants; | 
| 824 | 
> | 
      RealType geomCnst; | 
| 825 | 
> | 
      RealType volume; | 
| 826 | 
> | 
       | 
| 827 | 
> | 
      geomCnst = 3.0/2.0; | 
| 828 | 
> | 
      /* Get the inertial tensor and angular momentum for free*/ | 
| 829 | 
> | 
      getInertiaTensor(intTensor, dummyAngMom); | 
| 830 | 
> | 
       | 
| 831 | 
> | 
      det = intTensor.determinant(); | 
| 832 | 
> | 
      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); | 
| 833 | 
> | 
      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); | 
| 834 | 
  | 
 | 
| 835 | 
< | 
    for(j = 0; j < 3; j++)  | 
| 836 | 
< | 
      vdrift_local[j] += aVel[j] * amass; | 
| 837 | 
< | 
     | 
| 369 | 
< | 
    mtot_local += amass; | 
| 835 | 
> | 
      snap->setGyrationalVolume(volume); | 
| 836 | 
> | 
    }  | 
| 837 | 
> | 
    return snap->getGyrationalVolume(); | 
| 838 | 
  | 
  } | 
| 839 | 
+ | 
   | 
| 840 | 
+ | 
  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ | 
| 841 | 
+ | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 842 | 
  | 
 | 
| 843 | 
< | 
#ifdef IS_MPI | 
| 373 | 
< | 
  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 374 | 
< | 
  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 375 | 
< | 
#else | 
| 376 | 
< | 
  mtot = mtot_local; | 
| 377 | 
< | 
  for(vd = 0; vd < 3; vd++) { | 
| 378 | 
< | 
    vdrift[vd] = vdrift_local[vd]; | 
| 379 | 
< | 
  } | 
| 380 | 
< | 
#endif | 
| 843 | 
> | 
    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { | 
| 844 | 
  | 
     | 
| 845 | 
< | 
  for (vd = 0; vd < 3; vd++) { | 
| 846 | 
< | 
    vdrift[vd] = vdrift[vd] / mtot; | 
| 845 | 
> | 
      Mat3x3d intTensor; | 
| 846 | 
> | 
      Vector3d dummyAngMom;  | 
| 847 | 
> | 
      RealType sysconstants; | 
| 848 | 
> | 
      RealType geomCnst; | 
| 849 | 
> | 
       | 
| 850 | 
> | 
      geomCnst = 3.0/2.0; | 
| 851 | 
> | 
      /* Get the inertia tensor and angular momentum for free*/ | 
| 852 | 
> | 
      this->getInertiaTensor(intTensor, dummyAngMom); | 
| 853 | 
> | 
       | 
| 854 | 
> | 
      detI = intTensor.determinant(); | 
| 855 | 
> | 
      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); | 
| 856 | 
> | 
      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); | 
| 857 | 
> | 
      snap->setGyrationalVolume(volume); | 
| 858 | 
> | 
    } else { | 
| 859 | 
> | 
      volume = snap->getGyrationalVolume(); | 
| 860 | 
> | 
      detI = snap->getInertiaTensor().determinant(); | 
| 861 | 
> | 
    } | 
| 862 | 
> | 
    return; | 
| 863 | 
  | 
  } | 
| 864 | 
  | 
   | 
| 865 | 
< | 
} | 
| 865 | 
> | 
  RealType Thermo::getTaggedAtomPairDistance(){ | 
| 866 | 
> | 
    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 867 | 
> | 
    Globals* simParams = info_->getSimParams(); | 
| 868 | 
> | 
     | 
| 869 | 
> | 
    if (simParams->haveTaggedAtomPair() &&  | 
| 870 | 
> | 
        simParams->havePrintTaggedPairDistance()) { | 
| 871 | 
> | 
      if ( simParams->getPrintTaggedPairDistance()) { | 
| 872 | 
> | 
         | 
| 873 | 
> | 
        pair<int, int> tap = simParams->getTaggedAtomPair(); | 
| 874 | 
> | 
        Vector3d pos1, pos2, rab; | 
| 875 | 
> | 
         | 
| 876 | 
> | 
#ifdef IS_MPI         | 
| 877 | 
> | 
        int mol1 = info_->getGlobalMolMembership(tap.first); | 
| 878 | 
> | 
        int mol2 = info_->getGlobalMolMembership(tap.second); | 
| 879 | 
  | 
 | 
| 880 | 
< | 
void Thermo::getCOM(double COM[3]){ | 
| 880 | 
> | 
        int proc1 = info_->getMolToProc(mol1); | 
| 881 | 
> | 
        int proc2 = info_->getMolToProc(mol2); | 
| 882 | 
  | 
 | 
| 883 | 
< | 
  double mtot, mtot_local; | 
| 884 | 
< | 
  double aPos[3], amass; | 
| 885 | 
< | 
  double COM_local[3]; | 
| 886 | 
< | 
  int i, j; | 
| 887 | 
< | 
  int nobj; | 
| 883 | 
> | 
        RealType data[3]; | 
| 884 | 
> | 
        if (proc1 == worldRank) { | 
| 885 | 
> | 
          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 886 | 
> | 
          pos1 = sd1->getPos(); | 
| 887 | 
> | 
          data[0] = pos1.x(); | 
| 888 | 
> | 
          data[1] = pos1.y(); | 
| 889 | 
> | 
          data[2] = pos1.z();           | 
| 890 | 
> | 
          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); | 
| 891 | 
> | 
        } else { | 
| 892 | 
> | 
          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1); | 
| 893 | 
> | 
          pos1 = Vector3d(data); | 
| 894 | 
> | 
        } | 
| 895 | 
  | 
 | 
| 896 | 
< | 
  mtot_local = 0.0; | 
| 897 | 
< | 
  COM_local[0] = 0.0; | 
| 898 | 
< | 
  COM_local[1] = 0.0; | 
| 899 | 
< | 
  COM_local[2] = 0.0; | 
| 900 | 
< | 
 | 
| 901 | 
< | 
  nobj = info->integrableObjects.size(); | 
| 902 | 
< | 
  for(i = 0; i < nobj; i++){ | 
| 903 | 
< | 
     | 
| 904 | 
< | 
    amass = info->integrableObjects[i]->getMass(); | 
| 905 | 
< | 
    info->integrableObjects[i]->getPos( aPos ); | 
| 906 | 
< | 
 | 
| 907 | 
< | 
    for(j = 0; j < 3; j++)  | 
| 908 | 
< | 
      COM_local[j] += aPos[j] * amass; | 
| 909 | 
< | 
     | 
| 910 | 
< | 
    mtot_local += amass; | 
| 896 | 
> | 
        if (proc2 == worldRank) { | 
| 897 | 
> | 
          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 898 | 
> | 
          pos2 = sd2->getPos(); | 
| 899 | 
> | 
          data[0] = pos2.x(); | 
| 900 | 
> | 
          data[1] = pos2.y(); | 
| 901 | 
> | 
          data[2] = pos2.z();   | 
| 902 | 
> | 
          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); | 
| 903 | 
> | 
        } else { | 
| 904 | 
> | 
          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2); | 
| 905 | 
> | 
          pos2 = Vector3d(data); | 
| 906 | 
> | 
        } | 
| 907 | 
> | 
#else | 
| 908 | 
> | 
        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); | 
| 909 | 
> | 
        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); | 
| 910 | 
> | 
        pos1 = at1->getPos(); | 
| 911 | 
> | 
        pos2 = at2->getPos(); | 
| 912 | 
> | 
#endif         | 
| 913 | 
> | 
        rab = pos2 - pos1; | 
| 914 | 
> | 
        currSnapshot->wrapVector(rab); | 
| 915 | 
> | 
        return rab.length(); | 
| 916 | 
> | 
      } | 
| 917 | 
> | 
      return 0.0;      | 
| 918 | 
> | 
    } | 
| 919 | 
> | 
    return 0.0; | 
| 920 | 
  | 
  } | 
| 921 | 
  | 
 | 
| 922 | 
< | 
#ifdef IS_MPI | 
| 923 | 
< | 
  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 924 | 
< | 
  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 922 | 
> | 
  RealType Thermo::getHullVolume(){ | 
| 923 | 
> | 
#ifdef HAVE_QHULL     | 
| 924 | 
> | 
    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 925 | 
> | 
    if (!snap->hasHullVolume) { | 
| 926 | 
> | 
      Hull* surfaceMesh_; | 
| 927 | 
> | 
       | 
| 928 | 
> | 
      Globals* simParams = info_->getSimParams(); | 
| 929 | 
> | 
      const std::string ht = simParams->getHULL_Method(); | 
| 930 | 
> | 
       | 
| 931 | 
> | 
      if (ht == "Convex") { | 
| 932 | 
> | 
        surfaceMesh_ = new ConvexHull(); | 
| 933 | 
> | 
      } else if (ht == "AlphaShape") { | 
| 934 | 
> | 
        surfaceMesh_ = new AlphaHull(simParams->getAlpha()); | 
| 935 | 
> | 
      } else { | 
| 936 | 
> | 
        return 0.0; | 
| 937 | 
> | 
      } | 
| 938 | 
> | 
       | 
| 939 | 
> | 
      // Build a vector of stunt doubles to determine if they are | 
| 940 | 
> | 
      // surface atoms | 
| 941 | 
> | 
      std::vector<StuntDouble*> localSites_; | 
| 942 | 
> | 
      Molecule* mol; | 
| 943 | 
> | 
      StuntDouble* sd; | 
| 944 | 
> | 
      SimInfo::MoleculeIterator i; | 
| 945 | 
> | 
      Molecule::IntegrableObjectIterator  j; | 
| 946 | 
> | 
       | 
| 947 | 
> | 
      for (mol = info_->beginMolecule(i); mol != NULL;  | 
| 948 | 
> | 
           mol = info_->nextMolecule(i)) {           | 
| 949 | 
> | 
        for (sd = mol->beginIntegrableObject(j);  | 
| 950 | 
> | 
             sd != NULL; | 
| 951 | 
> | 
             sd = mol->nextIntegrableObject(j)) {    | 
| 952 | 
> | 
          localSites_.push_back(sd); | 
| 953 | 
> | 
        } | 
| 954 | 
> | 
      }    | 
| 955 | 
> | 
       | 
| 956 | 
> | 
      // Compute surface Mesh | 
| 957 | 
> | 
      surfaceMesh_->computeHull(localSites_); | 
| 958 | 
> | 
      snap->setHullVolume(surfaceMesh_->getVolume()); | 
| 959 | 
> | 
       | 
| 960 | 
> | 
      delete surfaceMesh_; | 
| 961 | 
> | 
    } | 
| 962 | 
> | 
     | 
| 963 | 
> | 
    return snap->getHullVolume(); | 
| 964 | 
  | 
#else | 
| 965 | 
< | 
  mtot = mtot_local; | 
| 418 | 
< | 
  for(i = 0; i < 3; i++) { | 
| 419 | 
< | 
    COM[i] = COM_local[i]; | 
| 420 | 
< | 
  } | 
| 965 | 
> | 
    return 0.0; | 
| 966 | 
  | 
#endif | 
| 422 | 
– | 
     | 
| 423 | 
– | 
  for (i = 0; i < 3; i++) { | 
| 424 | 
– | 
    COM[i] = COM[i] / mtot; | 
| 967 | 
  | 
  } | 
| 426 | 
– | 
} | 
| 968 | 
  | 
 | 
| 428 | 
– | 
void Thermo::removeCOMdrift() { | 
| 429 | 
– | 
  double vdrift[3], aVel[3]; | 
| 430 | 
– | 
  int vd, j, nobj; | 
| 969 | 
  | 
 | 
| 432 | 
– | 
  nobj = info->integrableObjects.size(); | 
| 433 | 
– | 
 | 
| 434 | 
– | 
  // Get the Center of Mass drift velocity. | 
| 435 | 
– | 
 | 
| 436 | 
– | 
  getCOMVel(vdrift); | 
| 437 | 
– | 
   | 
| 438 | 
– | 
  //  Corrects for the center of mass drift. | 
| 439 | 
– | 
  // sums all the momentum and divides by total mass. | 
| 440 | 
– | 
 | 
| 441 | 
– | 
  for(vd = 0; vd < nobj; vd++){ | 
| 442 | 
– | 
     | 
| 443 | 
– | 
    info->integrableObjects[vd]->getVel(aVel); | 
| 444 | 
– | 
     | 
| 445 | 
– | 
    for (j=0; j < 3; j++)  | 
| 446 | 
– | 
      aVel[j] -= vdrift[j]; | 
| 447 | 
– | 
         | 
| 448 | 
– | 
    info->integrableObjects[vd]->setVel( aVel ); | 
| 449 | 
– | 
  } | 
| 970 | 
  | 
} |