| 1 | 
#include <math.h> | 
| 2 | 
#include <iostream> | 
| 3 | 
using namespace std; | 
| 4 | 
 | 
| 5 | 
#ifdef IS_MPI | 
| 6 | 
#include <mpi.h> | 
| 7 | 
#endif //is_mpi | 
| 8 | 
 | 
| 9 | 
#include "brains/Thermo.hpp" | 
| 10 | 
#include "primitives/SRI.hpp" | 
| 11 | 
#include "integrators/Integrator.hpp" | 
| 12 | 
#include "utils/simError.h" | 
| 13 | 
#include "math/MatVec3.h" | 
| 14 | 
 | 
| 15 | 
#ifdef IS_MPI | 
| 16 | 
#define __C | 
| 17 | 
#include "brains/mpiSimulation.hpp" | 
| 18 | 
#endif // is_mpi | 
| 19 | 
 | 
| 20 | 
inline double roundMe( double x ){ | 
| 21 | 
          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 22 | 
} | 
| 23 | 
 | 
| 24 | 
Thermo::Thermo( SimInfo* the_info ) {  | 
| 25 | 
  info = the_info; | 
| 26 | 
  int baseSeed = the_info->getSeed(); | 
| 27 | 
   | 
| 28 | 
  gaussStream = new gaussianSPRNG( baseSeed ); | 
| 29 | 
} | 
| 30 | 
 | 
| 31 | 
Thermo::~Thermo(){ | 
| 32 | 
  delete gaussStream; | 
| 33 | 
} | 
| 34 | 
 | 
| 35 | 
double Thermo::getKinetic(){ | 
| 36 | 
 | 
| 37 | 
  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 38 | 
  double kinetic; | 
| 39 | 
  double amass; | 
| 40 | 
  double aVel[3], aJ[3], I[3][3]; | 
| 41 | 
  int i, j, k, kl; | 
| 42 | 
 | 
| 43 | 
  double kinetic_global; | 
| 44 | 
  vector<StuntDouble *> integrableObjects = info->integrableObjects; | 
| 45 | 
   | 
| 46 | 
  kinetic = 0.0; | 
| 47 | 
  kinetic_global = 0.0; | 
| 48 | 
 | 
| 49 | 
  for (kl=0; kl<integrableObjects.size(); kl++) { | 
| 50 | 
    integrableObjects[kl]->getVel(aVel); | 
| 51 | 
    amass = integrableObjects[kl]->getMass(); | 
| 52 | 
 | 
| 53 | 
   for(j=0; j<3; j++)  | 
| 54 | 
      kinetic += amass*aVel[j]*aVel[j]; | 
| 55 | 
 | 
| 56 | 
   if (integrableObjects[kl]->isDirectional()){ | 
| 57 | 
  | 
| 58 | 
      integrableObjects[kl]->getJ( aJ ); | 
| 59 | 
      integrableObjects[kl]->getI( I ); | 
| 60 | 
 | 
| 61 | 
      if (integrableObjects[kl]->isLinear()) { | 
| 62 | 
        i = integrableObjects[kl]->linearAxis(); | 
| 63 | 
        j = (i+1)%3; | 
| 64 | 
        k = (i+2)%3; | 
| 65 | 
        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; | 
| 66 | 
      } else { | 
| 67 | 
        for (j=0; j<3; j++)  | 
| 68 | 
          kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 69 | 
      } | 
| 70 | 
   } | 
| 71 | 
  } | 
| 72 | 
#ifdef IS_MPI | 
| 73 | 
  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 74 | 
                MPI_SUM, MPI_COMM_WORLD); | 
| 75 | 
  kinetic = kinetic_global; | 
| 76 | 
#endif //is_mpi | 
| 77 | 
   | 
| 78 | 
  kinetic = kinetic * 0.5 / e_convert; | 
| 79 | 
 | 
| 80 | 
  return kinetic; | 
| 81 | 
} | 
| 82 | 
 | 
| 83 | 
double Thermo::getPotential(){ | 
| 84 | 
   | 
| 85 | 
  double potential_local; | 
| 86 | 
  double potential; | 
| 87 | 
  int el, nSRI; | 
| 88 | 
  Molecule* molecules; | 
| 89 | 
 | 
| 90 | 
  molecules = info->molecules; | 
| 91 | 
  nSRI = info->n_SRI; | 
| 92 | 
 | 
| 93 | 
  potential_local = 0.0; | 
| 94 | 
  potential = 0.0; | 
| 95 | 
  potential_local += info->lrPot; | 
| 96 | 
 | 
| 97 | 
  for( el=0; el<info->n_mol; el++ ){     | 
| 98 | 
    potential_local += molecules[el].getPotential(); | 
| 99 | 
  } | 
| 100 | 
 | 
| 101 | 
  // Get total potential for entire system from MPI. | 
| 102 | 
#ifdef IS_MPI | 
| 103 | 
  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 104 | 
                MPI_SUM, MPI_COMM_WORLD); | 
| 105 | 
#else | 
| 106 | 
  potential = potential_local;  | 
| 107 | 
#endif // is_mpi | 
| 108 | 
 | 
| 109 | 
  return potential; | 
| 110 | 
} | 
| 111 | 
 | 
| 112 | 
double Thermo::getTotalE(){ | 
| 113 | 
 | 
| 114 | 
  double total; | 
| 115 | 
 | 
| 116 | 
  total = this->getKinetic() + this->getPotential(); | 
| 117 | 
  return total; | 
| 118 | 
} | 
| 119 | 
 | 
| 120 | 
double Thermo::getTemperature(){ | 
| 121 | 
 | 
| 122 | 
  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) | 
| 123 | 
  double temperature; | 
| 124 | 
 | 
| 125 | 
  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); | 
| 126 | 
  return temperature; | 
| 127 | 
} | 
| 128 | 
 | 
| 129 | 
double Thermo::getVolume() { | 
| 130 | 
 | 
| 131 | 
  return info->boxVol; | 
| 132 | 
} | 
| 133 | 
 | 
| 134 | 
double Thermo::getPressure() { | 
| 135 | 
 | 
| 136 | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 137 | 
   | 
| 138 | 
  const double p_convert = 1.63882576e8; | 
| 139 | 
  double press[3][3]; | 
| 140 | 
  double pressure; | 
| 141 | 
 | 
| 142 | 
  this->getPressureTensor(press); | 
| 143 | 
 | 
| 144 | 
  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 145 | 
 | 
| 146 | 
  return pressure; | 
| 147 | 
} | 
| 148 | 
 | 
| 149 | 
double Thermo::getPressureX() { | 
| 150 | 
 | 
| 151 | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 152 | 
   | 
| 153 | 
  const double p_convert = 1.63882576e8; | 
| 154 | 
  double press[3][3]; | 
| 155 | 
  double pressureX; | 
| 156 | 
 | 
| 157 | 
  this->getPressureTensor(press); | 
| 158 | 
 | 
| 159 | 
  pressureX = p_convert * press[0][0]; | 
| 160 | 
 | 
| 161 | 
  return pressureX; | 
| 162 | 
} | 
| 163 | 
 | 
| 164 | 
double Thermo::getPressureY() { | 
| 165 | 
 | 
| 166 | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 167 | 
   | 
| 168 | 
  const double p_convert = 1.63882576e8; | 
| 169 | 
  double press[3][3]; | 
| 170 | 
  double pressureY; | 
| 171 | 
 | 
| 172 | 
  this->getPressureTensor(press); | 
| 173 | 
 | 
| 174 | 
  pressureY = p_convert * press[1][1]; | 
| 175 | 
 | 
| 176 | 
  return pressureY; | 
| 177 | 
} | 
| 178 | 
 | 
| 179 | 
double Thermo::getPressureZ() { | 
| 180 | 
 | 
| 181 | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 182 | 
   | 
| 183 | 
  const double p_convert = 1.63882576e8; | 
| 184 | 
  double press[3][3]; | 
| 185 | 
  double pressureZ; | 
| 186 | 
 | 
| 187 | 
  this->getPressureTensor(press); | 
| 188 | 
 | 
| 189 | 
  pressureZ = p_convert * press[2][2]; | 
| 190 | 
 | 
| 191 | 
  return pressureZ; | 
| 192 | 
} | 
| 193 | 
 | 
| 194 | 
 | 
| 195 | 
void Thermo::getPressureTensor(double press[3][3]){ | 
| 196 | 
  // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 197 | 
  // routine derived via viral theorem description in: | 
| 198 | 
  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 199 | 
 | 
| 200 | 
  const double e_convert = 4.184e-4; | 
| 201 | 
 | 
| 202 | 
  double molmass, volume; | 
| 203 | 
  double vcom[3]; | 
| 204 | 
  double p_local[9], p_global[9]; | 
| 205 | 
  int i, j, k; | 
| 206 | 
 | 
| 207 | 
  for (i=0; i < 9; i++) {     | 
| 208 | 
    p_local[i] = 0.0; | 
| 209 | 
    p_global[i] = 0.0; | 
| 210 | 
  } | 
| 211 | 
 | 
| 212 | 
  // use velocities of integrableObjects and their masses:   | 
| 213 | 
 | 
| 214 | 
  for (i=0; i < info->integrableObjects.size(); i++) { | 
| 215 | 
 | 
| 216 | 
    molmass = info->integrableObjects[i]->getMass(); | 
| 217 | 
     | 
| 218 | 
    info->integrableObjects[i]->getVel(vcom); | 
| 219 | 
     | 
| 220 | 
    p_local[0] += molmass * (vcom[0] * vcom[0]);  | 
| 221 | 
    p_local[1] += molmass * (vcom[0] * vcom[1]);  | 
| 222 | 
    p_local[2] += molmass * (vcom[0] * vcom[2]);  | 
| 223 | 
    p_local[3] += molmass * (vcom[1] * vcom[0]);  | 
| 224 | 
    p_local[4] += molmass * (vcom[1] * vcom[1]);  | 
| 225 | 
    p_local[5] += molmass * (vcom[1] * vcom[2]);  | 
| 226 | 
    p_local[6] += molmass * (vcom[2] * vcom[0]);  | 
| 227 | 
    p_local[7] += molmass * (vcom[2] * vcom[1]);  | 
| 228 | 
    p_local[8] += molmass * (vcom[2] * vcom[2]);  | 
| 229 | 
 | 
| 230 | 
  } | 
| 231 | 
 | 
| 232 | 
  // Get total for entire system from MPI. | 
| 233 | 
   | 
| 234 | 
#ifdef IS_MPI | 
| 235 | 
  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 236 | 
#else | 
| 237 | 
  for (i=0; i<9; i++) { | 
| 238 | 
    p_global[i] = p_local[i];  | 
| 239 | 
  } | 
| 240 | 
#endif // is_mpi | 
| 241 | 
 | 
| 242 | 
  volume = this->getVolume(); | 
| 243 | 
 | 
| 244 | 
 | 
| 245 | 
 | 
| 246 | 
  for(i = 0; i < 3; i++) { | 
| 247 | 
    for (j = 0; j < 3; j++) { | 
| 248 | 
      k = 3*i + j; | 
| 249 | 
      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; | 
| 250 | 
    } | 
| 251 | 
  } | 
| 252 | 
} | 
| 253 | 
 | 
| 254 | 
void Thermo::velocitize() { | 
| 255 | 
   | 
| 256 | 
  double aVel[3], aJ[3], I[3][3]; | 
| 257 | 
  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters | 
| 258 | 
  double vdrift[3]; | 
| 259 | 
  double vbar; | 
| 260 | 
  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 261 | 
  double av2; | 
| 262 | 
  double kebar; | 
| 263 | 
  double temperature; | 
| 264 | 
  int nobj; | 
| 265 | 
 | 
| 266 | 
  if (!info->have_target_temp) { | 
| 267 | 
    sprintf( painCave.errMsg, | 
| 268 | 
             "You can't resample the velocities without a targetTemp!\n" | 
| 269 | 
             ); | 
| 270 | 
    painCave.isFatal = 1; | 
| 271 | 
    painCave.severity = OOPSE_ERROR; | 
| 272 | 
    simError(); | 
| 273 | 
    return; | 
| 274 | 
  } | 
| 275 | 
 | 
| 276 | 
  nobj = info->integrableObjects.size(); | 
| 277 | 
   | 
| 278 | 
  temperature   = info->target_temp; | 
| 279 | 
   | 
| 280 | 
  kebar = kb * temperature * (double)info->ndfRaw /  | 
| 281 | 
    ( 2.0 * (double)info->ndf ); | 
| 282 | 
   | 
| 283 | 
  for(vr = 0; vr < nobj; vr++){ | 
| 284 | 
     | 
| 285 | 
    // uses equipartition theory to solve for vbar in angstrom/fs | 
| 286 | 
 | 
| 287 | 
    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); | 
| 288 | 
    vbar = sqrt( av2 ); | 
| 289 | 
 | 
| 290 | 
    // picks random velocities from a gaussian distribution | 
| 291 | 
    // centered on vbar | 
| 292 | 
 | 
| 293 | 
    for (j=0; j<3; j++)  | 
| 294 | 
      aVel[j] = vbar * gaussStream->getGaussian(); | 
| 295 | 
     | 
| 296 | 
    info->integrableObjects[vr]->setVel( aVel ); | 
| 297 | 
     | 
| 298 | 
    if(info->integrableObjects[vr]->isDirectional()){ | 
| 299 | 
 | 
| 300 | 
      info->integrableObjects[vr]->getI( I ); | 
| 301 | 
 | 
| 302 | 
      if (info->integrableObjects[vr]->isLinear()) { | 
| 303 | 
 | 
| 304 | 
        l= info->integrableObjects[vr]->linearAxis(); | 
| 305 | 
        m = (l+1)%3; | 
| 306 | 
        n = (l+2)%3; | 
| 307 | 
 | 
| 308 | 
        aJ[l] = 0.0; | 
| 309 | 
        vbar = sqrt( 2.0 * kebar * I[m][m] ); | 
| 310 | 
        aJ[m] = vbar * gaussStream->getGaussian(); | 
| 311 | 
        vbar = sqrt( 2.0 * kebar * I[n][n] ); | 
| 312 | 
        aJ[n] = vbar * gaussStream->getGaussian(); | 
| 313 | 
         | 
| 314 | 
      } else { | 
| 315 | 
        for (j = 0 ; j < 3; j++) { | 
| 316 | 
          vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 317 | 
          aJ[j] = vbar * gaussStream->getGaussian(); | 
| 318 | 
        }        | 
| 319 | 
      } // else isLinear | 
| 320 | 
 | 
| 321 | 
      info->integrableObjects[vr]->setJ( aJ );  | 
| 322 | 
       | 
| 323 | 
    }//isDirectional  | 
| 324 | 
 | 
| 325 | 
  } | 
| 326 | 
 | 
| 327 | 
  // Get the Center of Mass drift velocity. | 
| 328 | 
 | 
| 329 | 
  getCOMVel(vdrift); | 
| 330 | 
   | 
| 331 | 
  //  Corrects for the center of mass drift. | 
| 332 | 
  // sums all the momentum and divides by total mass. | 
| 333 | 
 | 
| 334 | 
  for(vd = 0; vd < nobj; vd++){ | 
| 335 | 
     | 
| 336 | 
    info->integrableObjects[vd]->getVel(aVel); | 
| 337 | 
     | 
| 338 | 
    for (j=0; j < 3; j++)  | 
| 339 | 
      aVel[j] -= vdrift[j]; | 
| 340 | 
         | 
| 341 | 
    info->integrableObjects[vd]->setVel( aVel ); | 
| 342 | 
  } | 
| 343 | 
 | 
| 344 | 
} | 
| 345 | 
 | 
| 346 | 
void Thermo::getCOMVel(double vdrift[3]){ | 
| 347 | 
 | 
| 348 | 
  double mtot, mtot_local; | 
| 349 | 
  double aVel[3], amass; | 
| 350 | 
  double vdrift_local[3]; | 
| 351 | 
  int vd, j; | 
| 352 | 
  int nobj; | 
| 353 | 
 | 
| 354 | 
  nobj   = info->integrableObjects.size(); | 
| 355 | 
 | 
| 356 | 
  mtot_local = 0.0; | 
| 357 | 
  vdrift_local[0] = 0.0; | 
| 358 | 
  vdrift_local[1] = 0.0; | 
| 359 | 
  vdrift_local[2] = 0.0; | 
| 360 | 
   | 
| 361 | 
  for(vd = 0; vd < nobj; vd++){ | 
| 362 | 
     | 
| 363 | 
    amass = info->integrableObjects[vd]->getMass(); | 
| 364 | 
    info->integrableObjects[vd]->getVel( aVel ); | 
| 365 | 
 | 
| 366 | 
    for(j = 0; j < 3; j++)  | 
| 367 | 
      vdrift_local[j] += aVel[j] * amass; | 
| 368 | 
     | 
| 369 | 
    mtot_local += amass; | 
| 370 | 
  } | 
| 371 | 
 | 
| 372 | 
#ifdef IS_MPI | 
| 373 | 
  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 374 | 
  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 375 | 
#else | 
| 376 | 
  mtot = mtot_local; | 
| 377 | 
  for(vd = 0; vd < 3; vd++) { | 
| 378 | 
    vdrift[vd] = vdrift_local[vd]; | 
| 379 | 
  } | 
| 380 | 
#endif | 
| 381 | 
     | 
| 382 | 
  for (vd = 0; vd < 3; vd++) { | 
| 383 | 
    vdrift[vd] = vdrift[vd] / mtot; | 
| 384 | 
  } | 
| 385 | 
   | 
| 386 | 
} | 
| 387 | 
 | 
| 388 | 
void Thermo::getCOM(double COM[3]){ | 
| 389 | 
 | 
| 390 | 
  double mtot, mtot_local; | 
| 391 | 
  double aPos[3], amass; | 
| 392 | 
  double COM_local[3]; | 
| 393 | 
  int i, j; | 
| 394 | 
  int nobj; | 
| 395 | 
 | 
| 396 | 
  mtot_local = 0.0; | 
| 397 | 
  COM_local[0] = 0.0; | 
| 398 | 
  COM_local[1] = 0.0; | 
| 399 | 
  COM_local[2] = 0.0; | 
| 400 | 
 | 
| 401 | 
  nobj = info->integrableObjects.size(); | 
| 402 | 
  for(i = 0; i < nobj; i++){ | 
| 403 | 
     | 
| 404 | 
    amass = info->integrableObjects[i]->getMass(); | 
| 405 | 
    info->integrableObjects[i]->getPos( aPos ); | 
| 406 | 
 | 
| 407 | 
    for(j = 0; j < 3; j++)  | 
| 408 | 
      COM_local[j] += aPos[j] * amass; | 
| 409 | 
     | 
| 410 | 
    mtot_local += amass; | 
| 411 | 
  } | 
| 412 | 
 | 
| 413 | 
#ifdef IS_MPI | 
| 414 | 
  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 415 | 
  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 416 | 
#else | 
| 417 | 
  mtot = mtot_local; | 
| 418 | 
  for(i = 0; i < 3; i++) { | 
| 419 | 
    COM[i] = COM_local[i]; | 
| 420 | 
  } | 
| 421 | 
#endif | 
| 422 | 
     | 
| 423 | 
  for (i = 0; i < 3; i++) { | 
| 424 | 
    COM[i] = COM[i] / mtot; | 
| 425 | 
  } | 
| 426 | 
} | 
| 427 | 
 | 
| 428 | 
void Thermo::removeCOMdrift() { | 
| 429 | 
  double vdrift[3], aVel[3]; | 
| 430 | 
  int vd, j, nobj; | 
| 431 | 
 | 
| 432 | 
  nobj = info->integrableObjects.size(); | 
| 433 | 
 | 
| 434 | 
  // Get the Center of Mass drift velocity. | 
| 435 | 
 | 
| 436 | 
  getCOMVel(vdrift); | 
| 437 | 
   | 
| 438 | 
  //  Corrects for the center of mass drift. | 
| 439 | 
  // sums all the momentum and divides by total mass. | 
| 440 | 
 | 
| 441 | 
  for(vd = 0; vd < nobj; vd++){ | 
| 442 | 
     | 
| 443 | 
    info->integrableObjects[vd]->getVel(aVel); | 
| 444 | 
     | 
| 445 | 
    for (j=0; j < 3; j++)  | 
| 446 | 
      aVel[j] -= vdrift[j]; | 
| 447 | 
         | 
| 448 | 
    info->integrableObjects[vd]->setVel( aVel ); | 
| 449 | 
  } | 
| 450 | 
} |