# | Line 6 | Line 6 | |
---|---|---|
6 | * redistribute this software in source and binary code form, provided | |
7 | * that the following conditions are met: | |
8 | * | |
9 | < | * 1. Acknowledgement of the program authors must be made in any |
10 | < | * publication of scientific results based in part on use of the |
11 | < | * program. An acceptable form of acknowledgement is citation of |
12 | < | * the article in which the program was described (Matthew |
13 | < | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | < | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | < | * Parallel Simulation Engine for Molecular Dynamics," |
16 | < | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | < | * |
18 | < | * 2. Redistributions of source code must retain the above copyright |
9 | > | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. | |
11 | * | |
12 | < | * 3. Redistributions in binary form must reproduce the above copyright |
12 | > | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the | |
14 | * documentation and/or other materials provided with the | |
15 | * distribution. | |
# | Line 37 | Line 28 | |
28 | * arising out of the use of or inability to use software, even if the | |
29 | * University of Notre Dame has been advised of the possibility of | |
30 | * such damages. | |
31 | + | * |
32 | + | * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 | + | * research, please cite the appropriate papers when you publish your |
34 | + | * work. Good starting points are: |
35 | + | * |
36 | + | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 | + | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 | + | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | + | * [4] Vardeman & Gezelter, in progress (2009). |
40 | */ | |
41 | ||
42 | #include "hydrodynamics/Ellipsoid.hpp" | |
43 | < | #include "utils/OOPSEConstant.hpp" |
43 | > | #include "utils/PhysicalConstants.hpp" |
44 | #include "math/LU.hpp" | |
45 | ||
46 | < | namespace oopse { |
46 | > | namespace OpenMD { |
47 | ||
48 | < | Ellipsoid::Ellipsoid(Vector3d origin, RealType rMajor, RealType rMinor,Mat3x3d rotMat) |
49 | < | : origin_(origin), rMajor_(rMajor), rMinor_(rMinor), rotMat_(rotMat) { |
50 | < | |
48 | > | Ellipsoid::Ellipsoid(Vector3d origin, RealType rAxial, RealType rEquatorial, |
49 | > | Mat3x3d rotMat) : origin_(origin), rAxial_(rAxial), |
50 | > | rEquatorial_(rEquatorial), |
51 | > | rotMat_(rotMat) { |
52 | > | if (rAxial_ > rEquatorial_) { |
53 | > | rMajor_ = rAxial_; |
54 | > | rMinor_ = rEquatorial_; |
55 | > | } else { |
56 | > | rMajor_ = rEquatorial_; |
57 | > | rMinor_ = rAxial_; |
58 | > | } |
59 | } | |
60 | + | |
61 | bool Ellipsoid::isInterior(Vector3d pos) { | |
62 | Vector3d r = pos - origin_; | |
63 | Vector3d rbody = rotMat_ * r; | |
64 | < | RealType xovera = rbody[0]/rMajor_; |
65 | < | RealType yovera = rbody[1]/rMajor_; |
66 | < | RealType zoverb = rbody[2]/rMinor_; |
64 | > | |
65 | > | RealType xoverb = rbody[0]/rEquatorial_; |
66 | > | RealType yoverb = rbody[1]/rEquatorial_; |
67 | > | RealType zovera = rbody[2]/rAxial_; |
68 | ||
69 | bool result; | |
70 | < | if (xovera*xovera + yovera*yovera + zoverb*zoverb < 1) |
70 | > | if (xoverb*xoverb + yoverb*yoverb + zovera*zovera < 1) |
71 | result = true; | |
72 | else | |
73 | result = false; | |
# | Line 69 | Line 79 | namespace oopse { | |
79 | ||
80 | std::pair<Vector3d, Vector3d> boundary; | |
81 | //make a cubic box | |
82 | < | RealType rad = rMajor_ > rMinor_ ? rMajor_ : rMinor_; |
82 | > | RealType rad = rAxial_ > rEquatorial_ ? rAxial_ : rEquatorial_; |
83 | Vector3d r(rad, rad, rad); | |
84 | boundary.first = origin_ - r; | |
85 | boundary.second = origin_ + r; | |
86 | return boundary; | |
87 | } | |
88 | ||
89 | < | HydroProp* Ellipsoid::getHydroProp(RealType viscosity, RealType temperature) { |
89 | > | HydroProp* Ellipsoid::getHydroProp(RealType viscosity, |
90 | > | RealType temperature) { |
91 | ||
92 | < | RealType a = rMinor_; |
93 | < | RealType b = rMajor_; |
92 | > | RealType a = rAxial_; |
93 | > | RealType b = rEquatorial_; |
94 | RealType a2 = a * a; | |
95 | < | RealType b2 = b* b; |
95 | > | RealType b2 = b * b; |
96 | ||
97 | < | RealType p = a /b; |
97 | > | RealType p = a / b; |
98 | RealType S; | |
99 | < | if (p > 1.0) { //prolate |
99 | > | if (p > 1.0) { |
100 | > | // Ellipsoid is prolate: |
101 | S = 2.0/sqrt(a2 - b2) * log((a + sqrt(a2-b2))/b); | |
102 | < | } else { //oblate |
102 | > | } else { |
103 | > | // Ellipsoid is oblate: |
104 | S = 2.0/sqrt(b2 - a2) * atan(sqrt(b2-a2)/a); | |
105 | } | |
106 | ||
107 | < | //RealType P = 1.0/(a2 - b2) * (S - 2.0/a); |
108 | < | //RealType Q = 0.5/(a2-b2) * (2.0*a/b2 - S); |
107 | > | RealType pi = NumericConstant::PI; |
108 | > | RealType XittA = 16.0 * pi * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
109 | > | RealType XittB = 32.0 * pi * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
110 | > | RealType XirrA = 32.0/3.0 * pi * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
111 | > | RealType XirrB = 32.0/3.0 * pi * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
112 | ||
97 | – | RealType transMinor = 16.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
98 | – | RealType transMajor = 32.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
99 | – | RealType rotMinor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
100 | – | RealType rotMajor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
113 | ||
102 | – | |
114 | Mat6x6d Xi, XiCopy, D; | |
115 | ||
116 | < | Xi(0,0) = transMajor; |
117 | < | Xi(1,1) = transMajor; |
118 | < | Xi(2,2) = transMinor; |
119 | < | Xi(3,3) = rotMajor; |
120 | < | Xi(4,4) = rotMajor; |
121 | < | Xi(5,5) = rotMinor; |
116 | > | Xi(0,0) = XittB; |
117 | > | Xi(1,1) = XittB; |
118 | > | Xi(2,2) = XittA; |
119 | > | Xi(3,3) = XirrB; |
120 | > | Xi(4,4) = XirrB; |
121 | > | Xi(5,5) = XirrA; |
122 | > | |
123 | > | Xi *= PhysicalConstants::viscoConvert; |
124 | ||
112 | – | const RealType convertConstant = 6.023; //convert poise.angstrom to amu/fs |
113 | – | Xi *= convertConstant; |
114 | – | |
125 | XiCopy = Xi; | |
126 | invertMatrix(XiCopy, D); | |
127 | < | RealType kt = OOPSEConstant::kB * temperature; |
127 | > | RealType kt = PhysicalConstants::kb * temperature; // in kcal mol^-1 |
128 | D *= kt; | |
119 | – | Xi *= OOPSEConstant::kb * temperature; |
129 | ||
130 | HydroProp* hprop = new HydroProp(V3Zero, Xi, D); | |
131 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |