ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/Integrator.cpp
(Generate patch)

Comparing trunk/src/integrators/Integrator.cpp (file contents):
Revision 221 by chrisfen, Tue Nov 23 22:48:31 2004 UTC vs.
Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC

# Line 1 | Line 1
1 < #include <iostream>
2 < #include <stdlib.h>
3 < #include <math.h>
4 < #ifdef IS_MPI
5 < #include "brains/mpiSimulation.hpp"
6 < #include <unistd.h>
7 < #endif //is_mpi
8 <
9 < #ifdef PROFILE
10 < #include "profiling/mdProfile.hpp"
11 < #endif // profile
12 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > #include "brains/Snapshot.hpp"
43   #include "integrators/Integrator.hpp"
44   #include "utils/simError.h"
45 + namespace oopse {
46 +  Integrator::Integrator(SimInfo* info)
47 +    : info_(info), forceMan_(NULL) , needPotential(false), needStress(false),
48 +      needReset(false), velocitizer_(NULL), needVelocityScaling(false),
49 +      rnemd_(NULL), useRNEMD(false),
50 +      dumpWriter(NULL), statWriter(NULL), thermo(info),
51 +      currentSnapshot_(info->getSnapshotManager()->getCurrentSnapshot()) {
52  
53 +      simParams = info->getSimParams();
54  
55 < template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
56 <                                               ForceFields* the_ff){
57 <  info = theInfo;
58 <  myFF = the_ff;
59 <  isFirst = 1;
55 >      if (simParams->haveDt()) {
56 >        dt = simParams->getDt();
57 >      } else {
58 >        sprintf(painCave.errMsg,
59 >                "Integrator Error: dt is not set\n");
60 >        painCave.isFatal = 1;
61 >        simError();
62 >      }
63 >    
64 >      if (simParams->haveRunTime()) {
65 >        runTime = simParams->getRunTime();
66 >      } else {
67 >        sprintf(painCave.errMsg,
68 >                "Integrator Error: runTime is not set\n");
69 >        painCave.isFatal = 1;
70 >        simError();
71 >      }
72 >      // set the status, sample, and thermal kick times
73 >      if (simParams->haveSampleTime()){
74 >        sampleTime = simParams->getSampleTime();
75 >        statusTime = sampleTime;
76 >      } else{
77 >        sampleTime = simParams->getRunTime();
78 >        statusTime = sampleTime;
79 >      }
80  
81 <  molecules = info->molecules;
82 <  nMols = info->n_mol;
81 >      if (simParams->haveStatusTime()){
82 >        statusTime = simParams->getStatusTime();
83 >      }
84  
85 <  // give a little love back to the SimInfo object
85 >      if (simParams->haveThermalTime()){
86 >        thermalTime = simParams->getThermalTime();
87 >      } else {
88 >        thermalTime = simParams->getRunTime();
89 >      }
90  
91 <  if (info->the_integrator != NULL){
92 <    delete info->the_integrator;
30 <  }
31 <
32 <  nAtoms = info->n_atoms;
33 <  integrableObjects = info->integrableObjects;
34 <
35 <
36 <  // check for constraints
37 <
38 <  constrainedA = NULL;
39 <  constrainedB = NULL;
40 <  constrainedDsqr = NULL;
41 <  moving = NULL;
42 <  moved = NULL;
43 <  oldPos = NULL;
44 <
45 <  nConstrained = 0;
46 <
47 <  checkConstraints();
48 <
49 < }
50 <
51 < template<typename T> Integrator<T>::~Integrator(){
52 <
53 <  if (nConstrained){
54 <    delete[] constrainedA;
55 <    delete[] constrainedB;
56 <    delete[] constrainedDsqr;
57 <    delete[] moving;
58 <    delete[] moved;
59 <    delete[] oldPos;
60 <  }
61 <
62 < }
63 <
64 <
65 < template<typename T> void Integrator<T>::checkConstraints(void){
66 <  isConstrained = 0;
67 <
68 <  Constraint* temp_con;
69 <  Constraint* dummy_plug;
70 <  temp_con = new Constraint[info->n_SRI];
71 <  nConstrained = 0;
72 <  int constrained = 0;
73 <
74 <  SRI** theArray;
75 <  for (int i = 0; i < nMols; i++){
76 <
77 <          theArray = (SRI * *) molecules[i].getMyBonds();
78 <    for (int j = 0; j < molecules[i].getNBonds(); j++){
79 <      constrained = theArray[j]->is_constrained();
80 <
81 <      if (constrained){
82 <        dummy_plug = theArray[j]->get_constraint();
83 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
84 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
85 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86 <
87 <        nConstrained++;
88 <        constrained = 0;
91 >      if (!simParams->getUseInitalTime()) {
92 >        currentSnapshot_->setTime(0.0);
93        }
90    }
94  
95 <    theArray = (SRI * *) molecules[i].getMyBends();
96 <    for (int j = 0; j < molecules[i].getNBends(); j++){
97 <      constrained = theArray[j]->is_constrained();
95 <
96 <      if (constrained){
97 <        dummy_plug = theArray[j]->get_constraint();
98 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
99 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
100 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101 <
102 <        nConstrained++;
103 <        constrained = 0;
95 >      if (simParams->haveResetTime()) {
96 >        needReset = true;
97 >        resetTime = simParams->getResetTime();
98        }
105    }
99  
107    theArray = (SRI * *) molecules[i].getMyTorsions();
108    for (int j = 0; j < molecules[i].getNTorsions(); j++){
109      constrained = theArray[j]->is_constrained();
100  
101 <      if (constrained){
102 <        dummy_plug = theArray[j]->get_constraint();
103 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
104 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
105 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
106 <
107 <        nConstrained++;
118 <        constrained = 0;
101 >     if (simParams->haveUseRNEMD()) {
102 >        if (simParams->getUseRNEMD()) {
103 >           useRNEMD = simParams->getUseRNEMD();
104 >           if (simParams->haveRNEMD_swapTime()) {
105 >              RNEMD_swapTime = simParams->getRNEMD_swapTime();
106 >           }
107 >         }
108        }
109 <    }
110 <  }
109 >      
110 >      // Create a default ForceManager: If the subclass wants to use
111 >      // a different ForceManager, use setForceManager
112 >      forceMan_ = new ForceManager(info);
113 >    
114 >      // check for the temperature set flag (velocity scaling)      
115 >      if (simParams->haveTempSet()) {
116 >        needVelocityScaling = simParams->getTempSet();
117  
118 +        if (simParams->haveTargetTemp()) {
119 +          targetScalingTemp = simParams->getTargetTemp();
120 +        }
121 +        else {
122 +          sprintf(painCave.errMsg,
123 +                  "Integrator Error: Target Temperature is not set\n");
124 +          painCave.isFatal = 1;
125 +          simError();
126  
127 <  if (nConstrained > 0){
128 <    isConstrained = 1;
126 <
127 <    if (constrainedA != NULL)
128 <      delete[] constrainedA;
129 <    if (constrainedB != NULL)
130 <      delete[] constrainedB;
131 <    if (constrainedDsqr != NULL)
132 <      delete[] constrainedDsqr;
133 <
134 <    constrainedA = new int[nConstrained];
135 <    constrainedB = new int[nConstrained];
136 <    constrainedDsqr = new double[nConstrained];
137 <
138 <    for (int i = 0; i < nConstrained; i++){
139 <      constrainedA[i] = temp_con[i].get_a();
140 <      constrainedB[i] = temp_con[i].get_b();
141 <      constrainedDsqr[i] = temp_con[i].get_dsqr();
142 <    }
143 <
144 <
145 <    // save oldAtoms to check for lode balancing later on.
146 <
147 <    oldAtoms = nAtoms;
148 <
149 <    moving = new int[nAtoms];
150 <    moved = new int[nAtoms];
151 <
152 <    oldPos = new double[nAtoms * 3];
153 <  }
154 <
155 <  delete[] temp_con;
156 < }
157 <
158 <
159 < template<typename T> void Integrator<T>::integrate(void){
160 <
161 <  double runTime = info->run_time;
162 <  double sampleTime = info->sampleTime;
163 <  double statusTime = info->statusTime;
164 <  double thermalTime = info->thermalTime;
165 <  double resetTime = info->resetTime;
166 <
167 <  double difference;
168 <  double currSample;
169 <  double currThermal;
170 <  double currStatus;
171 <  double currReset;
172 <
173 <  int calcPot, calcStress;
174 <  int i;
175 <  int localIndex;
176 <
177 < #ifdef IS_MPI
178 <  int which_node;
179 < #endif // is_mpi
180 <  
181 <  vector<StuntDouble*> particles;
182 <  string inAngle;
183 <
184 <  tStats = new Thermo(info);
185 <  statOut = new StatWriter(info);
186 <  dumpOut = new DumpWriter(info);
187 <
188 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
189 <    restOut = new RestraintWriter(info);
190 <    initRestraints = new RestraintReader(info);
191 <  }
192 <
193 <  atoms = info->atoms;
194 <
195 <  dt = info->dt;
196 <  dt2 = 0.5 * dt;
197 <
198 <  readyCheck();
199 <
200 <  // remove center of mass drift velocity (in case we passed in a configuration
201 <  // that was drifting
202 <  tStats->removeCOMdrift();
203 <
204 <  // initialize the retraints if necessary
205 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
206 <    initRestraints->zeroZangle();
207 <    inAngle = info->zAngleName + "_in";
208 <    initRestraints->readZangle(inAngle.c_str());
209 <    initRestraints->readIdealCrystal();
210 <  }
211 <
212 <  // initialize the forces before the first step
213 <  calcForce(1, 1);
214 <
215 <  //execute constraint algorithm to make sure at the very beginning the system is constrained  
216 <  if(nConstrained){
217 <    preMove();
218 <    constrainA();
219 <    calcForce(1, 1);
220 <    constrainB();
221 <  }
222 <
223 <  if (info->setTemp){
224 <    thermalize();
225 <  }
226 <
227 <  calcPot     = 0;
228 <  calcStress  = 0;
229 <  currSample  = sampleTime + info->getTime();
230 <  currThermal = thermalTime+ info->getTime();
231 <  currStatus  = statusTime + info->getTime();
232 <  currReset   = resetTime  + info->getTime();
233 <
234 <  dumpOut->writeDump(info->getTime());
235 <  statOut->writeStat(info->getTime());
236 <  restOut->writeZangle(info->getTime());
237 <
238 < #ifdef IS_MPI
239 <  strcpy(checkPointMsg, "The integrator is ready to go.");
240 <  MPIcheckPoint();
241 < #endif // is_mpi
242 <
243 <  while (info->getTime() < runTime && !stopIntegrator()){
244 <    difference = info->getTime() + dt - currStatus;
245 <    if (difference > 0 || fabs(difference) < 1e-4 ){
246 <      calcPot = 1;
247 <      calcStress = 1;
248 <    }
249 <
250 < #ifdef PROFILE
251 <    startProfile( pro1 );
252 < #endif
127 >        }
128 >      }
129      
130 <    integrateStep(calcPot, calcStress);
131 <
132 < #ifdef PROFILE
133 <    endProfile( pro1 );
134 <
135 <    startProfile( pro2 );
260 < #endif // profile
261 <
262 <    info->incrTime(dt);
263 <
264 <    if (info->setTemp){
265 <      if (info->getTime() >= currThermal){
266 <        thermalize();
267 <        currThermal += thermalTime;
268 <      }
269 <    }
270 <
271 <    if (info->getTime() >= currSample){
272 <      dumpOut->writeDump(info->getTime());
273 <      // write a zAng file to coincide with each dump or eor file
274 <      if (info->useSolidThermInt && !info->useLiquidThermInt)
275 <        restOut->writeZangle(info->getTime());
276 <      currSample += sampleTime;
277 <    }
278 <
279 <    if (info->getTime() >= currStatus){
280 <      statOut->writeStat(info->getTime());
281 <      calcPot = 0;
282 <      calcStress = 0;
283 <      currStatus += statusTime;
284 <    }
285 <
286 <    if (info->resetIntegrator){
287 <      if (info->getTime() >= currReset){
288 <        this->resetIntegrator();
289 <        currReset += resetTime;
290 <      }
291 <    }
292 <    
293 < #ifdef PROFILE
294 <    endProfile( pro2 );
295 < #endif //profile
296 <
297 < #ifdef IS_MPI
298 <    strcpy(checkPointMsg, "successfully took a time step.");
299 <    MPIcheckPoint();
300 < #endif // is_mpi
301 <  }
302 <
303 <  dumpOut->writeFinal(info->getTime());
304 <
305 <  // write the file containing the omega values of the final configuration
306 <  if (info->useSolidThermInt && !info->useLiquidThermInt){
307 <    restOut->writeZangle(info->getTime());
308 <    restOut->writeZangle(info->getTime(), inAngle.c_str());
309 <  }
310 <
311 <  delete dumpOut;
312 <  delete statOut;
313 < }
314 <
315 < template<typename T> void Integrator<T>::integrateStep(int calcPot,
316 <                                                       int calcStress){
317 <  // Position full step, and velocity half step
318 <
319 < #ifdef PROFILE
320 <  startProfile(pro3);
321 < #endif //profile
322 <
323 <  //save old state (position, velocity etc)
324 <  preMove();
325 < #ifdef PROFILE
326 <  endProfile(pro3);
327 <
328 <  startProfile(pro4);
329 < #endif // profile
330 <
331 <  moveA();
332 <
333 < #ifdef PROFILE
334 <  endProfile(pro4);
335 <  
336 <  startProfile(pro5);
337 < #endif//profile
338 <
339 <
340 < #ifdef IS_MPI
341 <  strcpy(checkPointMsg, "Succesful moveA\n");
342 <  MPIcheckPoint();
343 < #endif // is_mpi
344 <
345 <  // calc forces
346 <  calcForce(calcPot, calcStress);
347 <
348 < #ifdef IS_MPI
349 <  strcpy(checkPointMsg, "Succesful doForces\n");
350 <  MPIcheckPoint();
351 < #endif // is_mpi
352 <
353 < #ifdef PROFILE
354 <  endProfile( pro5 );
355 <
356 <  startProfile( pro6 );
357 < #endif //profile
358 <
359 <  // finish the velocity  half step
360 <
361 <  moveB();
362 <
363 < #ifdef PROFILE
364 <  endProfile(pro6);
365 < #endif // profile
366 <
367 < #ifdef IS_MPI
368 <  strcpy(checkPointMsg, "Succesful moveB\n");
369 <  MPIcheckPoint();
370 < #endif // is_mpi
371 < }
372 <
373 <
374 < template<typename T> void Integrator<T>::moveA(void){
375 <  size_t i, j;
376 <  DirectionalAtom* dAtom;
377 <  double Tb[3], ji[3];
378 <  double vel[3], pos[3], frc[3];
379 <  double mass;
380 <  double omega;
381 <
382 <  for (i = 0; i < integrableObjects.size() ; i++){
383 <    integrableObjects[i]->getVel(vel);
384 <    integrableObjects[i]->getPos(pos);
385 <    integrableObjects[i]->getFrc(frc);
386 <    //    std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
387 <    
388 <    mass = integrableObjects[i]->getMass();
389 <
390 <    for (j = 0; j < 3; j++){
391 <      // velocity half step
392 <      vel[j] += (dt2 * frc[j] / mass) * eConvert;
393 <      // position whole step
394 <      pos[j] += dt * vel[j];
130 >      // Create a default a velocitizer: If the subclass wants to use
131 >      // a different velocitizer, use setVelocitizer
132 >      velocitizer_ = new Velocitizer(info);
133 >      // Create a default a RNEMD.
134 >      rnemd_ = new RNEMD(info);
135 >    
136      }
137  
138 <    integrableObjects[i]->setVel(vel);
139 <    integrableObjects[i]->setPos(pos);
140 <
141 <
401 <    if (integrableObjects[i]->isDirectional()){
402 <
403 <      // get and convert the torque to body frame
404 <
405 <      integrableObjects[i]->getTrq(Tb);
406 <
407 <      //      std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
408 <      integrableObjects[i]->lab2Body(Tb);
409 <
410 <      // get the angular momentum, and propagate a half step
411 <
412 <      integrableObjects[i]->getJ(ji);
413 <
414 <      for (j = 0; j < 3; j++)
415 <        ji[j] += (dt2 * Tb[j]) * eConvert;
416 <
417 <      this->rotationPropagation( integrableObjects[i], ji );
418 <
419 <      integrableObjects[i]->setJ(ji);
420 <    }
421 <  }
422 <
423 <  if(nConstrained)
424 <    constrainA();
425 < }
426 <
427 <
428 < template<typename T> void Integrator<T>::moveB(void){
429 <  int i, j;
430 <  double Tb[3], ji[3];
431 <  double vel[3], frc[3];
432 <  double mass;
433 <
434 <  for (i = 0; i < integrableObjects.size(); i++){
435 <    integrableObjects[i]->getVel(vel);
436 <    integrableObjects[i]->getFrc(frc);
437 <
438 <    mass = integrableObjects[i]->getMass();
439 <
440 <    // velocity half step
441 <    for (j = 0; j < 3; j++)
442 <      vel[j] += (dt2 * frc[j] / mass) * eConvert;
443 <
444 <    integrableObjects[i]->setVel(vel);
445 <
446 <    if (integrableObjects[i]->isDirectional()){
447 <
448 <      // get and convert the torque to body frame
449 <
450 <      integrableObjects[i]->getTrq(Tb);
451 <      integrableObjects[i]->lab2Body(Tb);
452 <
453 <      // get the angular momentum, and propagate a half step
454 <
455 <      integrableObjects[i]->getJ(ji);
456 <
457 <      for (j = 0; j < 3; j++)
458 <        ji[j] += (dt2 * Tb[j]) * eConvert;
459 <
460 <
461 <      integrableObjects[i]->setJ(ji);
462 <    }
463 <  }
464 <
465 <  if(nConstrained)
466 <    constrainB();
467 < }
468 <
469 <
470 < template<typename T> void Integrator<T>::preMove(void){
471 <  int i, j;
472 <  double pos[3];
473 <
474 <  if (nConstrained){
475 <    for (i = 0; i < nAtoms; i++){
476 <      atoms[i]->getPos(pos);
477 <
478 <      for (j = 0; j < 3; j++){
479 <        oldPos[3 * i + j] = pos[j];
480 <      }
481 <    }
482 <  }
483 < }
484 <
485 < template<typename T> void Integrator<T>::constrainA(){
486 <  int i, j;
487 <  int done;
488 <  double posA[3], posB[3];
489 <  double velA[3], velB[3];
490 <  double pab[3];
491 <  double rab[3];
492 <  int a, b, ax, ay, az, bx, by, bz;
493 <  double rma, rmb;
494 <  double dx, dy, dz;
495 <  double rpab;
496 <  double rabsq, pabsq, rpabsq;
497 <  double diffsq;
498 <  double gab;
499 <  int iteration;
500 <
501 <  for (i = 0; i < nAtoms; i++){
502 <    moving[i] = 0;
503 <    moved[i] = 1;
504 <  }
505 <
506 <  iteration = 0;
507 <  done = 0;
508 <  while (!done && (iteration < maxIteration)){
509 <    done = 1;
510 <    for (i = 0; i < nConstrained; i++){
511 <      a = constrainedA[i];
512 <      b = constrainedB[i];
513 <
514 <      ax = (a * 3) + 0;
515 <      ay = (a * 3) + 1;
516 <      az = (a * 3) + 2;
517 <
518 <      bx = (b * 3) + 0;
519 <      by = (b * 3) + 1;
520 <      bz = (b * 3) + 2;
521 <
522 <      if (moved[a] || moved[b]){
523 <        atoms[a]->getPos(posA);
524 <        atoms[b]->getPos(posB);
525 <
526 <        for (j = 0; j < 3; j++)
527 <          pab[j] = posA[j] - posB[j];
528 <
529 <        //periodic boundary condition
530 <
531 <        info->wrapVector(pab);
532 <
533 <        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
534 <
535 <        rabsq = constrainedDsqr[i];
536 <        diffsq = rabsq - pabsq;
537 <
538 <        // the original rattle code from alan tidesley
539 <        if (fabs(diffsq) > (tol * rabsq * 2)){
540 <          rab[0] = oldPos[ax] - oldPos[bx];
541 <          rab[1] = oldPos[ay] - oldPos[by];
542 <          rab[2] = oldPos[az] - oldPos[bz];
543 <
544 <          info->wrapVector(rab);
545 <
546 <          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
547 <
548 <          rpabsq = rpab * rpab;
549 <
550 <
551 <          if (rpabsq < (rabsq * -diffsq)){
552 < #ifdef IS_MPI
553 <            a = atoms[a]->getGlobalIndex();
554 <            b = atoms[b]->getGlobalIndex();
555 < #endif //is_mpi
556 <            sprintf(painCave.errMsg,
557 <                    "Constraint failure in constrainA at atom %d and %d.\n", a,
558 <                    b);
559 <            painCave.isFatal = 1;
560 <            simError();
561 <          }
562 <
563 <          rma = 1.0 / atoms[a]->getMass();
564 <          rmb = 1.0 / atoms[b]->getMass();
565 <
566 <          gab = diffsq / (2.0 * (rma + rmb) * rpab);
567 <
568 <          dx = rab[0] * gab;
569 <          dy = rab[1] * gab;
570 <          dz = rab[2] * gab;
571 <
572 <          posA[0] += rma * dx;
573 <          posA[1] += rma * dy;
574 <          posA[2] += rma * dz;
575 <
576 <          atoms[a]->setPos(posA);
577 <
578 <          posB[0] -= rmb * dx;
579 <          posB[1] -= rmb * dy;
580 <          posB[2] -= rmb * dz;
581 <
582 <          atoms[b]->setPos(posB);
583 <
584 <          dx = dx / dt;
585 <          dy = dy / dt;
586 <          dz = dz / dt;
587 <
588 <          atoms[a]->getVel(velA);
589 <
590 <          velA[0] += rma * dx;
591 <          velA[1] += rma * dy;
592 <          velA[2] += rma * dz;
593 <
594 <          atoms[a]->setVel(velA);
595 <
596 <          atoms[b]->getVel(velB);
597 <
598 <          velB[0] -= rmb * dx;
599 <          velB[1] -= rmb * dy;
600 <          velB[2] -= rmb * dz;
601 <
602 <          atoms[b]->setVel(velB);
603 <
604 <          moving[a] = 1;
605 <          moving[b] = 1;
606 <          done = 0;
607 <        }
608 <      }
609 <    }
610 <
611 <    for (i = 0; i < nAtoms; i++){
612 <      moved[i] = moving[i];
613 <      moving[i] = 0;
614 <    }
615 <
616 <    iteration++;
617 <  }
618 <
619 <  if (!done){
620 <    sprintf(painCave.errMsg,
621 <            "Constraint failure in constrainA, too many iterations: %d\n",
622 <            iteration);
623 <    painCave.isFatal = 1;
624 <    simError();
625 <  }
626 <
627 < }
628 <
629 < template<typename T> void Integrator<T>::constrainB(void){
630 <  int i, j;
631 <  int done;
632 <  double posA[3], posB[3];
633 <  double velA[3], velB[3];
634 <  double vxab, vyab, vzab;
635 <  double rab[3];
636 <  int a, b, ax, ay, az, bx, by, bz;
637 <  double rma, rmb;
638 <  double dx, dy, dz;
639 <  double rvab;
640 <  double gab;
641 <  int iteration;
642 <
643 <  for (i = 0; i < nAtoms; i++){
644 <    moving[i] = 0;
645 <    moved[i] = 1;
646 <  }
647 <
648 <  done = 0;
649 <  iteration = 0;
650 <  while (!done && (iteration < maxIteration)){
651 <    done = 1;
652 <
653 <    for (i = 0; i < nConstrained; i++){
654 <      a = constrainedA[i];
655 <      b = constrainedB[i];
656 <
657 <      ax = (a * 3) + 0;
658 <      ay = (a * 3) + 1;
659 <      az = (a * 3) + 2;
660 <
661 <      bx = (b * 3) + 0;
662 <      by = (b * 3) + 1;
663 <      bz = (b * 3) + 2;
664 <
665 <      if (moved[a] || moved[b]){
666 <        atoms[a]->getVel(velA);
667 <        atoms[b]->getVel(velB);
668 <
669 <        vxab = velA[0] - velB[0];
670 <        vyab = velA[1] - velB[1];
671 <        vzab = velA[2] - velB[2];
672 <
673 <        atoms[a]->getPos(posA);
674 <        atoms[b]->getPos(posB);
675 <
676 <        for (j = 0; j < 3; j++)
677 <          rab[j] = posA[j] - posB[j];
678 <
679 <        info->wrapVector(rab);
680 <
681 <        rma = 1.0 / atoms[a]->getMass();
682 <        rmb = 1.0 / atoms[b]->getMass();
683 <
684 <        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
685 <
686 <        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
687 <
688 <        if (fabs(gab) > tol){
689 <          dx = rab[0] * gab;
690 <          dy = rab[1] * gab;
691 <          dz = rab[2] * gab;
692 <
693 <          velA[0] += rma * dx;
694 <          velA[1] += rma * dy;
695 <          velA[2] += rma * dz;
696 <
697 <          atoms[a]->setVel(velA);
698 <
699 <          velB[0] -= rmb * dx;
700 <          velB[1] -= rmb * dy;
701 <          velB[2] -= rmb * dz;
702 <
703 <          atoms[b]->setVel(velB);
704 <
705 <          moving[a] = 1;
706 <          moving[b] = 1;
707 <          done = 0;
708 <        }
709 <      }
710 <    }
711 <
712 <    for (i = 0; i < nAtoms; i++){
713 <      moved[i] = moving[i];
714 <      moving[i] = 0;
715 <    }
716 <
717 <    iteration++;
718 <  }
719 <
720 <  if (!done){
721 <    sprintf(painCave.errMsg,
722 <            "Constraint failure in constrainB, too many iterations: %d\n",
723 <            iteration);
724 <    painCave.isFatal = 1;
725 <    simError();
726 <  }
727 < }
728 <
729 < template<typename T> void Integrator<T>::rotationPropagation
730 < ( StuntDouble* sd, double ji[3] ){
731 <
732 <  double angle;
733 <  double A[3][3], I[3][3];
734 <  int i, j, k;
735 <
736 <  // use the angular velocities to propagate the rotation matrix a
737 <  // full time step
738 <
739 <  sd->getA(A);
740 <  sd->getI(I);
741 <
742 <  if (sd->isLinear()) {
743 <
744 <    i = sd->linearAxis();
745 <    j = (i+1)%3;
746 <    k = (i+2)%3;
747 <
748 <    angle = dt2 * ji[j] / I[j][j];
749 <    this->rotate( k, i, angle, ji, A );
750 <
751 <    angle = dt * ji[k] / I[k][k];
752 <    this->rotate( i, j, angle, ji, A);
753 <
754 <    angle = dt2 * ji[j] / I[j][j];
755 <    this->rotate( k, i, angle, ji, A );
756 <
757 <  } else {
758 <    // rotate about the x-axis
759 <    angle = dt2 * ji[0] / I[0][0];
760 <    this->rotate( 1, 2, angle, ji, A );
138 >  Integrator::~Integrator(){
139 >    delete forceMan_;
140 >    delete velocitizer_;
141 >    delete rnemd_;
142      
143 <    // rotate about the y-axis
144 <    angle = dt2 * ji[1] / I[1][1];
764 <    this->rotate( 2, 0, angle, ji, A );
765 <    
766 <    // rotate about the z-axis
767 <    angle = dt * ji[2] / I[2][2];
768 <    sd->addZangle(angle);
769 <    this->rotate( 0, 1, angle, ji, A);
770 <    
771 <    // rotate about the y-axis
772 <    angle = dt2 * ji[1] / I[1][1];
773 <    this->rotate( 2, 0, angle, ji, A );
774 <    
775 <    // rotate about the x-axis
776 <    angle = dt2 * ji[0] / I[0][0];
777 <    this->rotate( 1, 2, angle, ji, A );
778 <    
143 >    delete dumpWriter;
144 >    delete statWriter;
145    }
780  sd->setA( A  );
781 }
146  
783 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
784                                                double angle, double ji[3],
785                                                double A[3][3]){
786  int i, j, k;
787  double sinAngle;
788  double cosAngle;
789  double angleSqr;
790  double angleSqrOver4;
791  double top, bottom;
792  double rot[3][3];
793  double tempA[3][3];
794  double tempJ[3];
147  
796  // initialize the tempA
797
798  for (i = 0; i < 3; i++){
799    for (j = 0; j < 3; j++){
800      tempA[j][i] = A[i][j];
801    }
802  }
803
804  // initialize the tempJ
805
806  for (i = 0; i < 3; i++)
807    tempJ[i] = ji[i];
808
809  // initalize rot as a unit matrix
810
811  rot[0][0] = 1.0;
812  rot[0][1] = 0.0;
813  rot[0][2] = 0.0;
814
815  rot[1][0] = 0.0;
816  rot[1][1] = 1.0;
817  rot[1][2] = 0.0;
818
819  rot[2][0] = 0.0;
820  rot[2][1] = 0.0;
821  rot[2][2] = 1.0;
822
823  // use a small angle aproximation for sin and cosine
824
825  angleSqr = angle * angle;
826  angleSqrOver4 = angleSqr / 4.0;
827  top = 1.0 - angleSqrOver4;
828  bottom = 1.0 + angleSqrOver4;
829
830  cosAngle = top / bottom;
831  sinAngle = angle / bottom;
832
833  rot[axes1][axes1] = cosAngle;
834  rot[axes2][axes2] = cosAngle;
835
836  rot[axes1][axes2] = sinAngle;
837  rot[axes2][axes1] = -sinAngle;
838
839  // rotate the momentum acoording to: ji[] = rot[][] * ji[]
840
841  for (i = 0; i < 3; i++){
842    ji[i] = 0.0;
843    for (k = 0; k < 3; k++){
844      ji[i] += rot[i][k] * tempJ[k];
845    }
846  }
847
848  // rotate the Rotation matrix acording to:
849  //            A[][] = A[][] * transpose(rot[][])
850
851
852  // NOte for as yet unknown reason, we are performing the
853  // calculation as:
854  //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
855
856  for (i = 0; i < 3; i++){
857    for (j = 0; j < 3; j++){
858      A[j][i] = 0.0;
859      for (k = 0; k < 3; k++){
860        A[j][i] += tempA[i][k] * rot[j][k];
861      }
862    }
863  }
148   }
149  
866 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
867  myFF->doForces(calcPot, calcStress);
868 }
869
870 template<typename T> void Integrator<T>::thermalize(){
871  tStats->velocitize();
872 }
873
874 template<typename T> double Integrator<T>::getConservedQuantity(void){
875  return tStats->getTotalE();
876 }
877 template<typename T> string Integrator<T>::getAdditionalParameters(void){
878  //By default, return a null string
879  //The reason we use string instead of char* is that if we use char*, we will
880  //return a pointer point to local variable which might cause problem
881  return string();
882 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines