ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/Integrator.cpp
(Generate patch)

Comparing trunk/src/integrators/Integrator.cpp (file contents):
Revision 224 by chrisfen, Wed Nov 24 18:06:14 2004 UTC vs.
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC

# Line 1 | Line 1
1 < #include <iostream>
2 < #include <stdlib.h>
3 < #include <math.h>
4 < #ifdef IS_MPI
5 < #include "brains/mpiSimulation.hpp"
6 < #include <unistd.h>
7 < #endif //is_mpi
8 <
9 < #ifdef PROFILE
10 < #include "profiling/mdProfile.hpp"
11 < #endif // profile
12 <
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > #include "brains/Snapshot.hpp"
43   #include "integrators/Integrator.hpp"
44   #include "utils/simError.h"
45 + namespace OpenMD {
46 +  Integrator::Integrator(SimInfo* info)
47 +    : info_(info), forceMan_(NULL) , needPotential(false), needStress(false),
48 +      needReset(false), velocitizer_(NULL), needVelocityScaling(false),
49 +      rnemd_(NULL), useRNEMD(false),
50 +      dumpWriter(NULL), statWriter(NULL), thermo(info),
51 +      currentSnapshot_(info->getSnapshotManager()->getCurrentSnapshot()) {
52  
53 +      simParams = info->getSimParams();
54  
55 < template<typename T> Integrator<T>::Integrator(SimInfo* theInfo,
56 <                                               ForceFields* the_ff){
57 <  info = theInfo;
58 <  myFF = the_ff;
59 <  isFirst = 1;
60 <
61 <  molecules = info->molecules;
24 <  nMols = info->n_mol;
25 <
26 <  // give a little love back to the SimInfo object
27 <
28 <  if (info->the_integrator != NULL){
29 <    delete info->the_integrator;
30 <  }
31 <
32 <  nAtoms = info->n_atoms;
33 <  integrableObjects = info->integrableObjects;
34 <
35 <
36 <  // check for constraints
37 <
38 <  constrainedA = NULL;
39 <  constrainedB = NULL;
40 <  constrainedDsqr = NULL;
41 <  moving = NULL;
42 <  moved = NULL;
43 <  oldPos = NULL;
44 <
45 <  nConstrained = 0;
46 <
47 <  checkConstraints();
48 <
49 < }
50 <
51 < template<typename T> Integrator<T>::~Integrator(){
52 <
53 <  if (nConstrained){
54 <    delete[] constrainedA;
55 <    delete[] constrainedB;
56 <    delete[] constrainedDsqr;
57 <    delete[] moving;
58 <    delete[] moved;
59 <    delete[] oldPos;
60 <  }
61 <
62 < }
63 <
64 <
65 < template<typename T> void Integrator<T>::checkConstraints(void){
66 <  isConstrained = 0;
67 <
68 <  Constraint* temp_con;
69 <  Constraint* dummy_plug;
70 <  temp_con = new Constraint[info->n_SRI];
71 <  nConstrained = 0;
72 <  int constrained = 0;
73 <
74 <  SRI** theArray;
75 <  for (int i = 0; i < nMols; i++){
76 <
77 <          theArray = (SRI * *) molecules[i].getMyBonds();
78 <    for (int j = 0; j < molecules[i].getNBonds(); j++){
79 <      constrained = theArray[j]->is_constrained();
80 <
81 <      if (constrained){
82 <        dummy_plug = theArray[j]->get_constraint();
83 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
84 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
85 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
86 <
87 <        nConstrained++;
88 <        constrained = 0;
55 >      if (simParams->haveDt()) {
56 >        dt = simParams->getDt();
57 >      } else {
58 >        sprintf(painCave.errMsg,
59 >                "Integrator Error: dt is not set\n");
60 >        painCave.isFatal = 1;
61 >        simError();
62        }
63 <    }
63 >    
64 >      if (simParams->haveRunTime()) {
65 >        runTime = simParams->getRunTime();
66 >      } else {
67 >        sprintf(painCave.errMsg,
68 >                "Integrator Error: runTime is not set\n");
69 >        painCave.isFatal = 1;
70 >        simError();
71 >      }
72 >      // set the status, sample, and thermal kick times
73 >      if (simParams->haveSampleTime()){
74 >        sampleTime = simParams->getSampleTime();
75 >        statusTime = sampleTime;
76 >      } else{
77 >        sampleTime = simParams->getRunTime();
78 >        statusTime = sampleTime;
79 >      }
80  
81 <    theArray = (SRI * *) molecules[i].getMyBends();
82 <    for (int j = 0; j < molecules[i].getNBends(); j++){
94 <      constrained = theArray[j]->is_constrained();
95 <
96 <      if (constrained){
97 <        dummy_plug = theArray[j]->get_constraint();
98 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
99 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
100 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
101 <
102 <        nConstrained++;
103 <        constrained = 0;
81 >      if (simParams->haveStatusTime()){
82 >        statusTime = simParams->getStatusTime();
83        }
105    }
84  
85 <    theArray = (SRI * *) molecules[i].getMyTorsions();
86 <    for (int j = 0; j < molecules[i].getNTorsions(); j++){
87 <      constrained = theArray[j]->is_constrained();
88 <
111 <      if (constrained){
112 <        dummy_plug = theArray[j]->get_constraint();
113 <        temp_con[nConstrained].set_a(dummy_plug->get_a());
114 <        temp_con[nConstrained].set_b(dummy_plug->get_b());
115 <        temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr());
116 <
117 <        nConstrained++;
118 <        constrained = 0;
85 >      if (simParams->haveThermalTime()){
86 >        thermalTime = simParams->getThermalTime();
87 >      } else {
88 >        thermalTime = simParams->getRunTime();
89        }
120    }
121  }
90  
91 <
92 <  if (nConstrained > 0){
125 <    isConstrained = 1;
126 <
127 <    if (constrainedA != NULL)
128 <      delete[] constrainedA;
129 <    if (constrainedB != NULL)
130 <      delete[] constrainedB;
131 <    if (constrainedDsqr != NULL)
132 <      delete[] constrainedDsqr;
133 <
134 <    constrainedA = new int[nConstrained];
135 <    constrainedB = new int[nConstrained];
136 <    constrainedDsqr = new double[nConstrained];
137 <
138 <    for (int i = 0; i < nConstrained; i++){
139 <      constrainedA[i] = temp_con[i].get_a();
140 <      constrainedB[i] = temp_con[i].get_b();
141 <      constrainedDsqr[i] = temp_con[i].get_dsqr();
142 <    }
143 <
144 <
145 <    // save oldAtoms to check for lode balancing later on.
146 <
147 <    oldAtoms = nAtoms;
148 <
149 <    moving = new int[nAtoms];
150 <    moved = new int[nAtoms];
151 <
152 <    oldPos = new double[nAtoms * 3];
153 <  }
154 <
155 <  delete[] temp_con;
156 < }
157 <
158 <
159 < template<typename T> void Integrator<T>::integrate(void){
160 <
161 <  double runTime = info->run_time;
162 <  double sampleTime = info->sampleTime;
163 <  double statusTime = info->statusTime;
164 <  double thermalTime = info->thermalTime;
165 <  double resetTime = info->resetTime;
166 <
167 <  double difference;
168 <  double currSample;
169 <  double currThermal;
170 <  double currStatus;
171 <  double currReset;
172 <
173 <  int calcPot, calcStress;
174 <  int i;
175 <  int localIndex;
176 <
177 < #ifdef IS_MPI
178 <  int which_node;
179 < #endif // is_mpi
180 <  
181 <  vector<StuntDouble*> particles;
182 <  string inAngle;
183 <
184 <  tStats = new Thermo(info);
185 <  statOut = new StatWriter(info);
186 <  dumpOut = new DumpWriter(info);
187 <
188 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
189 <    restOut = new RestraintWriter(info);
190 <    initRestraints = new RestraintReader(info);
191 <  }
192 <
193 <  atoms = info->atoms;
194 <
195 <  dt = info->dt;
196 <  dt2 = 0.5 * dt;
197 <
198 <  readyCheck();
199 <
200 <  // remove center of mass drift velocity (in case we passed in a configuration
201 <  // that was drifting
202 <  tStats->removeCOMdrift();
203 <
204 <  // initialize the retraints if necessary
205 <  if (info->useSolidThermInt && !info->useLiquidThermInt) {
206 <    initRestraints->zeroZangle();
207 <    inAngle = info->zAngleName + "_in";
208 <    initRestraints->readZangle(inAngle.c_str());
209 <    initRestraints->readIdealCrystal();
210 <  }
211 <
212 <  // initialize the forces before the first step
213 <  calcForce(1, 1);
214 <
215 <  //execute constraint algorithm to make sure at the very beginning the system is constrained  
216 <  if(nConstrained){
217 <    preMove();
218 <    constrainA();
219 <    calcForce(1, 1);
220 <    constrainB();
221 <  }
222 <
223 <  if (info->setTemp){
224 <    thermalize();
225 <  }
226 <
227 <  calcPot     = 0;
228 <  calcStress  = 0;
229 <  currSample  = sampleTime + info->getTime();
230 <  currThermal = thermalTime+ info->getTime();
231 <  currStatus  = statusTime + info->getTime();
232 <  currReset   = resetTime  + info->getTime();
233 <
234 <  dumpOut->writeDump(info->getTime());
235 <  statOut->writeStat(info->getTime());
236 <  if (info->useSolidThermInt && !info->useLiquidThermInt)
237 <    restOut->writeZangle(info->getTime());
238 <
239 < #ifdef IS_MPI
240 <  strcpy(checkPointMsg, "The integrator is ready to go.");
241 <  MPIcheckPoint();
242 < #endif // is_mpi
243 <
244 <  while (info->getTime() < runTime && !stopIntegrator()){
245 <    difference = info->getTime() + dt - currStatus;
246 <    if (difference > 0 || fabs(difference) < 1e-4 ){
247 <      calcPot = 1;
248 <      calcStress = 1;
249 <    }
250 <
251 < #ifdef PROFILE
252 <    startProfile( pro1 );
253 < #endif
254 <    
255 <    integrateStep(calcPot, calcStress);
256 <
257 < #ifdef PROFILE
258 <    endProfile( pro1 );
259 <
260 <    startProfile( pro2 );
261 < #endif // profile
262 <
263 <    info->incrTime(dt);
264 <
265 <    if (info->setTemp){
266 <      if (info->getTime() >= currThermal){
267 <        thermalize();
268 <        currThermal += thermalTime;
91 >      if (!simParams->getUseInitalTime()) {
92 >        currentSnapshot_->setTime(0.0);
93        }
270    }
94  
95 <    if (info->getTime() >= currSample){
96 <      dumpOut->writeDump(info->getTime());
97 <      // write a zAng file to coincide with each dump or eor file
275 <      if (info->useSolidThermInt && !info->useLiquidThermInt)
276 <        restOut->writeZangle(info->getTime());
277 <      currSample += sampleTime;
278 <    }
279 <
280 <    if (info->getTime() >= currStatus){
281 <      statOut->writeStat(info->getTime());
282 <      calcPot = 0;
283 <      calcStress = 0;
284 <      currStatus += statusTime;
285 <    }
286 <
287 <    if (info->resetIntegrator){
288 <      if (info->getTime() >= currReset){
289 <        this->resetIntegrator();
290 <        currReset += resetTime;
95 >      if (simParams->haveResetTime()) {
96 >        needReset = true;
97 >        resetTime = simParams->getResetTime();
98        }
99 <    }
99 >      
100 >      // Create a default ForceManager: If the subclass wants to use
101 >      // a different ForceManager, use setForceManager
102 >      forceMan_ = new ForceManager(info);
103      
104 < #ifdef PROFILE
105 <    endProfile( pro2 );
106 < #endif //profile
104 >      // check for the temperature set flag (velocity scaling)      
105 >      if (simParams->haveTempSet()) {
106 >        needVelocityScaling = simParams->getTempSet();
107  
108 < #ifdef IS_MPI
109 <    strcpy(checkPointMsg, "successfully took a time step.");
110 <    MPIcheckPoint();
111 < #endif // is_mpi
112 <  }
113 <
114 <  dumpOut->writeFinal(info->getTime());
115 <
306 <  // write the file containing the omega values of the final configuration
307 <  if (info->useSolidThermInt && !info->useLiquidThermInt){
308 <    restOut->writeZangle(info->getTime());
309 <    restOut->writeZangle(info->getTime(), inAngle.c_str());
310 <  }
311 <
312 <  delete dumpOut;
313 <  delete statOut;
314 < }
315 <
316 < template<typename T> void Integrator<T>::integrateStep(int calcPot,
317 <                                                       int calcStress){
318 <  // Position full step, and velocity half step
319 <
320 < #ifdef PROFILE
321 <  startProfile(pro3);
322 < #endif //profile
323 <
324 <  //save old state (position, velocity etc)
325 <  preMove();
326 < #ifdef PROFILE
327 <  endProfile(pro3);
328 <
329 <  startProfile(pro4);
330 < #endif // profile
331 <
332 <  moveA();
333 <
334 < #ifdef PROFILE
335 <  endProfile(pro4);
336 <  
337 <  startProfile(pro5);
338 < #endif//profile
339 <
340 <
341 < #ifdef IS_MPI
342 <  strcpy(checkPointMsg, "Succesful moveA\n");
343 <  MPIcheckPoint();
344 < #endif // is_mpi
345 <
346 <  // calc forces
347 <  calcForce(calcPot, calcStress);
348 <
349 < #ifdef IS_MPI
350 <  strcpy(checkPointMsg, "Succesful doForces\n");
351 <  MPIcheckPoint();
352 < #endif // is_mpi
353 <
354 < #ifdef PROFILE
355 <  endProfile( pro5 );
356 <
357 <  startProfile( pro6 );
358 < #endif //profile
359 <
360 <  // finish the velocity  half step
361 <
362 <  moveB();
363 <
364 < #ifdef PROFILE
365 <  endProfile(pro6);
366 < #endif // profile
367 <
368 < #ifdef IS_MPI
369 <  strcpy(checkPointMsg, "Succesful moveB\n");
370 <  MPIcheckPoint();
371 < #endif // is_mpi
372 < }
373 <
374 <
375 < template<typename T> void Integrator<T>::moveA(void){
376 <  size_t i, j;
377 <  DirectionalAtom* dAtom;
378 <  double Tb[3], ji[3];
379 <  double vel[3], pos[3], frc[3];
380 <  double mass;
381 <  double omega;
382 <
383 <  for (i = 0; i < integrableObjects.size() ; i++){
384 <    integrableObjects[i]->getVel(vel);
385 <    integrableObjects[i]->getPos(pos);
386 <    integrableObjects[i]->getFrc(frc);
387 <    //    std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n";
388 <    
389 <    mass = integrableObjects[i]->getMass();
390 <
391 <    for (j = 0; j < 3; j++){
392 <      // velocity half step
393 <      vel[j] += (dt2 * frc[j] / mass) * eConvert;
394 <      // position whole step
395 <      pos[j] += dt * vel[j];
396 <    }
397 <
398 <    integrableObjects[i]->setVel(vel);
399 <    integrableObjects[i]->setPos(pos);
400 <
401 <
402 <    if (integrableObjects[i]->isDirectional()){
403 <
404 <      // get and convert the torque to body frame
405 <
406 <      integrableObjects[i]->getTrq(Tb);
407 <
408 <      //      std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n";
409 <      integrableObjects[i]->lab2Body(Tb);
410 <
411 <      // get the angular momentum, and propagate a half step
412 <
413 <      integrableObjects[i]->getJ(ji);
108 >        if (simParams->haveTargetTemp()) {
109 >          targetScalingTemp = simParams->getTargetTemp();
110 >        }
111 >        else {
112 >          sprintf(painCave.errMsg,
113 >                  "Integrator Error: Target Temperature is not set\n");
114 >          painCave.isFatal = 1;
115 >          simError();
116  
415      for (j = 0; j < 3; j++)
416        ji[j] += (dt2 * Tb[j]) * eConvert;
417
418      this->rotationPropagation( integrableObjects[i], ji );
419
420      integrableObjects[i]->setJ(ji);
421    }
422  }
423
424  if(nConstrained)
425    constrainA();
426 }
427
428
429 template<typename T> void Integrator<T>::moveB(void){
430  int i, j;
431  double Tb[3], ji[3];
432  double vel[3], frc[3];
433  double mass;
434
435  for (i = 0; i < integrableObjects.size(); i++){
436    integrableObjects[i]->getVel(vel);
437    integrableObjects[i]->getFrc(frc);
438
439    mass = integrableObjects[i]->getMass();
440
441    // velocity half step
442    for (j = 0; j < 3; j++)
443      vel[j] += (dt2 * frc[j] / mass) * eConvert;
444
445    integrableObjects[i]->setVel(vel);
446
447    if (integrableObjects[i]->isDirectional()){
448
449      // get and convert the torque to body frame
450
451      integrableObjects[i]->getTrq(Tb);
452      integrableObjects[i]->lab2Body(Tb);
453
454      // get the angular momentum, and propagate a half step
455
456      integrableObjects[i]->getJ(ji);
457
458      for (j = 0; j < 3; j++)
459        ji[j] += (dt2 * Tb[j]) * eConvert;
460
461
462      integrableObjects[i]->setJ(ji);
463    }
464  }
465
466  if(nConstrained)
467    constrainB();
468 }
469
470
471 template<typename T> void Integrator<T>::preMove(void){
472  int i, j;
473  double pos[3];
474
475  if (nConstrained){
476    for (i = 0; i < nAtoms; i++){
477      atoms[i]->getPos(pos);
478
479      for (j = 0; j < 3; j++){
480        oldPos[3 * i + j] = pos[j];
481      }
482    }
483  }
484 }
485
486 template<typename T> void Integrator<T>::constrainA(){
487  int i, j;
488  int done;
489  double posA[3], posB[3];
490  double velA[3], velB[3];
491  double pab[3];
492  double rab[3];
493  int a, b, ax, ay, az, bx, by, bz;
494  double rma, rmb;
495  double dx, dy, dz;
496  double rpab;
497  double rabsq, pabsq, rpabsq;
498  double diffsq;
499  double gab;
500  int iteration;
501
502  for (i = 0; i < nAtoms; i++){
503    moving[i] = 0;
504    moved[i] = 1;
505  }
506
507  iteration = 0;
508  done = 0;
509  while (!done && (iteration < maxIteration)){
510    done = 1;
511    for (i = 0; i < nConstrained; i++){
512      a = constrainedA[i];
513      b = constrainedB[i];
514
515      ax = (a * 3) + 0;
516      ay = (a * 3) + 1;
517      az = (a * 3) + 2;
518
519      bx = (b * 3) + 0;
520      by = (b * 3) + 1;
521      bz = (b * 3) + 2;
522
523      if (moved[a] || moved[b]){
524        atoms[a]->getPos(posA);
525        atoms[b]->getPos(posB);
526
527        for (j = 0; j < 3; j++)
528          pab[j] = posA[j] - posB[j];
529
530        //periodic boundary condition
531
532        info->wrapVector(pab);
533
534        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
535
536        rabsq = constrainedDsqr[i];
537        diffsq = rabsq - pabsq;
538
539        // the original rattle code from alan tidesley
540        if (fabs(diffsq) > (tol * rabsq * 2)){
541          rab[0] = oldPos[ax] - oldPos[bx];
542          rab[1] = oldPos[ay] - oldPos[by];
543          rab[2] = oldPos[az] - oldPos[bz];
544
545          info->wrapVector(rab);
546
547          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
548
549          rpabsq = rpab * rpab;
550
551
552          if (rpabsq < (rabsq * -diffsq)){
553 #ifdef IS_MPI
554            a = atoms[a]->getGlobalIndex();
555            b = atoms[b]->getGlobalIndex();
556 #endif //is_mpi
557            sprintf(painCave.errMsg,
558                    "Constraint failure in constrainA at atom %d and %d.\n", a,
559                    b);
560            painCave.isFatal = 1;
561            simError();
562          }
563
564          rma = 1.0 / atoms[a]->getMass();
565          rmb = 1.0 / atoms[b]->getMass();
566
567          gab = diffsq / (2.0 * (rma + rmb) * rpab);
568
569          dx = rab[0] * gab;
570          dy = rab[1] * gab;
571          dz = rab[2] * gab;
572
573          posA[0] += rma * dx;
574          posA[1] += rma * dy;
575          posA[2] += rma * dz;
576
577          atoms[a]->setPos(posA);
578
579          posB[0] -= rmb * dx;
580          posB[1] -= rmb * dy;
581          posB[2] -= rmb * dz;
582
583          atoms[b]->setPos(posB);
584
585          dx = dx / dt;
586          dy = dy / dt;
587          dz = dz / dt;
588
589          atoms[a]->getVel(velA);
590
591          velA[0] += rma * dx;
592          velA[1] += rma * dy;
593          velA[2] += rma * dz;
594
595          atoms[a]->setVel(velA);
596
597          atoms[b]->getVel(velB);
598
599          velB[0] -= rmb * dx;
600          velB[1] -= rmb * dy;
601          velB[2] -= rmb * dz;
602
603          atoms[b]->setVel(velB);
604
605          moving[a] = 1;
606          moving[b] = 1;
607          done = 0;
117          }
118        }
119 <    }
119 >      
120 >      // Create a default a velocitizer: If the subclass wants to use
121 >      // a different velocitizer, use setVelocitizer
122 >      velocitizer_ = new Velocitizer(info);
123  
124 <    for (i = 0; i < nAtoms; i++){
125 <      moved[i] = moving[i];
126 <      moving[i] = 0;
127 <    }
128 <
129 <    iteration++;
130 <  }
131 <
620 <  if (!done){
621 <    sprintf(painCave.errMsg,
622 <            "Constraint failure in constrainA, too many iterations: %d\n",
623 <            iteration);
624 <    painCave.isFatal = 1;
625 <    simError();
626 <  }
627 <
628 < }
629 <
630 < template<typename T> void Integrator<T>::constrainB(void){
631 <  int i, j;
632 <  int done;
633 <  double posA[3], posB[3];
634 <  double velA[3], velB[3];
635 <  double vxab, vyab, vzab;
636 <  double rab[3];
637 <  int a, b, ax, ay, az, bx, by, bz;
638 <  double rma, rmb;
639 <  double dx, dy, dz;
640 <  double rvab;
641 <  double gab;
642 <  int iteration;
643 <
644 <  for (i = 0; i < nAtoms; i++){
645 <    moving[i] = 0;
646 <    moved[i] = 1;
647 <  }
648 <
649 <  done = 0;
650 <  iteration = 0;
651 <  while (!done && (iteration < maxIteration)){
652 <    done = 1;
653 <
654 <    for (i = 0; i < nConstrained; i++){
655 <      a = constrainedA[i];
656 <      b = constrainedB[i];
657 <
658 <      ax = (a * 3) + 0;
659 <      ay = (a * 3) + 1;
660 <      az = (a * 3) + 2;
661 <
662 <      bx = (b * 3) + 0;
663 <      by = (b * 3) + 1;
664 <      bz = (b * 3) + 2;
665 <
666 <      if (moved[a] || moved[b]){
667 <        atoms[a]->getVel(velA);
668 <        atoms[b]->getVel(velB);
669 <
670 <        vxab = velA[0] - velB[0];
671 <        vyab = velA[1] - velB[1];
672 <        vzab = velA[2] - velB[2];
673 <
674 <        atoms[a]->getPos(posA);
675 <        atoms[b]->getPos(posB);
676 <
677 <        for (j = 0; j < 3; j++)
678 <          rab[j] = posA[j] - posB[j];
679 <
680 <        info->wrapVector(rab);
681 <
682 <        rma = 1.0 / atoms[a]->getMass();
683 <        rmb = 1.0 / atoms[b]->getMass();
684 <
685 <        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
686 <
687 <        gab = -rvab / ((rma + rmb) * constrainedDsqr[i]);
688 <
689 <        if (fabs(gab) > tol){
690 <          dx = rab[0] * gab;
691 <          dy = rab[1] * gab;
692 <          dz = rab[2] * gab;
693 <
694 <          velA[0] += rma * dx;
695 <          velA[1] += rma * dy;
696 <          velA[2] += rma * dz;
697 <
698 <          atoms[a]->setVel(velA);
699 <
700 <          velB[0] -= rmb * dx;
701 <          velB[1] -= rmb * dy;
702 <          velB[2] -= rmb * dz;
703 <
704 <          atoms[b]->setVel(velB);
705 <
706 <          moving[a] = 1;
707 <          moving[b] = 1;
708 <          done = 0;
124 >      if (simParams->haveUseRNEMD()) {
125 >        if (simParams->getUseRNEMD()) {
126 >          // Create a default a RNEMD.
127 >          rnemd_ = new RNEMD(info);
128 >          useRNEMD = simParams->getUseRNEMD();
129 >          if (simParams->haveRNEMD_exchangeTime()) {
130 >            RNEMD_exchangeTime = simParams->getRNEMD_exchangeTime();
131 >          }
132          }
133        }
711    }
712
713    for (i = 0; i < nAtoms; i++){
714      moved[i] = moving[i];
715      moving[i] = 0;
716    }
717
718    iteration++;
134    }
135 <
136 <  if (!done){
137 <    sprintf(painCave.errMsg,
138 <            "Constraint failure in constrainB, too many iterations: %d\n",
139 <            iteration);
725 <    painCave.isFatal = 1;
726 <    simError();
727 <  }
728 < }
729 <
730 < template<typename T> void Integrator<T>::rotationPropagation
731 < ( StuntDouble* sd, double ji[3] ){
732 <
733 <  double angle;
734 <  double A[3][3], I[3][3];
735 <  int i, j, k;
736 <
737 <  // use the angular velocities to propagate the rotation matrix a
738 <  // full time step
739 <
740 <  sd->getA(A);
741 <  sd->getI(I);
742 <
743 <  if (sd->isLinear()) {
744 <
745 <    i = sd->linearAxis();
746 <    j = (i+1)%3;
747 <    k = (i+2)%3;
748 <
749 <    angle = dt2 * ji[j] / I[j][j];
750 <    this->rotate( k, i, angle, ji, A );
751 <
752 <    angle = dt * ji[k] / I[k][k];
753 <    this->rotate( i, j, angle, ji, A);
754 <
755 <    angle = dt2 * ji[j] / I[j][j];
756 <    this->rotate( k, i, angle, ji, A );
757 <
758 <  } else {
759 <    // rotate about the x-axis
760 <    angle = dt2 * ji[0] / I[0][0];
761 <    this->rotate( 1, 2, angle, ji, A );
135 >  
136 >  Integrator::~Integrator(){
137 >    delete forceMan_;
138 >    delete velocitizer_;
139 >    delete rnemd_;
140      
141 <    // rotate about the y-axis
142 <    angle = dt2 * ji[1] / I[1][1];
765 <    this->rotate( 2, 0, angle, ji, A );
766 <    
767 <    // rotate about the z-axis
768 <    angle = dt * ji[2] / I[2][2];
769 <    sd->addZangle(angle);
770 <    this->rotate( 0, 1, angle, ji, A);
771 <    
772 <    // rotate about the y-axis
773 <    angle = dt2 * ji[1] / I[1][1];
774 <    this->rotate( 2, 0, angle, ji, A );
775 <    
776 <    // rotate about the x-axis
777 <    angle = dt2 * ji[0] / I[0][0];
778 <    this->rotate( 1, 2, angle, ji, A );
779 <    
141 >    delete dumpWriter;
142 >    delete statWriter;
143    }
781  sd->setA( A  );
782 }
144  
784 template<typename T> void Integrator<T>::rotate(int axes1, int axes2,
785                                                double angle, double ji[3],
786                                                double A[3][3]){
787  int i, j, k;
788  double sinAngle;
789  double cosAngle;
790  double angleSqr;
791  double angleSqrOver4;
792  double top, bottom;
793  double rot[3][3];
794  double tempA[3][3];
795  double tempJ[3];
145  
797  // initialize the tempA
798
799  for (i = 0; i < 3; i++){
800    for (j = 0; j < 3; j++){
801      tempA[j][i] = A[i][j];
802    }
803  }
804
805  // initialize the tempJ
806
807  for (i = 0; i < 3; i++)
808    tempJ[i] = ji[i];
809
810  // initalize rot as a unit matrix
811
812  rot[0][0] = 1.0;
813  rot[0][1] = 0.0;
814  rot[0][2] = 0.0;
815
816  rot[1][0] = 0.0;
817  rot[1][1] = 1.0;
818  rot[1][2] = 0.0;
819
820  rot[2][0] = 0.0;
821  rot[2][1] = 0.0;
822  rot[2][2] = 1.0;
823
824  // use a small angle aproximation for sin and cosine
825
826  angleSqr = angle * angle;
827  angleSqrOver4 = angleSqr / 4.0;
828  top = 1.0 - angleSqrOver4;
829  bottom = 1.0 + angleSqrOver4;
830
831  cosAngle = top / bottom;
832  sinAngle = angle / bottom;
833
834  rot[axes1][axes1] = cosAngle;
835  rot[axes2][axes2] = cosAngle;
836
837  rot[axes1][axes2] = sinAngle;
838  rot[axes2][axes1] = -sinAngle;
839
840  // rotate the momentum acoording to: ji[] = rot[][] * ji[]
841
842  for (i = 0; i < 3; i++){
843    ji[i] = 0.0;
844    for (k = 0; k < 3; k++){
845      ji[i] += rot[i][k] * tempJ[k];
846    }
847  }
848
849  // rotate the Rotation matrix acording to:
850  //            A[][] = A[][] * transpose(rot[][])
851
852
853  // NOte for as yet unknown reason, we are performing the
854  // calculation as:
855  //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][])
856
857  for (i = 0; i < 3; i++){
858    for (j = 0; j < 3; j++){
859      A[j][i] = 0.0;
860      for (k = 0; k < 3; k++){
861        A[j][i] += tempA[i][k] * rot[j][k];
862      }
863    }
864  }
146   }
147  
867 template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){
868  myFF->doForces(calcPot, calcStress);
869 }
870
871 template<typename T> void Integrator<T>::thermalize(){
872  tStats->velocitize();
873 }
874
875 template<typename T> double Integrator<T>::getConservedQuantity(void){
876  return tStats->getTotalE();
877 }
878 template<typename T> string Integrator<T>::getAdditionalParameters(void){
879  //By default, return a null string
880  //The reason we use string instead of char* is that if we use char*, we will
881  //return a pointer point to local variable which might cause problem
882  return string();
883 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines