49 |
|
|
50 |
|
namespace oopse { |
51 |
|
|
52 |
< |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){ |
52 |
> |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) { |
53 |
|
simParams = info->getSimParams(); |
54 |
|
veloMunge = new Velocitizer(info); |
55 |
|
|
117 |
|
hydroPropMap = parseFrictionFile(simParams->getHydroPropFile()); |
118 |
|
} else { |
119 |
|
sprintf( painCave.errMsg, |
120 |
< |
"HydroPropFile must be set to a file name if Langevin\n" |
121 |
< |
"\tDynamics is specified for rigidBodies which contain more\n" |
122 |
< |
"\tthan one atom. To create a HydroPropFile, run \"Hydro\".\n"); |
120 |
> |
"HydroPropFile must be set to a file name if Langevin Dynamics\n" |
121 |
> |
"\tis specified for rigidBodies which contain more than one atom\n" |
122 |
> |
"\tTo create a HydroPropFile, run the \"Hydro\" program.\n"); |
123 |
|
painCave.severity = OOPSE_ERROR; |
124 |
|
painCave.isFatal = 1; |
125 |
|
simError(); |
198 |
|
} |
199 |
|
} |
200 |
|
} else { |
201 |
< |
int obanum = etab.GetAtomicNum((atom->getType()).c_str()); |
202 |
< |
if (obanum != 0) { |
203 |
< |
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(obanum)); |
201 |
> |
int aNum = etab.GetAtomicNum((atom->getType()).c_str()); |
202 |
> |
if (aNum != 0) { |
203 |
> |
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum)); |
204 |
|
} else { |
205 |
|
sprintf( painCave.errMsg, |
206 |
|
"Could not find atom type in default element.txt\n"); |
249 |
|
Molecule* mol; |
250 |
|
StuntDouble* integrableObject; |
251 |
|
RealType mass; |
252 |
– |
Vector3d vel; |
252 |
|
Vector3d pos; |
253 |
|
Vector3d frc; |
254 |
|
Mat3x3d A; |
260 |
|
bool freezeMolecule; |
261 |
|
int fdf; |
262 |
|
|
264 |
– |
|
265 |
– |
|
263 |
|
fdf = 0; |
264 |
|
|
265 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
291 |
|
fdf += integrableObject->freeze(); |
292 |
|
|
293 |
|
if (doLangevinForces) { |
297 |
– |
vel =integrableObject->getVel(); |
294 |
|
mass = integrableObject->getMass(); |
295 |
|
if (integrableObject->isDirectional()){ |
300 |
– |
Mat3x3d I = integrableObject->getI(); |
301 |
– |
Vector3d angMom = integrableObject->getJ(); |
302 |
– |
A = integrableObject->getA(); |
303 |
– |
Atrans = A.transpose(); |
296 |
|
|
297 |
< |
Vector3d omegaBody; |
306 |
< |
|
307 |
< |
if (integrableObject->isLinear()) { |
308 |
< |
int linearAxis = integrableObject->linearAxis(); |
309 |
< |
int l = (linearAxis +1 )%3; |
310 |
< |
int m = (linearAxis +2 )%3; |
311 |
< |
omegaBody[l] = angMom[l] /I(l, l); |
312 |
< |
omegaBody[m] = angMom[m] /I(m, m); |
313 |
< |
|
314 |
< |
} else { |
315 |
< |
omegaBody[0] = angMom[0] /I(0, 0); |
316 |
< |
omegaBody[1] = angMom[1] /I(1, 1); |
317 |
< |
omegaBody[2] = angMom[2] /I(2, 2); |
318 |
< |
} |
297 |
> |
// preliminaries for directional objects: |
298 |
|
|
299 |
< |
Vector3d omegaLab = Atrans * omegaBody; |
300 |
< |
|
301 |
< |
// apply friction force and torque at center of resistance |
323 |
< |
|
324 |
< |
Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR(); |
325 |
< |
Vector3d vcdLab = vel + cross(omegaLab, rcrLab); |
326 |
< |
|
327 |
< |
Vector3d vcdBody = A * vcdLab; |
328 |
< |
Vector3d frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody); |
299 |
> |
A = integrableObject->getA(); |
300 |
> |
Atrans = A.transpose(); |
301 |
> |
Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR(); |
302 |
|
|
330 |
– |
Vector3d frictionForceLab = Atrans * frictionForceBody; |
331 |
– |
integrableObject->addFrc(frictionForceLab); |
332 |
– |
Vector3d frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody); |
333 |
– |
Vector3d frictionTorqueLab = Atrans * frictionTorqueBody; |
334 |
– |
integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab)); |
335 |
– |
|
303 |
|
//apply random force and torque at center of resistance |
304 |
+ |
|
305 |
|
Vector3d randomForceBody; |
306 |
|
Vector3d randomTorqueBody; |
307 |
|
genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_); |
309 |
|
Vector3d randomTorqueLab = Atrans * randomTorqueBody; |
310 |
|
integrableObject->addFrc(randomForceLab); |
311 |
|
integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab )); |
312 |
+ |
|
313 |
+ |
Mat3x3d I = integrableObject->getI(); |
314 |
+ |
Vector3d omegaBody; |
315 |
+ |
|
316 |
+ |
// What remains contains velocity explicitly, but the velocity required |
317 |
+ |
// is at the full step: v(t + h), while we have initially the velocity |
318 |
+ |
// at the half step: v(t + h/2). We need to iterate to converge the |
319 |
+ |
// friction force and friction torque vectors. |
320 |
+ |
|
321 |
+ |
// this is the velocity at the half-step: |
322 |
+ |
|
323 |
+ |
Vector3d vel =integrableObject->getVel(); |
324 |
+ |
Vector3d angMom = integrableObject->getJ(); |
325 |
+ |
|
326 |
+ |
//estimate velocity at full-step using everything but friction forces: |
327 |
+ |
|
328 |
+ |
frc = integrableObject->getFrc(); |
329 |
+ |
Vector3d velStep = vel + (dt2_ /mass * OOPSEConstant::energyConvert) * frc; |
330 |
+ |
|
331 |
+ |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
332 |
+ |
Vector3d angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * Tb; |
333 |
+ |
|
334 |
+ |
Vector3d omegaLab; |
335 |
+ |
Vector3d vcdLab; |
336 |
+ |
Vector3d vcdBody; |
337 |
+ |
Vector3d frictionForceBody; |
338 |
+ |
Vector3d frictionForceLab(0.0); |
339 |
+ |
Vector3d oldFFL; // used to test for convergence |
340 |
+ |
Vector3d frictionTorqueBody(0.0); |
341 |
+ |
Vector3d oldFTB; // used to test for convergence |
342 |
+ |
Vector3d frictionTorqueLab; |
343 |
+ |
RealType fdot; |
344 |
+ |
RealType tdot; |
345 |
+ |
|
346 |
+ |
//iteration starts here: |
347 |
+ |
|
348 |
+ |
for (int k = 0; k < maxIterNum_; k++) { |
349 |
+ |
|
350 |
+ |
if (integrableObject->isLinear()) { |
351 |
+ |
int linearAxis = integrableObject->linearAxis(); |
352 |
+ |
int l = (linearAxis +1 )%3; |
353 |
+ |
int m = (linearAxis +2 )%3; |
354 |
+ |
omegaBody[l] = angMomStep[l] /I(l, l); |
355 |
+ |
omegaBody[m] = angMomStep[m] /I(m, m); |
356 |
+ |
|
357 |
+ |
} else { |
358 |
+ |
omegaBody[0] = angMomStep[0] /I(0, 0); |
359 |
+ |
omegaBody[1] = angMomStep[1] /I(1, 1); |
360 |
+ |
omegaBody[2] = angMomStep[2] /I(2, 2); |
361 |
+ |
} |
362 |
+ |
|
363 |
+ |
omegaLab = Atrans * omegaBody; |
364 |
+ |
|
365 |
+ |
// apply friction force and torque at center of resistance |
366 |
+ |
|
367 |
+ |
vcdLab = velStep + cross(omegaLab, rcrLab); |
368 |
+ |
vcdBody = A * vcdLab; |
369 |
+ |
frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody); |
370 |
+ |
oldFFL = frictionForceLab; |
371 |
+ |
frictionForceLab = Atrans * frictionForceBody; |
372 |
+ |
oldFTB = frictionTorqueBody; |
373 |
+ |
frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody); |
374 |
+ |
frictionTorqueLab = Atrans * frictionTorqueBody; |
375 |
+ |
|
376 |
+ |
// re-estimate velocities at full-step using friction forces: |
377 |
+ |
|
378 |
+ |
velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForceLab); |
379 |
+ |
angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * (Tb + frictionTorqueBody); |
380 |
+ |
|
381 |
+ |
// check for convergence (if the vectors have converged, fdot and tdot will both be 1.0): |
382 |
+ |
|
383 |
+ |
fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare(); |
384 |
+ |
tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare(); |
385 |
+ |
|
386 |
+ |
if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_) |
387 |
+ |
break; // iteration ends here |
388 |
+ |
} |
389 |
+ |
|
390 |
+ |
integrableObject->addFrc(frictionForceLab); |
391 |
+ |
integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab)); |
392 |
+ |
|
393 |
|
|
394 |
|
} else { |
395 |
|
//spherical atom |
396 |
< |
Vector3d frictionForce = -(hydroProps_[index]->getXitt() * vel); |
396 |
> |
|
397 |
|
Vector3d randomForce; |
398 |
|
Vector3d randomTorque; |
399 |
|
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
400 |
+ |
integrableObject->addFrc(randomForce); |
401 |
+ |
|
402 |
+ |
// What remains contains velocity explicitly, but the velocity required |
403 |
+ |
// is at the full step: v(t + h), while we have initially the velocity |
404 |
+ |
// at the half step: v(t + h/2). We need to iterate to converge the |
405 |
+ |
// friction force vector. |
406 |
+ |
|
407 |
+ |
// this is the velocity at the half-step: |
408 |
|
|
409 |
< |
integrableObject->addFrc(frictionForce+randomForce); |
409 |
> |
Vector3d vel =integrableObject->getVel(); |
410 |
> |
|
411 |
> |
//estimate velocity at full-step using everything but friction forces: |
412 |
> |
|
413 |
> |
frc = integrableObject->getFrc(); |
414 |
> |
Vector3d velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * frc; |
415 |
> |
|
416 |
> |
Vector3d frictionForce(0.0); |
417 |
> |
Vector3d oldFF; // used to test for convergence |
418 |
> |
RealType fdot; |
419 |
> |
|
420 |
> |
//iteration starts here: |
421 |
> |
|
422 |
> |
for (int k = 0; k < maxIterNum_; k++) { |
423 |
> |
|
424 |
> |
oldFF = frictionForce; |
425 |
> |
frictionForce = -hydroProps_[index]->getXitt() * velStep; |
426 |
> |
|
427 |
> |
// re-estimate velocities at full-step using friction forces: |
428 |
> |
|
429 |
> |
velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForce); |
430 |
> |
|
431 |
> |
// check for convergence (if the vector has converged, fdot will be 1.0): |
432 |
> |
|
433 |
> |
fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare(); |
434 |
> |
|
435 |
> |
if (fabs(1.0 - fdot) <= forceTolerance_) |
436 |
> |
break; // iteration ends here |
437 |
> |
} |
438 |
> |
|
439 |
> |
integrableObject->addFrc(frictionForce); |
440 |
> |
|
441 |
|
} |
442 |
|
} |
443 |
|
|