ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/LDForceManager.cpp
(Generate patch)

Comparing trunk/src/integrators/LDForceManager.cpp (file contents):
Revision 1120 by chuckv, Fri Feb 2 18:55:21 2007 UTC vs.
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41   #include <fstream>
42   #include <iostream>
43   #include "integrators/LDForceManager.hpp"
44   #include "math/CholeskyDecomposition.hpp"
45 < #include "utils/OOPSEConstant.hpp"
45 > #include "utils/PhysicalConstants.hpp"
46   #include "hydrodynamics/Sphere.hpp"
47   #include "hydrodynamics/Ellipsoid.hpp"
48 < #include "openbabel/mol.hpp"
48 > #include "utils/ElementsTable.hpp"
49  
50 < using namespace OpenBabel;
51 < namespace oopse {
50 > namespace OpenMD {
51  
52 <  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){
52 >  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
53      simParams = info->getSimParams();
54      veloMunge = new Velocitizer(info);
55  
# Line 63 | Line 62 | namespace oopse {
62          sprintf( painCave.errMsg,
63                   "langevinBufferRadius must be specified "
64                   "when useSphericalBoundaryConditions is turned on.\n");
65 <        painCave.severity = OOPSE_ERROR;
65 >        painCave.severity = OPENMD_ERROR;
66          painCave.isFatal = 1;
67          simError();  
68        }
# Line 74 | Line 73 | namespace oopse {
73          sprintf( painCave.errMsg,
74                   "frozenBufferRadius must be specified "
75                   "when useSphericalBoundaryConditions is turned on.\n");
76 <        painCave.severity = OOPSE_ERROR;
76 >        painCave.severity = OPENMD_ERROR;
77          painCave.isFatal = 1;
78          simError();  
79        }
# Line 83 | Line 82 | namespace oopse {
82          sprintf( painCave.errMsg,
83                   "frozenBufferRadius has been set smaller than the "
84                   "langevinBufferRadius.  This is probably an error.\n");
85 <        painCave.severity = OOPSE_WARNING;
85 >        painCave.severity = OPENMD_WARNING;
86          painCave.isFatal = 0;
87          simError();  
88        }
# Line 118 | Line 117 | namespace oopse {
117          hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
118        } else {              
119          sprintf( painCave.errMsg,
120 <                 "HydroPropFile must be set to a file name if Langevin\n"
121 <                 "\tDynamics is specified for rigidBodies which contain more\n"
122 <                 "\tthan one atom.  To create a HydroPropFile, run \"Hydro\".\n");
123 <        painCave.severity = OOPSE_ERROR;
120 >                 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
121 >                 "\tis specified for rigidBodies which contain more than one atom\n"
122 >                 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
123 >        painCave.severity = OPENMD_ERROR;
124          painCave.isFatal = 1;
125          simError();  
126        }      
# Line 138 | Line 137 | namespace oopse {
137            } else {
138              sprintf( painCave.errMsg,
139                       "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
140 <            painCave.severity = OOPSE_ERROR;
140 >            painCave.severity = OPENMD_ERROR;
141              painCave.isFatal = 1;
142              simError();  
143            }        
# Line 153 | Line 152 | namespace oopse {
152               integrableObject != NULL;
153               integrableObject = mol->nextIntegrableObject(j)) {
154            Shape* currShape = NULL;
155 <          if (integrableObject->isDirectionalAtom()) {
156 <            DirectionalAtom* dAtom = static_cast<DirectionalAtom*>(integrableObject);
157 <            AtomType* atomType = dAtom->getAtomType();
155 >
156 >          if (integrableObject->isAtom()){
157 >            Atom* atom = static_cast<Atom*>(integrableObject);
158 >            AtomType* atomType = atom->getAtomType();
159              if (atomType->isGayBerne()) {
160 <              DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
161 <              
160 >              DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);              
161                GenericData* data = dAtomType->getPropertyByName("GayBerne");
162                if (data != NULL) {
163                  GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
# Line 166 | Line 165 | namespace oopse {
165                  if (gayBerneData != NULL) {  
166                    GayBerneParam gayBerneParam = gayBerneData->getData();
167                    currShape = new Ellipsoid(V3Zero,
169                                            gayBerneParam.GB_d / 2.0,
168                                              gayBerneParam.GB_l / 2.0,
169 +                                            gayBerneParam.GB_d / 2.0,
170                                              Mat3x3d::identity());
171                  } else {
172                    sprintf( painCave.errMsg,
173                             "Can not cast GenericData to GayBerneParam\n");
174 <                  painCave.severity = OOPSE_ERROR;
174 >                  painCave.severity = OPENMD_ERROR;
175                    painCave.isFatal = 1;
176                    simError();  
177                  }
178                } else {
179                  sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
180 <                painCave.severity = OOPSE_ERROR;
180 >                painCave.severity = OPENMD_ERROR;
181                  painCave.isFatal = 1;
182                  simError();    
183                }
184 <            }
185 <          } else {
186 <            Atom* atom = static_cast<Atom*>(integrableObject);
187 <            AtomType* atomType = atom->getAtomType();
188 <            if (atomType->isLennardJones()){
189 <              GenericData* data = atomType->getPropertyByName("LennardJones");
190 <              if (data != NULL) {
191 <                LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
192 <                
193 <                if (ljData != NULL) {
194 <                  LJParam ljParam = ljData->getData();
195 <                  currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
184 >            } else {
185 >              if (atomType->isLennardJones()){
186 >                GenericData* data = atomType->getPropertyByName("LennardJones");
187 >                if (data != NULL) {
188 >                  LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
189 >                  if (ljData != NULL) {
190 >                    LJParam ljParam = ljData->getData();
191 >                    currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
192 >                  } else {
193 >                    sprintf( painCave.errMsg,
194 >                             "Can not cast GenericData to LJParam\n");
195 >                    painCave.severity = OPENMD_ERROR;
196 >                    painCave.isFatal = 1;
197 >                    simError();          
198 >                  }      
199 >                }
200 >              } else {
201 >                int aNum = etab.GetAtomicNum((atom->getType()).c_str());
202 >                if (aNum != 0) {
203 >                  currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
204                  } else {
205                    sprintf( painCave.errMsg,
206 <                           "Can not cast GenericData to LJParam\n");
207 <                  painCave.severity = OOPSE_ERROR;
206 >                           "Could not find atom type in default element.txt\n");
207 >                  painCave.severity = OPENMD_ERROR;
208                    painCave.isFatal = 1;
209                    simError();          
210 <                }      
210 >                }
211                }
205            } else {
206              int obanum = etab.GetAtomicNum((atom->getType()).c_str());
207              if (obanum != 0) {
208                currShape = new Sphere(atom->getPos(), etab.GetVdwRad(obanum));
209              } else {
210                sprintf( painCave.errMsg,
211                         "Could not find atom type in default element.txt\n");
212                painCave.severity = OOPSE_ERROR;
213                painCave.isFatal = 1;
214                simError();          
215              }
212              }
213            }
214 +
215 +          if (!simParams->haveTargetTemp()) {
216 +            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
217 +            painCave.isFatal = 1;
218 +            painCave.severity = OPENMD_ERROR;
219 +            simError();
220 +          }
221 +
222 +          if (!simParams->haveViscosity()) {
223 +            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
224 +            painCave.isFatal = 1;
225 +            painCave.severity = OPENMD_ERROR;
226 +            simError();
227 +          }
228 +
229 +
230            HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
231            std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
232            if (iter != hydroPropMap.end())
# Line 227 | Line 239 | namespace oopse {
239          }
240        }
241      }
242 <    variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
242 >    variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt();
243    }  
244  
245    std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
# Line 247 | Line 259 | namespace oopse {
259      return props;
260    }
261    
262 <  void LDForceManager::postCalculation() {
262 >  void LDForceManager::postCalculation(bool needStress){
263      SimInfo::MoleculeIterator i;
264      Molecule::IntegrableObjectIterator  j;
265      Molecule* mol;
266      StuntDouble* integrableObject;
267 <    Vector3d vel;
267 >    RealType mass;
268      Vector3d pos;
269      Vector3d frc;
270      Mat3x3d A;
271      Mat3x3d Atrans;
272      Vector3d Tb;
273      Vector3d ji;
262    RealType mass;
274      unsigned int index = 0;
275      bool doLangevinForces;
276      bool freezeMolecule;
277      int fdf;
267    int nIntegrated;
268    int nFrozen;
278  
279      fdf = 0;
280  
# Line 298 | Line 307 | namespace oopse {
307            fdf += integrableObject->freeze();
308          
309          if (doLangevinForces) {  
310 <          vel =integrableObject->getVel();
310 >          mass = integrableObject->getMass();
311            if (integrableObject->isDirectional()){
312 <            //calculate angular velocity in lab frame
313 <            Mat3x3d I = integrableObject->getI();
314 <            Vector3d angMom = integrableObject->getJ();
306 <            Vector3d omega;
307 <            
308 <            if (integrableObject->isLinear()) {
309 <              int linearAxis = integrableObject->linearAxis();
310 <              int l = (linearAxis +1 )%3;
311 <              int m = (linearAxis +2 )%3;
312 <              omega[l] = angMom[l] /I(l, l);
313 <              omega[m] = angMom[m] /I(m, m);
314 <              
315 <            } else {
316 <              omega[0] = angMom[0] /I(0, 0);
317 <              omega[1] = angMom[1] /I(1, 1);
318 <              omega[2] = angMom[2] /I(2, 2);
319 <            }
320 <            
321 <            //apply friction force and torque at center of resistance
312 >
313 >            // preliminaries for directional objects:
314 >
315              A = integrableObject->getA();
316              Atrans = A.transpose();
317 <            Vector3d rcr = Atrans * hydroProps_[index]->getCOR();  
318 <            Vector3d vcdLab = vel + cross(omega, rcr);
326 <            Vector3d vcdBody = A* vcdLab;
327 <            Vector3d frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omega);
328 <            Vector3d frictionForceLab = Atrans*frictionForceBody;
329 <            integrableObject->addFrc(frictionForceLab);
330 <            Vector3d frictionTorqueBody = - (hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omega);
331 <            Vector3d frictionTorqueLab = Atrans*frictionTorqueBody;
332 <            integrableObject->addTrq(frictionTorqueLab+ cross(rcr, frictionForceLab));
333 <            
317 >            Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();  
318 >
319              //apply random force and torque at center of resistance
320 +
321              Vector3d randomForceBody;
322              Vector3d randomTorqueBody;
323              genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
324 <            Vector3d randomForceLab = Atrans*randomForceBody;
325 <            Vector3d randomTorqueLab = Atrans* randomTorqueBody;
324 >            Vector3d randomForceLab = Atrans * randomForceBody;
325 >            Vector3d randomTorqueLab = Atrans * randomTorqueBody;
326              integrableObject->addFrc(randomForceLab);            
327 <            integrableObject->addTrq(randomTorqueLab + cross(rcr, randomForceLab ));            
327 >            integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));            
328 >
329 >            Mat3x3d I = integrableObject->getI();
330 >            Vector3d omegaBody;
331 >
332 >            // What remains contains velocity explicitly, but the velocity required
333 >            // is at the full step: v(t + h), while we have initially the velocity
334 >            // at the half step: v(t + h/2).  We need to iterate to converge the
335 >            // friction force and friction torque vectors.
336 >
337 >            // this is the velocity at the half-step:
338              
339 +            Vector3d vel =integrableObject->getVel();
340 +            Vector3d angMom = integrableObject->getJ();
341 +
342 +            //estimate velocity at full-step using everything but friction forces:          
343 +
344 +            frc = integrableObject->getFrc();
345 +            Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc;
346 +
347 +            Tb = integrableObject->lab2Body(integrableObject->getTrq());
348 +            Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb;                            
349 +
350 +            Vector3d omegaLab;
351 +            Vector3d vcdLab;
352 +            Vector3d vcdBody;
353 +            Vector3d frictionForceBody;
354 +            Vector3d frictionForceLab(0.0);
355 +            Vector3d oldFFL;  // used to test for convergence
356 +            Vector3d frictionTorqueBody(0.0);
357 +            Vector3d oldFTB;  // used to test for convergence
358 +            Vector3d frictionTorqueLab;
359 +            RealType fdot;
360 +            RealType tdot;
361 +
362 +            //iteration starts here:
363 +
364 +            for (int k = 0; k < maxIterNum_; k++) {
365 +                            
366 +              if (integrableObject->isLinear()) {
367 +                int linearAxis = integrableObject->linearAxis();
368 +                int l = (linearAxis +1 )%3;
369 +                int m = (linearAxis +2 )%3;
370 +                omegaBody[l] = angMomStep[l] /I(l, l);
371 +                omegaBody[m] = angMomStep[m] /I(m, m);
372 +                
373 +              } else {
374 +                omegaBody[0] = angMomStep[0] /I(0, 0);
375 +                omegaBody[1] = angMomStep[1] /I(1, 1);
376 +                omegaBody[2] = angMomStep[2] /I(2, 2);
377 +              }
378 +              
379 +              omegaLab = Atrans * omegaBody;
380 +              
381 +              // apply friction force and torque at center of resistance
382 +              
383 +              vcdLab = velStep + cross(omegaLab, rcrLab);      
384 +              vcdBody = A * vcdLab;
385 +              frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
386 +              oldFFL = frictionForceLab;
387 +              frictionForceLab = Atrans * frictionForceBody;
388 +              oldFTB = frictionTorqueBody;
389 +              frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
390 +              frictionTorqueLab = Atrans * frictionTorqueBody;
391 +              
392 +              // re-estimate velocities at full-step using friction forces:
393 +              
394 +              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab);
395 +              angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody);
396 +
397 +              // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
398 +              
399 +              fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
400 +              tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
401 +              
402 +              if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
403 +                break; // iteration ends here
404 +            }
405 +
406 +            integrableObject->addFrc(frictionForceLab);
407 +            integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
408 +
409 +            
410            } else {
411              //spherical atom
412 <            Vector3d frictionForce = -(hydroProps_[index]->getXitt() * vel);
412 >
413              Vector3d randomForce;
414              Vector3d randomTorque;
415              genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
416 +            integrableObject->addFrc(randomForce);            
417 +
418 +            // What remains contains velocity explicitly, but the velocity required
419 +            // is at the full step: v(t + h), while we have initially the velocity
420 +            // at the half step: v(t + h/2).  We need to iterate to converge the
421 +            // friction force vector.
422 +
423 +            // this is the velocity at the half-step:
424              
425 <            integrableObject->addFrc(frictionForce+randomForce);            
425 >            Vector3d vel =integrableObject->getVel();
426 >
427 >            //estimate velocity at full-step using everything but friction forces:          
428 >
429 >            frc = integrableObject->getFrc();
430 >            Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc;
431 >
432 >            Vector3d frictionForce(0.0);
433 >            Vector3d oldFF;  // used to test for convergence
434 >            RealType fdot;
435 >
436 >            //iteration starts here:
437 >
438 >            for (int k = 0; k < maxIterNum_; k++) {
439 >
440 >              oldFF = frictionForce;                            
441 >              frictionForce = -hydroProps_[index]->getXitt() * velStep;
442 >
443 >              // re-estimate velocities at full-step using friction forces:
444 >              
445 >              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce);
446 >
447 >              // check for convergence (if the vector has converged, fdot will be 1.0):
448 >              
449 >              fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
450 >              
451 >              if (fabs(1.0 - fdot) <= forceTolerance_)
452 >                break; // iteration ends here
453 >            }
454 >
455 >            integrableObject->addFrc(frictionForce);
456 >
457            }
458          }
459            
# Line 362 | Line 468 | namespace oopse {
468      if(!simParams->getUsePeriodicBoundaryConditions())
469        veloMunge->removeAngularDrift();
470  
471 <    ForceManager::postCalculation();  
471 >    ForceManager::postCalculation(needStress);  
472    }
473  
474   void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
# Line 370 | Line 476 | void LDForceManager::genRandomForceAndTorque(Vector3d&
476  
477      Vector<RealType, 6> Z;
478      Vector<RealType, 6> generalForce;
373
479          
480      Z[0] = randNumGen_.randNorm(0, variance);
481      Z[1] = randNumGen_.randNorm(0, variance);
# Line 379 | Line 484 | void LDForceManager::genRandomForceAndTorque(Vector3d&
484      Z[4] = randNumGen_.randNorm(0, variance);
485      Z[5] = randNumGen_.randNorm(0, variance);
486      
382
487      generalForce = hydroProps_[index]->getS()*Z;
488      
489      force[0] = generalForce[0];
# Line 389 | Line 493 | void LDForceManager::genRandomForceAndTorque(Vector3d&
493      torque[1] = generalForce[4];
494      torque[2] = generalForce[5];
495      
496 < }
496 > }
497  
498   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines