ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/LDForceManager.cpp
(Generate patch)

Comparing:
trunk/src/integrators/LDForceManager.cpp (file contents), Revision 945 by gezelter, Tue Apr 25 02:09:01 2006 UTC vs.
branches/development/src/integrators/LDForceManager.cpp (file contents), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41   #include <fstream>
42 + #include <iostream>
43   #include "integrators/LDForceManager.hpp"
44   #include "math/CholeskyDecomposition.hpp"
45 < #include "utils/OOPSEConstant.hpp"
46 < namespace oopse {
45 > #include "utils/PhysicalConstants.hpp"
46 > #include "hydrodynamics/Sphere.hpp"
47 > #include "hydrodynamics/Ellipsoid.hpp"
48 > #include "utils/ElementsTable.hpp"
49  
50 <  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){
51 <    Globals* simParams = info->getSimParams();
52 <    
53 <    std::map<std::string, HydroProp> hydroPropMap;
54 <    if (simParams->haveHydroPropFile()) {
55 <      hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
53 <    } else {
54 <      sprintf( painCave.errMsg,
55 <               "HydroPropFile must be set if Langevin Dynamics is specified.\n");
56 <      painCave.severity = OOPSE_ERROR;
57 <      painCave.isFatal = 1;
58 <      simError();  
59 <    }
60 <    
50 > namespace OpenMD {
51 >
52 >  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
53 >    simParams = info->getSimParams();
54 >    veloMunge = new Velocitizer(info);
55 >
56      sphericalBoundaryConditions_ = false;
57      if (simParams->getUseSphericalBoundaryConditions()) {
58        sphericalBoundaryConditions_ = true;
# Line 67 | Line 62 | namespace oopse {
62          sprintf( painCave.errMsg,
63                   "langevinBufferRadius must be specified "
64                   "when useSphericalBoundaryConditions is turned on.\n");
65 <        painCave.severity = OOPSE_ERROR;
65 >        painCave.severity = OPENMD_ERROR;
66          painCave.isFatal = 1;
67          simError();  
68        }
# Line 78 | Line 73 | namespace oopse {
73          sprintf( painCave.errMsg,
74                   "frozenBufferRadius must be specified "
75                   "when useSphericalBoundaryConditions is turned on.\n");
76 <        painCave.severity = OOPSE_ERROR;
76 >        painCave.severity = OPENMD_ERROR;
77          painCave.isFatal = 1;
78          simError();  
79        }
# Line 87 | Line 82 | namespace oopse {
82          sprintf( painCave.errMsg,
83                   "frozenBufferRadius has been set smaller than the "
84                   "langevinBufferRadius.  This is probably an error.\n");
85 <        painCave.severity = OOPSE_WARNING;
85 >        painCave.severity = OPENMD_WARNING;
86          painCave.isFatal = 0;
87          simError();  
88        }
89      }
90 <      
91 <    SimInfo::MoleculeIterator i;
92 <    Molecule::IntegrableObjectIterator  j;
90 >
91 >    // Build the hydroProp map:
92 >    std::map<std::string, HydroProp*> hydroPropMap;
93 >
94      Molecule* mol;
95      StuntDouble* integrableObject;
96 <    for (mol = info->beginMolecule(i); mol != NULL; mol = info->nextMolecule(i)) {
97 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
96 >    SimInfo::MoleculeIterator i;
97 >    Molecule::IntegrableObjectIterator  j;              
98 >    bool needHydroPropFile = false;
99 >    
100 >    for (mol = info->beginMolecule(i); mol != NULL;
101 >         mol = info->nextMolecule(i)) {
102 >      for (integrableObject = mol->beginIntegrableObject(j);
103 >           integrableObject != NULL;
104             integrableObject = mol->nextIntegrableObject(j)) {
105 <        std::map<std::string, HydroProp>::iterator iter = hydroPropMap.find(integrableObject->getType());
106 <        if (iter != hydroPropMap.end()) {
107 <          hydroProps_.push_back(iter->second);
108 <        } else {
107 <          sprintf( painCave.errMsg,
108 <                   "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
109 <          painCave.severity = OOPSE_ERROR;
110 <          painCave.isFatal = 1;
111 <          simError();  
105 >        
106 >        if (integrableObject->isRigidBody()) {
107 >          RigidBody* rb = static_cast<RigidBody*>(integrableObject);
108 >          if (rb->getNumAtoms() > 1) needHydroPropFile = true;
109          }
110          
111        }
112      }
113 <    variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
114 <  }
115 <  std::map<std::string, HydroProp> LDForceManager::parseFrictionFile(const std::string& filename) {
116 <    std::map<std::string, HydroProp> props;
113 >        
114 >
115 >    if (needHydroPropFile) {              
116 >      if (simParams->haveHydroPropFile()) {
117 >        hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
118 >      } else {              
119 >        sprintf( painCave.errMsg,
120 >                 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
121 >                 "\tis specified for rigidBodies which contain more than one atom\n"
122 >                 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
123 >        painCave.severity = OPENMD_ERROR;
124 >        painCave.isFatal = 1;
125 >        simError();  
126 >      }      
127 >
128 >      for (mol = info->beginMolecule(i); mol != NULL;
129 >           mol = info->nextMolecule(i)) {
130 >        for (integrableObject = mol->beginIntegrableObject(j);
131 >             integrableObject != NULL;
132 >             integrableObject = mol->nextIntegrableObject(j)) {
133 >
134 >          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
135 >          if (iter != hydroPropMap.end()) {
136 >            hydroProps_.push_back(iter->second);
137 >          } else {
138 >            sprintf( painCave.errMsg,
139 >                     "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
140 >            painCave.severity = OPENMD_ERROR;
141 >            painCave.isFatal = 1;
142 >            simError();  
143 >          }        
144 >        }
145 >      }
146 >    } else {
147 >      
148 >      std::map<std::string, HydroProp*> hydroPropMap;
149 >      for (mol = info->beginMolecule(i); mol != NULL;
150 >           mol = info->nextMolecule(i)) {
151 >        for (integrableObject = mol->beginIntegrableObject(j);
152 >             integrableObject != NULL;
153 >             integrableObject = mol->nextIntegrableObject(j)) {
154 >          Shape* currShape = NULL;
155 >
156 >          if (integrableObject->isAtom()){
157 >            Atom* atom = static_cast<Atom*>(integrableObject);
158 >            AtomType* atomType = atom->getAtomType();
159 >            if (atomType->isGayBerne()) {
160 >              DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);              
161 >              GenericData* data = dAtomType->getPropertyByName("GayBerne");
162 >              if (data != NULL) {
163 >                GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
164 >                
165 >                if (gayBerneData != NULL) {  
166 >                  GayBerneParam gayBerneParam = gayBerneData->getData();
167 >                  currShape = new Ellipsoid(V3Zero,
168 >                                            gayBerneParam.GB_l / 2.0,
169 >                                            gayBerneParam.GB_d / 2.0,
170 >                                            Mat3x3d::identity());
171 >                } else {
172 >                  sprintf( painCave.errMsg,
173 >                           "Can not cast GenericData to GayBerneParam\n");
174 >                  painCave.severity = OPENMD_ERROR;
175 >                  painCave.isFatal = 1;
176 >                  simError();  
177 >                }
178 >              } else {
179 >                sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
180 >                painCave.severity = OPENMD_ERROR;
181 >                painCave.isFatal = 1;
182 >                simError();    
183 >              }
184 >            } else {
185 >              if (atomType->isLennardJones()){
186 >                GenericData* data = atomType->getPropertyByName("LennardJones");
187 >                if (data != NULL) {
188 >                  LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
189 >                  if (ljData != NULL) {
190 >                    LJParam ljParam = ljData->getData();
191 >                    currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
192 >                  } else {
193 >                    sprintf( painCave.errMsg,
194 >                             "Can not cast GenericData to LJParam\n");
195 >                    painCave.severity = OPENMD_ERROR;
196 >                    painCave.isFatal = 1;
197 >                    simError();          
198 >                  }      
199 >                }
200 >              } else {
201 >                int aNum = etab.GetAtomicNum((atom->getType()).c_str());
202 >                if (aNum != 0) {
203 >                  currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
204 >                } else {
205 >                  sprintf( painCave.errMsg,
206 >                           "Could not find atom type in default element.txt\n");
207 >                  painCave.severity = OPENMD_ERROR;
208 >                  painCave.isFatal = 1;
209 >                  simError();          
210 >                }
211 >              }
212 >            }
213 >          }
214 >
215 >          if (!simParams->haveTargetTemp()) {
216 >            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
217 >            painCave.isFatal = 1;
218 >            painCave.severity = OPENMD_ERROR;
219 >            simError();
220 >          }
221 >
222 >          if (!simParams->haveViscosity()) {
223 >            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
224 >            painCave.isFatal = 1;
225 >            painCave.severity = OPENMD_ERROR;
226 >            simError();
227 >          }
228 >
229 >
230 >          HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
231 >          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
232 >          if (iter != hydroPropMap.end())
233 >            hydroProps_.push_back(iter->second);
234 >          else {
235 >            currHydroProp->complete();
236 >            hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
237 >            hydroProps_.push_back(currHydroProp);
238 >          }
239 >        }
240 >      }
241 >    }
242 >    variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt();
243 >  }  
244 >
245 >  std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
246 >    std::map<std::string, HydroProp*> props;
247      std::ifstream ifs(filename.c_str());
248      if (ifs.is_open()) {
249        
# Line 125 | Line 252 | namespace oopse {
252      const unsigned int BufferSize = 65535;
253      char buffer[BufferSize];  
254      while (ifs.getline(buffer, BufferSize)) {
255 <      StringTokenizer tokenizer(buffer);
256 <      HydroProp currProp;
130 <      if (tokenizer.countTokens() >= 40) {
131 <        std::string atomName = tokenizer.nextToken();
132 <        currProp.cor[0] = tokenizer.nextTokenAsDouble();
133 <        currProp.cor[1] = tokenizer.nextTokenAsDouble();
134 <        currProp.cor[2] = tokenizer.nextTokenAsDouble();
135 <        
136 <        currProp.Xirtt(0,0) = tokenizer.nextTokenAsDouble();
137 <        currProp.Xirtt(0,1) = tokenizer.nextTokenAsDouble();
138 <        currProp.Xirtt(0,2) = tokenizer.nextTokenAsDouble();
139 <        currProp.Xirtt(1,0) = tokenizer.nextTokenAsDouble();
140 <        currProp.Xirtt(1,1) = tokenizer.nextTokenAsDouble();
141 <        currProp.Xirtt(1,2) = tokenizer.nextTokenAsDouble();
142 <        currProp.Xirtt(2,0) = tokenizer.nextTokenAsDouble();
143 <        currProp.Xirtt(2,1) = tokenizer.nextTokenAsDouble();
144 <        currProp.Xirtt(2,2) = tokenizer.nextTokenAsDouble();
145 <        
146 <        currProp.Xirrt(0,0) = tokenizer.nextTokenAsDouble();
147 <        currProp.Xirrt(0,1) = tokenizer.nextTokenAsDouble();
148 <        currProp.Xirrt(0,2) = tokenizer.nextTokenAsDouble();
149 <        currProp.Xirrt(1,0) = tokenizer.nextTokenAsDouble();
150 <        currProp.Xirrt(1,1) = tokenizer.nextTokenAsDouble();
151 <        currProp.Xirrt(1,2) = tokenizer.nextTokenAsDouble();
152 <        currProp.Xirrt(2,0) = tokenizer.nextTokenAsDouble();
153 <        currProp.Xirrt(2,1) = tokenizer.nextTokenAsDouble();
154 <        currProp.Xirrt(2,2) = tokenizer.nextTokenAsDouble();
155 <        
156 <        currProp.Xirtr(0,0) = tokenizer.nextTokenAsDouble();
157 <        currProp.Xirtr(0,1) = tokenizer.nextTokenAsDouble();
158 <        currProp.Xirtr(0,2) = tokenizer.nextTokenAsDouble();
159 <        currProp.Xirtr(1,0) = tokenizer.nextTokenAsDouble();
160 <        currProp.Xirtr(1,1) = tokenizer.nextTokenAsDouble();
161 <        currProp.Xirtr(1,2) = tokenizer.nextTokenAsDouble();
162 <        currProp.Xirtr(2,0) = tokenizer.nextTokenAsDouble();
163 <        currProp.Xirtr(2,1) = tokenizer.nextTokenAsDouble();
164 <        currProp.Xirtr(2,2) = tokenizer.nextTokenAsDouble();
165 <        
166 <        currProp.Xirrr(0,0) = tokenizer.nextTokenAsDouble();
167 <        currProp.Xirrr(0,1) = tokenizer.nextTokenAsDouble();
168 <        currProp.Xirrr(0,2) = tokenizer.nextTokenAsDouble();
169 <        currProp.Xirrr(1,0) = tokenizer.nextTokenAsDouble();
170 <        currProp.Xirrr(1,1) = tokenizer.nextTokenAsDouble();
171 <        currProp.Xirrr(1,2) = tokenizer.nextTokenAsDouble();
172 <        currProp.Xirrr(2,0) = tokenizer.nextTokenAsDouble();
173 <        currProp.Xirrr(2,1) = tokenizer.nextTokenAsDouble();
174 <        currProp.Xirrr(2,2) = tokenizer.nextTokenAsDouble();
175 <        
176 <        SquareMatrix<double, 6> Xir;
177 <        Xir.setSubMatrix(0, 0, currProp.Xirtt);
178 <        Xir.setSubMatrix(0, 3, currProp.Xirrt);
179 <        Xir.setSubMatrix(3, 0, currProp.Xirtr);
180 <        Xir.setSubMatrix(3, 3, currProp.Xirrr);
181 <        CholeskyDecomposition(Xir, currProp.S);            
182 <        
183 <        props.insert(std::map<std::string, HydroProp>::value_type(atomName, currProp));
184 <      }
255 >      HydroProp* currProp = new HydroProp(buffer);
256 >      props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
257      }
258 <    
258 >
259      return props;
260    }
261 <  
262 <  void LDForceManager::postCalculation() {
261 >  
262 >  void LDForceManager::postCalculation(){
263      SimInfo::MoleculeIterator i;
264      Molecule::IntegrableObjectIterator  j;
265      Molecule* mol;
266      StuntDouble* integrableObject;
267 <    Vector3d vel;
267 >    RealType mass;
268      Vector3d pos;
269      Vector3d frc;
270      Mat3x3d A;
271      Mat3x3d Atrans;
272      Vector3d Tb;
273      Vector3d ji;
202    double mass;
274      unsigned int index = 0;
275      bool doLangevinForces;
276      bool freezeMolecule;
277      int fdf;
278 <    
278 >
279      fdf = 0;
280 +
281      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
282 <      
282 >
283 >      doLangevinForces = true;          
284 >      freezeMolecule = false;
285 >
286        if (sphericalBoundaryConditions_) {
287          
288          Vector3d molPos = mol->getCom();
289 <        double molRad = molPos.length();
290 <        
289 >        RealType molRad = molPos.length();
290 >
291          doLangevinForces = false;
217        freezeMolecule = false;
292          
293          if (molRad > langevinBufferRadius_) {
294            doLangevinForces = true;
# Line 226 | Line 300 | namespace oopse {
300          }
301        }
302        
303 <      if (doLangevinForces) {
304 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
231 <             integrableObject = mol->nextIntegrableObject(j)) {
303 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
304 >           integrableObject = mol->nextIntegrableObject(j)) {
305            
306 <          vel =integrableObject->getVel();
306 >        if (freezeMolecule)
307 >          fdf += integrableObject->freeze();
308 >        
309 >        if (doLangevinForces) {  
310 >          mass = integrableObject->getMass();
311            if (integrableObject->isDirectional()){
312 <            //calculate angular velocity in lab frame
313 <            Mat3x3d I = integrableObject->getI();
314 <            Vector3d angMom = integrableObject->getJ();
238 <            Vector3d omega;
239 <            
240 <            if (integrableObject->isLinear()) {
241 <              int linearAxis = integrableObject->linearAxis();
242 <              int l = (linearAxis +1 )%3;
243 <              int m = (linearAxis +2 )%3;
244 <              omega[l] = angMom[l] /I(l, l);
245 <              omega[m] = angMom[m] /I(m, m);
246 <              
247 <            } else {
248 <              omega[0] = angMom[0] /I(0, 0);
249 <              omega[1] = angMom[1] /I(1, 1);
250 <              omega[2] = angMom[2] /I(2, 2);
251 <            }
252 <            
253 <            //apply friction force and torque at center of resistance
312 >
313 >            // preliminaries for directional objects:
314 >
315              A = integrableObject->getA();
316              Atrans = A.transpose();
317 <            Vector3d rcr = Atrans * hydroProps_[index].cor;  
318 <            Vector3d vcdLab = vel + cross(omega, rcr);
258 <            Vector3d vcdBody = A* vcdLab;
259 <            Vector3d frictionForceBody = -(hydroProps_[index].Xirtt * vcdBody + hydroProps_[index].Xirrt * omega);
260 <            Vector3d frictionForceLab = Atrans*frictionForceBody;
261 <            integrableObject->addFrc(frictionForceLab);
262 <            Vector3d frictionTorqueBody = - (hydroProps_[index].Xirtr * vcdBody + hydroProps_[index].Xirrr * omega);
263 <            Vector3d frictionTorqueLab = Atrans*frictionTorqueBody;
264 <            integrableObject->addTrq(frictionTorqueLab+ cross(rcr, frictionForceLab));
265 <            
317 >            Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();  
318 >
319              //apply random force and torque at center of resistance
320 +
321              Vector3d randomForceBody;
322              Vector3d randomTorqueBody;
323              genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
324 <            Vector3d randomForceLab = Atrans*randomForceBody;
325 <            Vector3d randomTorqueLab = Atrans* randomTorqueBody;
324 >            Vector3d randomForceLab = Atrans * randomForceBody;
325 >            Vector3d randomTorqueLab = Atrans * randomTorqueBody;
326              integrableObject->addFrc(randomForceLab);            
327 <            integrableObject->addTrq(randomTorqueLab + cross(rcr, randomForceLab ));            
327 >            integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));            
328 >
329 >            Mat3x3d I = integrableObject->getI();
330 >            Vector3d omegaBody;
331 >
332 >            // What remains contains velocity explicitly, but the velocity required
333 >            // is at the full step: v(t + h), while we have initially the velocity
334 >            // at the half step: v(t + h/2).  We need to iterate to converge the
335 >            // friction force and friction torque vectors.
336 >
337 >            // this is the velocity at the half-step:
338              
339 +            Vector3d vel =integrableObject->getVel();
340 +            Vector3d angMom = integrableObject->getJ();
341 +
342 +            //estimate velocity at full-step using everything but friction forces:          
343 +
344 +            frc = integrableObject->getFrc();
345 +            Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc;
346 +
347 +            Tb = integrableObject->lab2Body(integrableObject->getTrq());
348 +            Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb;                            
349 +
350 +            Vector3d omegaLab;
351 +            Vector3d vcdLab;
352 +            Vector3d vcdBody;
353 +            Vector3d frictionForceBody;
354 +            Vector3d frictionForceLab(0.0);
355 +            Vector3d oldFFL;  // used to test for convergence
356 +            Vector3d frictionTorqueBody(0.0);
357 +            Vector3d oldFTB;  // used to test for convergence
358 +            Vector3d frictionTorqueLab;
359 +            RealType fdot;
360 +            RealType tdot;
361 +
362 +            //iteration starts here:
363 +
364 +            for (int k = 0; k < maxIterNum_; k++) {
365 +                            
366 +              if (integrableObject->isLinear()) {
367 +                int linearAxis = integrableObject->linearAxis();
368 +                int l = (linearAxis +1 )%3;
369 +                int m = (linearAxis +2 )%3;
370 +                omegaBody[l] = angMomStep[l] /I(l, l);
371 +                omegaBody[m] = angMomStep[m] /I(m, m);
372 +                
373 +              } else {
374 +                omegaBody[0] = angMomStep[0] /I(0, 0);
375 +                omegaBody[1] = angMomStep[1] /I(1, 1);
376 +                omegaBody[2] = angMomStep[2] /I(2, 2);
377 +              }
378 +              
379 +              omegaLab = Atrans * omegaBody;
380 +              
381 +              // apply friction force and torque at center of resistance
382 +              
383 +              vcdLab = velStep + cross(omegaLab, rcrLab);      
384 +              vcdBody = A * vcdLab;
385 +              frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
386 +              oldFFL = frictionForceLab;
387 +              frictionForceLab = Atrans * frictionForceBody;
388 +              oldFTB = frictionTorqueBody;
389 +              frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
390 +              frictionTorqueLab = Atrans * frictionTorqueBody;
391 +              
392 +              // re-estimate velocities at full-step using friction forces:
393 +              
394 +              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab);
395 +              angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody);
396 +
397 +              // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
398 +              
399 +              fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
400 +              tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
401 +              
402 +              if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
403 +                break; // iteration ends here
404 +            }
405 +
406 +            integrableObject->addFrc(frictionForceLab);
407 +            integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
408 +
409 +            
410            } else {
411              //spherical atom
412 <            Vector3d frictionForce = -(hydroProps_[index].Xirtt *vel);    
412 >
413              Vector3d randomForce;
414              Vector3d randomTorque;
415              genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
416 +            integrableObject->addFrc(randomForce);            
417 +
418 +            // What remains contains velocity explicitly, but the velocity required
419 +            // is at the full step: v(t + h), while we have initially the velocity
420 +            // at the half step: v(t + h/2).  We need to iterate to converge the
421 +            // friction force vector.
422 +
423 +            // this is the velocity at the half-step:
424              
425 <            integrableObject->addFrc(frictionForce+randomForce);            
425 >            Vector3d vel =integrableObject->getVel();
426 >
427 >            //estimate velocity at full-step using everything but friction forces:          
428 >
429 >            frc = integrableObject->getFrc();
430 >            Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc;
431 >
432 >            Vector3d frictionForce(0.0);
433 >            Vector3d oldFF;  // used to test for convergence
434 >            RealType fdot;
435 >
436 >            //iteration starts here:
437 >
438 >            for (int k = 0; k < maxIterNum_; k++) {
439 >
440 >              oldFF = frictionForce;                            
441 >              frictionForce = -hydroProps_[index]->getXitt() * velStep;
442 >
443 >              // re-estimate velocities at full-step using friction forces:
444 >              
445 >              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce);
446 >
447 >              // check for convergence (if the vector has converged, fdot will be 1.0):
448 >              
449 >              fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
450 >              
451 >              if (fabs(1.0 - fdot) <= forceTolerance_)
452 >                break; // iteration ends here
453 >            }
454 >
455 >            integrableObject->addFrc(frictionForce);
456 >
457            }
458 +        }
459            
460 <          ++index;
460 >        ++index;
461      
287        }
462        }
463 <      if (freezeMolecule)
464 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291 <             integrableObject = mol->nextIntegrableObject(j)) {          
292 <          fdf += integrableObject->freeze();
293 <        }
294 <    }
295 <    
463 >    }    
464 >
465      info_->setFdf(fdf);
466 <    
466 >    veloMunge->removeComDrift();
467 >    // Remove angular drift if we are not using periodic boundary conditions.
468 >    if(!simParams->getUsePeriodicBoundaryConditions())
469 >      veloMunge->removeAngularDrift();
470 >
471      ForceManager::postCalculation();  
472    }
473  
474 < void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, double variance) {
474 > void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
475  
476  
477 <    Vector<double, 6> Z;
478 <    Vector<double, 6> generalForce;
306 <
477 >    Vector<RealType, 6> Z;
478 >    Vector<RealType, 6> generalForce;
479          
480      Z[0] = randNumGen_.randNorm(0, variance);
481      Z[1] = randNumGen_.randNorm(0, variance);
# Line 312 | Line 484 | void LDForceManager::genRandomForceAndTorque(Vector3d&
484      Z[4] = randNumGen_.randNorm(0, variance);
485      Z[5] = randNumGen_.randNorm(0, variance);
486      
487 <
316 <    generalForce = hydroProps_[index].S*Z;
487 >    generalForce = hydroProps_[index]->getS()*Z;
488      
489      force[0] = generalForce[0];
490      force[1] = generalForce[1];
# Line 322 | Line 493 | void LDForceManager::genRandomForceAndTorque(Vector3d&
493      torque[1] = generalForce[4];
494      torque[2] = generalForce[5];
495      
496 < }
496 > }
497  
498   }

Comparing:
trunk/src/integrators/LDForceManager.cpp (property svn:keywords), Revision 945 by gezelter, Tue Apr 25 02:09:01 2006 UTC vs.
branches/development/src/integrators/LDForceManager.cpp (property svn:keywords), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines