ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/LDForceManager.cpp
(Generate patch)

Comparing:
trunk/src/integrators/LDForceManager.cpp (file contents), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/integrators/LDForceManager.cpp (file contents), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include <fstream>
43 + #include <iostream>
44   #include "integrators/LDForceManager.hpp"
45   #include "math/CholeskyDecomposition.hpp"
46 < #include "utils/OOPSEConstant.hpp"
46 > #include "utils/PhysicalConstants.hpp"
47   #include "hydrodynamics/Sphere.hpp"
48   #include "hydrodynamics/Ellipsoid.hpp"
49 < #include "openbabel/mol.hpp"
49 > #include "utils/ElementsTable.hpp"
50 > #include "types/LennardJonesAdapter.hpp"
51 > #include "types/GayBerneAdapter.hpp"
52  
53 < using namespace OpenBabel;
50 < namespace oopse {
53 > namespace OpenMD {
54  
55 <  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){
56 <    Globals* simParams = info->getSimParams();
57 <        
55 >  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
56 >    simParams = info->getSimParams();
57 >    veloMunge = new Velocitizer(info);
58 >
59      sphericalBoundaryConditions_ = false;
60      if (simParams->getUseSphericalBoundaryConditions()) {
61        sphericalBoundaryConditions_ = true;
# Line 61 | Line 65 | namespace oopse {
65          sprintf( painCave.errMsg,
66                   "langevinBufferRadius must be specified "
67                   "when useSphericalBoundaryConditions is turned on.\n");
68 <        painCave.severity = OOPSE_ERROR;
68 >        painCave.severity = OPENMD_ERROR;
69          painCave.isFatal = 1;
70          simError();  
71        }
# Line 72 | Line 76 | namespace oopse {
76          sprintf( painCave.errMsg,
77                   "frozenBufferRadius must be specified "
78                   "when useSphericalBoundaryConditions is turned on.\n");
79 <        painCave.severity = OOPSE_ERROR;
79 >        painCave.severity = OPENMD_ERROR;
80          painCave.isFatal = 1;
81          simError();  
82        }
# Line 81 | Line 85 | namespace oopse {
85          sprintf( painCave.errMsg,
86                   "frozenBufferRadius has been set smaller than the "
87                   "langevinBufferRadius.  This is probably an error.\n");
88 <        painCave.severity = OOPSE_WARNING;
88 >        painCave.severity = OPENMD_WARNING;
89          painCave.isFatal = 0;
90          simError();  
91        }
92      }
93  
94      // Build the hydroProp map:
95 <    std::map<std::string, HydroProp> hydroPropMap;
95 >    std::map<std::string, HydroProp*> hydroPropMap;
96  
97      Molecule* mol;
98      StuntDouble* integrableObject;
# Line 116 | Line 120 | namespace oopse {
120          hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
121        } else {              
122          sprintf( painCave.errMsg,
123 <                 "HydroPropFile must be set to a file name if Langevin\n"
124 <                 "\tDynamics is specified for rigidBodies which contain more\n"
125 <                 "\tthan one atom.  To create a HydroPropFile, run \"Hydro\".\n");
126 <        painCave.severity = OOPSE_ERROR;
123 >                 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
124 >                 "\tis specified for rigidBodies which contain more than one atom\n"
125 >                 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
126 >        painCave.severity = OPENMD_ERROR;
127          painCave.isFatal = 1;
128          simError();  
129        }      
130 <      std::map<std::string, HydroProp>::iterator iter = hydroPropMap.find(integrableObject->getType());
131 <      if (iter != hydroPropMap.end()) {
132 <        hydroProps_.push_back(iter->second);
133 <      } else {
134 <        sprintf( painCave.errMsg,
135 <                 "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
136 <        painCave.severity = OOPSE_ERROR;
137 <        painCave.isFatal = 1;
138 <        simError();  
130 >
131 >      for (mol = info->beginMolecule(i); mol != NULL;
132 >           mol = info->nextMolecule(i)) {
133 >        for (integrableObject = mol->beginIntegrableObject(j);
134 >             integrableObject != NULL;
135 >             integrableObject = mol->nextIntegrableObject(j)) {
136 >
137 >          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
138 >          if (iter != hydroPropMap.end()) {
139 >            hydroProps_.push_back(iter->second);
140 >          } else {
141 >            sprintf( painCave.errMsg,
142 >                     "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
143 >            painCave.severity = OPENMD_ERROR;
144 >            painCave.isFatal = 1;
145 >            simError();  
146 >          }        
147 >        }
148        }
149      } else {
150 <
151 <      std::map<std::string, HydroProp> hydroPropMap;
150 >      
151 >      std::map<std::string, HydroProp*> hydroPropMap;
152        for (mol = info->beginMolecule(i); mol != NULL;
153             mol = info->nextMolecule(i)) {
154          for (integrableObject = mol->beginIntegrableObject(j);
155               integrableObject != NULL;
156               integrableObject = mol->nextIntegrableObject(j)) {
157            Shape* currShape = NULL;
158 <          if (integrableObject->isDirectionalAtom()) {
159 <            DirectionalAtom* dAtom = static_cast<DirectionalAtom*>(integrableObject);
147 <            AtomType* atomType = dAtom->getAtomType();
148 <            if (atomType->isGayBerne()) {
149 <              DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
150 <              
151 <              GenericData* data = dAtomType->getPropertyByName("GayBerne");
152 <              if (data != NULL) {
153 <                GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
154 <                
155 <                if (gayBerneData != NULL) {  
156 <                  GayBerneParam gayBerneParam = gayBerneData->getData();
157 <                  currShape = new Ellipsoid(V3Zero,
158 <                                            gayBerneParam.GB_sigma/2.0,
159 <                                            gayBerneParam.GB_l2b_ratio*gayBerneParam.GB_sigma/2.0,
160 <                                            Mat3x3d::identity());
161 <                } else {
162 <                  sprintf( painCave.errMsg,
163 <                           "Can not cast GenericData to GayBerneParam\n");
164 <                  painCave.severity = OOPSE_ERROR;
165 <                  painCave.isFatal = 1;
166 <                  simError();  
167 <                }
168 <              } else {
169 <                sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
170 <                painCave.severity = OOPSE_ERROR;
171 <                painCave.isFatal = 1;
172 <                simError();    
173 <              }
174 <            }
175 <          } else {
158 >
159 >          if (integrableObject->isAtom()){
160              Atom* atom = static_cast<Atom*>(integrableObject);
161              AtomType* atomType = atom->getAtomType();
162 <            if (atomType->isLennardJones()){
163 <              GenericData* data = atomType->getPropertyByName("LennardJones");
164 <              if (data != NULL) {
165 <                LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
166 <                
167 <                if (ljData != NULL) {
168 <                  LJParam ljParam = ljData->getData();
169 <                  currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
162 >            GayBerneAdapter gba = GayBerneAdapter(atomType);
163 >            if (gba.isGayBerne()) {
164 >              currShape = new Ellipsoid(V3Zero, gba.getL() / 2.0,
165 >                                        gba.getD() / 2.0,
166 >                                        Mat3x3d::identity());
167 >            } else {
168 >              LennardJonesAdapter lja = LennardJonesAdapter(atomType);
169 >              if (lja.isLennardJones()){
170 >                currShape = new Sphere(atom->getPos(), lja.getSigma()/2.0);
171 >              } else {
172 >                int aNum = etab.GetAtomicNum((atom->getType()).c_str());
173 >                if (aNum != 0) {
174 >                  currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
175                  } else {
176                    sprintf( painCave.errMsg,
177 <                           "Can not cast GenericData to LJParam\n");
178 <                  painCave.severity = OOPSE_ERROR;
177 >                           "Could not find atom type in default element.txt\n");
178 >                  painCave.severity = OPENMD_ERROR;
179                    painCave.isFatal = 1;
180                    simError();          
181 <                }      
181 >                }
182                }
194            } else {
195              int obanum = etab.GetAtomicNum((atom->getType()).c_str());
196              if (obanum != 0) {
197                currShape = new Sphere(atom->getPos(), etab.GetVdwRad(obanum));
198              } else {
199                sprintf( painCave.errMsg,
200                         "Could not find atom type in default element.txt\n");
201                painCave.severity = OOPSE_ERROR;
202                painCave.isFatal = 1;
203                simError();          
204              }
183              }
184            }
185 <          HydroProps currHydroProp = currShape->getHydroProps(simParams->getViscosity(),simParams->getTargetTemp());
186 <          std::map<std::string, HydroProp>::iterator iter = hydroPropMap.find(integrableObject->getType());
185 >
186 >          if (!simParams->haveTargetTemp()) {
187 >            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
188 >            painCave.isFatal = 1;
189 >            painCave.severity = OPENMD_ERROR;
190 >            simError();
191 >          }
192 >
193 >          if (!simParams->haveViscosity()) {
194 >            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
195 >            painCave.isFatal = 1;
196 >            painCave.severity = OPENMD_ERROR;
197 >            simError();
198 >          }
199 >
200 >
201 >          HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
202 >          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
203            if (iter != hydroPropMap.end())
204              hydroProps_.push_back(iter->second);
205            else {
206 <            HydroProp myProp;
207 <            myProp.cor = V3Zero;
208 <            for (int i1 = 0; i1 < 3; i1++) {
215 <              for (int j1 = 0; j1 < 3; j1++) {
216 <                myProp.Xirtt(i1,j1) = currHydroProp.Xi(i1,j1);
217 <                myProp.Xirrt(i1,j1) = currHydroProp.Xi(i1,j1+3);
218 <                myProp.Xirtr(i1,j1) = currHydroProp.Xi(i1+3,j1);
219 <                myProp.Xirrr(i1,j1) = currHydroProp.Xi(i1+3,j1+3);
220 <              }
221 <            }
222 <            CholeskyDecomposition(currHydroProp.Xi, myProp.S);
223 <            hydroPropMap.insert(std::map<std::string, HydroProp>::value_type(integrableObject->getType(), myProp));
224 <            hydroProps_.push_back(myProp);
206 >            currHydroProp->complete();
207 >            hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
208 >            hydroProps_.push_back(currHydroProp);
209            }
210          }
211        }
212      }
213 <    variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
214 <  }
231 <  
232 <  
213 >    variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt();
214 >  }  
215  
216 <
217 <
236 <  std::map<std::string, HydroProp> LDForceManager::parseFrictionFile(const std::string& filename) {
237 <    std::map<std::string, HydroProp> props;
216 >  std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
217 >    std::map<std::string, HydroProp*> props;
218      std::ifstream ifs(filename.c_str());
219      if (ifs.is_open()) {
220        
# Line 243 | Line 223 | namespace oopse {
223      const unsigned int BufferSize = 65535;
224      char buffer[BufferSize];  
225      while (ifs.getline(buffer, BufferSize)) {
226 <      StringTokenizer tokenizer(buffer);
227 <      HydroProp currProp;
248 <      if (tokenizer.countTokens() >= 40) {
249 <        std::string atomName = tokenizer.nextToken();
250 <        currProp.cor[0] = tokenizer.nextTokenAsDouble();
251 <        currProp.cor[1] = tokenizer.nextTokenAsDouble();
252 <        currProp.cor[2] = tokenizer.nextTokenAsDouble();
253 <        
254 <        currProp.Xirtt(0,0) = tokenizer.nextTokenAsDouble();
255 <        currProp.Xirtt(0,1) = tokenizer.nextTokenAsDouble();
256 <        currProp.Xirtt(0,2) = tokenizer.nextTokenAsDouble();
257 <        currProp.Xirtt(1,0) = tokenizer.nextTokenAsDouble();
258 <        currProp.Xirtt(1,1) = tokenizer.nextTokenAsDouble();
259 <        currProp.Xirtt(1,2) = tokenizer.nextTokenAsDouble();
260 <        currProp.Xirtt(2,0) = tokenizer.nextTokenAsDouble();
261 <        currProp.Xirtt(2,1) = tokenizer.nextTokenAsDouble();
262 <        currProp.Xirtt(2,2) = tokenizer.nextTokenAsDouble();
263 <        
264 <        currProp.Xirrt(0,0) = tokenizer.nextTokenAsDouble();
265 <        currProp.Xirrt(0,1) = tokenizer.nextTokenAsDouble();
266 <        currProp.Xirrt(0,2) = tokenizer.nextTokenAsDouble();
267 <        currProp.Xirrt(1,0) = tokenizer.nextTokenAsDouble();
268 <        currProp.Xirrt(1,1) = tokenizer.nextTokenAsDouble();
269 <        currProp.Xirrt(1,2) = tokenizer.nextTokenAsDouble();
270 <        currProp.Xirrt(2,0) = tokenizer.nextTokenAsDouble();
271 <        currProp.Xirrt(2,1) = tokenizer.nextTokenAsDouble();
272 <        currProp.Xirrt(2,2) = tokenizer.nextTokenAsDouble();
273 <        
274 <        currProp.Xirtr(0,0) = tokenizer.nextTokenAsDouble();
275 <        currProp.Xirtr(0,1) = tokenizer.nextTokenAsDouble();
276 <        currProp.Xirtr(0,2) = tokenizer.nextTokenAsDouble();
277 <        currProp.Xirtr(1,0) = tokenizer.nextTokenAsDouble();
278 <        currProp.Xirtr(1,1) = tokenizer.nextTokenAsDouble();
279 <        currProp.Xirtr(1,2) = tokenizer.nextTokenAsDouble();
280 <        currProp.Xirtr(2,0) = tokenizer.nextTokenAsDouble();
281 <        currProp.Xirtr(2,1) = tokenizer.nextTokenAsDouble();
282 <        currProp.Xirtr(2,2) = tokenizer.nextTokenAsDouble();
283 <        
284 <        currProp.Xirrr(0,0) = tokenizer.nextTokenAsDouble();
285 <        currProp.Xirrr(0,1) = tokenizer.nextTokenAsDouble();
286 <        currProp.Xirrr(0,2) = tokenizer.nextTokenAsDouble();
287 <        currProp.Xirrr(1,0) = tokenizer.nextTokenAsDouble();
288 <        currProp.Xirrr(1,1) = tokenizer.nextTokenAsDouble();
289 <        currProp.Xirrr(1,2) = tokenizer.nextTokenAsDouble();
290 <        currProp.Xirrr(2,0) = tokenizer.nextTokenAsDouble();
291 <        currProp.Xirrr(2,1) = tokenizer.nextTokenAsDouble();
292 <        currProp.Xirrr(2,2) = tokenizer.nextTokenAsDouble();
293 <        
294 <        SquareMatrix<RealType, 6> Xir;
295 <        Xir.setSubMatrix(0, 0, currProp.Xirtt);
296 <        Xir.setSubMatrix(0, 3, currProp.Xirrt);
297 <        Xir.setSubMatrix(3, 0, currProp.Xirtr);
298 <        Xir.setSubMatrix(3, 3, currProp.Xirrr);
299 <        CholeskyDecomposition(Xir, currProp.S);            
300 <        
301 <        props.insert(std::map<std::string, HydroProp>::value_type(atomName, currProp));
302 <      }
226 >      HydroProp* currProp = new HydroProp(buffer);
227 >      props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
228      }
229 <    
229 >
230      return props;
231    }
232 <  
233 <  void LDForceManager::postCalculation() {
232 >  
233 >  void LDForceManager::postCalculation(){
234      SimInfo::MoleculeIterator i;
235      Molecule::IntegrableObjectIterator  j;
236      Molecule* mol;
237      StuntDouble* integrableObject;
238 <    Vector3d vel;
238 >    RealType mass;
239      Vector3d pos;
240      Vector3d frc;
241      Mat3x3d A;
242      Mat3x3d Atrans;
243      Vector3d Tb;
244      Vector3d ji;
320    RealType mass;
245      unsigned int index = 0;
246      bool doLangevinForces;
247      bool freezeMolecule;
248      int fdf;
249 <    
249 >
250      fdf = 0;
251 +
252      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
253 <      
253 >
254 >      doLangevinForces = true;          
255 >      freezeMolecule = false;
256 >
257        if (sphericalBoundaryConditions_) {
258          
259          Vector3d molPos = mol->getCom();
260          RealType molRad = molPos.length();
261 <        
261 >
262          doLangevinForces = false;
335        freezeMolecule = false;
263          
264          if (molRad > langevinBufferRadius_) {
265            doLangevinForces = true;
# Line 350 | Line 277 | namespace oopse {
277          if (freezeMolecule)
278            fdf += integrableObject->freeze();
279          
280 <        if (doLangevinForces) {          
281 <          vel =integrableObject->getVel();
280 >        if (doLangevinForces) {  
281 >          mass = integrableObject->getMass();
282            if (integrableObject->isDirectional()){
283 <            //calculate angular velocity in lab frame
284 <            Mat3x3d I = integrableObject->getI();
285 <            Vector3d angMom = integrableObject->getJ();
359 <            Vector3d omega;
360 <            
361 <            if (integrableObject->isLinear()) {
362 <              int linearAxis = integrableObject->linearAxis();
363 <              int l = (linearAxis +1 )%3;
364 <              int m = (linearAxis +2 )%3;
365 <              omega[l] = angMom[l] /I(l, l);
366 <              omega[m] = angMom[m] /I(m, m);
367 <              
368 <            } else {
369 <              omega[0] = angMom[0] /I(0, 0);
370 <              omega[1] = angMom[1] /I(1, 1);
371 <              omega[2] = angMom[2] /I(2, 2);
372 <            }
373 <            
374 <            //apply friction force and torque at center of resistance
283 >
284 >            // preliminaries for directional objects:
285 >
286              A = integrableObject->getA();
287              Atrans = A.transpose();
288 <            Vector3d rcr = Atrans * hydroProps_[index].cor;  
289 <            Vector3d vcdLab = vel + cross(omega, rcr);
379 <            Vector3d vcdBody = A* vcdLab;
380 <            Vector3d frictionForceBody = -(hydroProps_[index].Xirtt * vcdBody + hydroProps_[index].Xirrt * omega);
381 <            Vector3d frictionForceLab = Atrans*frictionForceBody;
382 <            integrableObject->addFrc(frictionForceLab);
383 <            Vector3d frictionTorqueBody = - (hydroProps_[index].Xirtr * vcdBody + hydroProps_[index].Xirrr * omega);
384 <            Vector3d frictionTorqueLab = Atrans*frictionTorqueBody;
385 <            integrableObject->addTrq(frictionTorqueLab+ cross(rcr, frictionForceLab));
386 <            
288 >            Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();  
289 >
290              //apply random force and torque at center of resistance
291 +
292              Vector3d randomForceBody;
293              Vector3d randomTorqueBody;
294              genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
295 <            Vector3d randomForceLab = Atrans*randomForceBody;
296 <            Vector3d randomTorqueLab = Atrans* randomTorqueBody;
295 >            Vector3d randomForceLab = Atrans * randomForceBody;
296 >            Vector3d randomTorqueLab = Atrans * randomTorqueBody;
297              integrableObject->addFrc(randomForceLab);            
298 <            integrableObject->addTrq(randomTorqueLab + cross(rcr, randomForceLab ));            
298 >            integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));            
299 >
300 >            Mat3x3d I = integrableObject->getI();
301 >            Vector3d omegaBody;
302 >
303 >            // What remains contains velocity explicitly, but the velocity required
304 >            // is at the full step: v(t + h), while we have initially the velocity
305 >            // at the half step: v(t + h/2).  We need to iterate to converge the
306 >            // friction force and friction torque vectors.
307 >
308 >            // this is the velocity at the half-step:
309              
310 +            Vector3d vel =integrableObject->getVel();
311 +            Vector3d angMom = integrableObject->getJ();
312 +
313 +            //estimate velocity at full-step using everything but friction forces:          
314 +
315 +            frc = integrableObject->getFrc();
316 +            Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc;
317 +
318 +            Tb = integrableObject->lab2Body(integrableObject->getTrq());
319 +            Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb;                            
320 +
321 +            Vector3d omegaLab;
322 +            Vector3d vcdLab;
323 +            Vector3d vcdBody;
324 +            Vector3d frictionForceBody;
325 +            Vector3d frictionForceLab(0.0);
326 +            Vector3d oldFFL;  // used to test for convergence
327 +            Vector3d frictionTorqueBody(0.0);
328 +            Vector3d oldFTB;  // used to test for convergence
329 +            Vector3d frictionTorqueLab;
330 +            RealType fdot;
331 +            RealType tdot;
332 +
333 +            //iteration starts here:
334 +
335 +            for (int k = 0; k < maxIterNum_; k++) {
336 +                            
337 +              if (integrableObject->isLinear()) {
338 +                int linearAxis = integrableObject->linearAxis();
339 +                int l = (linearAxis +1 )%3;
340 +                int m = (linearAxis +2 )%3;
341 +                omegaBody[l] = angMomStep[l] /I(l, l);
342 +                omegaBody[m] = angMomStep[m] /I(m, m);
343 +                
344 +              } else {
345 +                omegaBody[0] = angMomStep[0] /I(0, 0);
346 +                omegaBody[1] = angMomStep[1] /I(1, 1);
347 +                omegaBody[2] = angMomStep[2] /I(2, 2);
348 +              }
349 +              
350 +              omegaLab = Atrans * omegaBody;
351 +              
352 +              // apply friction force and torque at center of resistance
353 +              
354 +              vcdLab = velStep + cross(omegaLab, rcrLab);      
355 +              vcdBody = A * vcdLab;
356 +              frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
357 +              oldFFL = frictionForceLab;
358 +              frictionForceLab = Atrans * frictionForceBody;
359 +              oldFTB = frictionTorqueBody;
360 +              frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
361 +              frictionTorqueLab = Atrans * frictionTorqueBody;
362 +              
363 +              // re-estimate velocities at full-step using friction forces:
364 +              
365 +              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab);
366 +              angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody);
367 +
368 +              // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
369 +              
370 +              fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
371 +              tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
372 +              
373 +              if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
374 +                break; // iteration ends here
375 +            }
376 +
377 +            integrableObject->addFrc(frictionForceLab);
378 +            integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
379 +
380 +            
381            } else {
382              //spherical atom
383 <            Vector3d frictionForce = -(hydroProps_[index].Xirtt *vel);    
383 >
384              Vector3d randomForce;
385              Vector3d randomTorque;
386              genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
387 +            integrableObject->addFrc(randomForce);            
388 +
389 +            // What remains contains velocity explicitly, but the velocity required
390 +            // is at the full step: v(t + h), while we have initially the velocity
391 +            // at the half step: v(t + h/2).  We need to iterate to converge the
392 +            // friction force vector.
393 +
394 +            // this is the velocity at the half-step:
395              
396 <            integrableObject->addFrc(frictionForce+randomForce);            
396 >            Vector3d vel =integrableObject->getVel();
397 >
398 >            //estimate velocity at full-step using everything but friction forces:          
399 >
400 >            frc = integrableObject->getFrc();
401 >            Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc;
402 >
403 >            Vector3d frictionForce(0.0);
404 >            Vector3d oldFF;  // used to test for convergence
405 >            RealType fdot;
406 >
407 >            //iteration starts here:
408 >
409 >            for (int k = 0; k < maxIterNum_; k++) {
410 >
411 >              oldFF = frictionForce;                            
412 >              frictionForce = -hydroProps_[index]->getXitt() * velStep;
413 >
414 >              // re-estimate velocities at full-step using friction forces:
415 >              
416 >              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce);
417 >
418 >              // check for convergence (if the vector has converged, fdot will be 1.0):
419 >              
420 >              fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
421 >              
422 >              if (fabs(1.0 - fdot) <= forceTolerance_)
423 >                break; // iteration ends here
424 >            }
425 >
426 >            integrableObject->addFrc(frictionForce);
427 >
428            }
429          }
430            
# Line 408 | Line 432 | namespace oopse {
432      
433        }
434      }    
435 +
436      info_->setFdf(fdf);
437 <    
437 >    veloMunge->removeComDrift();
438 >    // Remove angular drift if we are not using periodic boundary conditions.
439 >    if(!simParams->getUsePeriodicBoundaryConditions())
440 >      veloMunge->removeAngularDrift();
441 >
442      ForceManager::postCalculation();  
443    }
444  
# Line 418 | Line 447 | void LDForceManager::genRandomForceAndTorque(Vector3d&
447  
448      Vector<RealType, 6> Z;
449      Vector<RealType, 6> generalForce;
421
450          
451      Z[0] = randNumGen_.randNorm(0, variance);
452      Z[1] = randNumGen_.randNorm(0, variance);
# Line 427 | Line 455 | void LDForceManager::genRandomForceAndTorque(Vector3d&
455      Z[4] = randNumGen_.randNorm(0, variance);
456      Z[5] = randNumGen_.randNorm(0, variance);
457      
458 <
431 <    generalForce = hydroProps_[index].S*Z;
458 >    generalForce = hydroProps_[index]->getS()*Z;
459      
460      force[0] = generalForce[0];
461      force[1] = generalForce[1];
# Line 437 | Line 464 | void LDForceManager::genRandomForceAndTorque(Vector3d&
464      torque[1] = generalForce[4];
465      torque[2] = generalForce[5];
466      
467 < }
467 > }
468  
469   }

Comparing:
trunk/src/integrators/LDForceManager.cpp (property svn:keywords), Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
branches/development/src/integrators/LDForceManager.cpp (property svn:keywords), Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines