ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/LDForceManager.cpp
(Generate patch)

Comparing:
trunk/src/integrators/LDForceManager.cpp (file contents), Revision 908 by tim, Mon Mar 20 19:12:14 2006 UTC vs.
branches/development/src/integrators/LDForceManager.cpp (file contents), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42   #include <fstream>
43 + #include <iostream>
44   #include "integrators/LDForceManager.hpp"
45   #include "math/CholeskyDecomposition.hpp"
46 < #include "utils/OOPSEConstant.hpp"
47 < namespace oopse {
46 > #include "utils/PhysicalConstants.hpp"
47 > #include "hydrodynamics/Sphere.hpp"
48 > #include "hydrodynamics/Ellipsoid.hpp"
49 > #include "utils/ElementsTable.hpp"
50 > #include "types/LennardJonesAdapter.hpp"
51 > #include "types/GayBerneAdapter.hpp"
52  
53 <  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){
54 <    Globals* simParams = info->getSimParams();
55 <    std::map<std::string, HydroProp> hydroPropMap;
56 <    if (simParams->haveHydroPropFile()) {
57 <        hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
58 <    } else {
59 <        //error
53 > namespace OpenMD {
54 >
55 >  LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
56 >    simParams = info->getSimParams();
57 >    veloMunge = new Velocitizer(info);
58 >
59 >    sphericalBoundaryConditions_ = false;
60 >    if (simParams->getUseSphericalBoundaryConditions()) {
61 >      sphericalBoundaryConditions_ = true;
62 >      if (simParams->haveLangevinBufferRadius()) {
63 >        langevinBufferRadius_ = simParams->getLangevinBufferRadius();
64 >      } else {
65 >        sprintf( painCave.errMsg,
66 >                 "langevinBufferRadius must be specified "
67 >                 "when useSphericalBoundaryConditions is turned on.\n");
68 >        painCave.severity = OPENMD_ERROR;
69 >        painCave.isFatal = 1;
70 >        simError();  
71 >      }
72 >    
73 >      if (simParams->haveFrozenBufferRadius()) {
74 >        frozenBufferRadius_ = simParams->getFrozenBufferRadius();
75 >      } else {
76 >        sprintf( painCave.errMsg,
77 >                 "frozenBufferRadius must be specified "
78 >                 "when useSphericalBoundaryConditions is turned on.\n");
79 >        painCave.severity = OPENMD_ERROR;
80 >        painCave.isFatal = 1;
81 >        simError();  
82 >      }
83 >
84 >      if (frozenBufferRadius_ < langevinBufferRadius_) {
85 >        sprintf( painCave.errMsg,
86 >                 "frozenBufferRadius has been set smaller than the "
87 >                 "langevinBufferRadius.  This is probably an error.\n");
88 >        painCave.severity = OPENMD_WARNING;
89 >        painCave.isFatal = 0;
90 >        simError();  
91 >      }
92      }
93  
94 <    SimInfo::MoleculeIterator i;
95 <    Molecule::IntegrableObjectIterator  j;
94 >    // Build the hydroProp map:
95 >    std::map<std::string, HydroProp*> hydroPropMap;
96 >
97      Molecule* mol;
98 <    StuntDouble* integrableObject;
99 <    for (mol = info->beginMolecule(i); mol != NULL; mol = info->nextMolecule(i)) {
100 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
101 <              integrableObject = mol->nextIntegrableObject(j)) {
102 <            std::map<std::string, HydroProp>::iterator iter = hydroPropMap.find(integrableObject->getType());
103 <            if (iter != hydroPropMap.end()) {
104 <                hydroProps_.push_back(iter->second);
98 >    StuntDouble* sd;
99 >    SimInfo::MoleculeIterator i;
100 >    Molecule::IntegrableObjectIterator  j;              
101 >    bool needHydroPropFile = false;
102 >    
103 >    for (mol = info->beginMolecule(i); mol != NULL;
104 >         mol = info->nextMolecule(i)) {
105 >
106 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
107 >           sd = mol->nextIntegrableObject(j)) {
108 >        
109 >        if (sd->isRigidBody()) {
110 >          RigidBody* rb = static_cast<RigidBody*>(sd);
111 >          if (rb->getNumAtoms() > 1) needHydroPropFile = true;
112 >        }
113 >        
114 >      }
115 >    }
116 >        
117 >
118 >    if (needHydroPropFile) {              
119 >      if (simParams->haveHydroPropFile()) {
120 >        hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
121 >      } else {              
122 >        sprintf( painCave.errMsg,
123 >                 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
124 >                 "\tis specified for rigidBodies which contain more than one atom\n"
125 >                 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
126 >        painCave.severity = OPENMD_ERROR;
127 >        painCave.isFatal = 1;
128 >        simError();  
129 >      }      
130 >
131 >      for (mol = info->beginMolecule(i); mol != NULL;
132 >           mol = info->nextMolecule(i)) {
133 >
134 >        for (sd = mol->beginIntegrableObject(j);  sd != NULL;
135 >             sd = mol->nextIntegrableObject(j)) {
136 >
137 >          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType());
138 >          if (iter != hydroPropMap.end()) {
139 >            hydroProps_.push_back(iter->second);
140 >          } else {
141 >            sprintf( painCave.errMsg,
142 >                     "Can not find resistance tensor for atom [%s]\n", sd->getType().c_str());
143 >            painCave.severity = OPENMD_ERROR;
144 >            painCave.isFatal = 1;
145 >            simError();  
146 >          }        
147 >        }
148 >      }
149 >    } else {
150 >      
151 >      std::map<std::string, HydroProp*> hydroPropMap;
152 >      for (mol = info->beginMolecule(i); mol != NULL;
153 >           mol = info->nextMolecule(i)) {
154 >
155 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
156 >             sd = mol->nextIntegrableObject(j)) {
157 >
158 >          Shape* currShape = NULL;
159 >
160 >          if (sd->isAtom()){
161 >            Atom* atom = static_cast<Atom*>(sd);
162 >            AtomType* atomType = atom->getAtomType();
163 >            GayBerneAdapter gba = GayBerneAdapter(atomType);
164 >            if (gba.isGayBerne()) {
165 >              currShape = new Ellipsoid(V3Zero, gba.getL() / 2.0,
166 >                                        gba.getD() / 2.0,
167 >                                        Mat3x3d::identity());
168              } else {
169 <                //error
169 >              LennardJonesAdapter lja = LennardJonesAdapter(atomType);
170 >              if (lja.isLennardJones()){
171 >                currShape = new Sphere(atom->getPos(), lja.getSigma()/2.0);
172 >              } else {
173 >                int aNum = etab.GetAtomicNum((atom->getType()).c_str());
174 >                if (aNum != 0) {
175 >                  currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
176 >                } else {
177 >                  sprintf( painCave.errMsg,
178 >                           "Could not find atom type in default element.txt\n");
179 >                  painCave.severity = OPENMD_ERROR;
180 >                  painCave.isFatal = 1;
181 >                  simError();          
182 >                }
183 >              }
184              }
185 <            
186 <           }
185 >          }
186 >
187 >          if (!simParams->haveTargetTemp()) {
188 >            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
189 >            painCave.isFatal = 1;
190 >            painCave.severity = OPENMD_ERROR;
191 >            simError();
192 >          }
193 >
194 >          if (!simParams->haveViscosity()) {
195 >            sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
196 >            painCave.isFatal = 1;
197 >            painCave.severity = OPENMD_ERROR;
198 >            simError();
199 >          }
200 >
201 >
202 >          HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
203 >          std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType());
204 >          if (iter != hydroPropMap.end())
205 >            hydroProps_.push_back(iter->second);
206 >          else {
207 >            currHydroProp->complete();
208 >            hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(sd->getType(), currHydroProp));
209 >            hydroProps_.push_back(currHydroProp);
210 >          }
211 >        }
212 >      }
213      }
214 <    variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt();
215 <  }
216 <  std::map<std::string, HydroProp> LDForceManager::parseFrictionFile(const std::string& filename) {
217 <    std::map<std::string, HydroProp> props;
214 >    variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt();
215 >  }  
216 >
217 >  std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
218 >    std::map<std::string, HydroProp*> props;
219      std::ifstream ifs(filename.c_str());
220      if (ifs.is_open()) {
221 <
221 >      
222      }
223 <
223 >    
224      const unsigned int BufferSize = 65535;
225      char buffer[BufferSize];  
226      while (ifs.getline(buffer, BufferSize)) {
227 <        StringTokenizer tokenizer(buffer);
228 <        HydroProp currProp;
86 <        if (tokenizer.countTokens() >= 40) {
87 <            std::string atomName = tokenizer.nextToken();
88 <            currProp.cor[0] = tokenizer.nextTokenAsDouble();
89 <            currProp.cor[1] = tokenizer.nextTokenAsDouble();
90 <            currProp.cor[2] = tokenizer.nextTokenAsDouble();
91 <            
92 <            currProp.Xirtt(0,0) = tokenizer.nextTokenAsDouble();
93 <            currProp.Xirtt(0,1) = tokenizer.nextTokenAsDouble();
94 <            currProp.Xirtt(0,2) = tokenizer.nextTokenAsDouble();
95 <            currProp.Xirtt(1,0) = tokenizer.nextTokenAsDouble();
96 <            currProp.Xirtt(1,1) = tokenizer.nextTokenAsDouble();
97 <            currProp.Xirtt(1,2) = tokenizer.nextTokenAsDouble();
98 <            currProp.Xirtt(2,0) = tokenizer.nextTokenAsDouble();
99 <            currProp.Xirtt(2,1) = tokenizer.nextTokenAsDouble();
100 <            currProp.Xirtt(2,2) = tokenizer.nextTokenAsDouble();
101 <
102 <            currProp.Xirrt(0,0) = tokenizer.nextTokenAsDouble();
103 <            currProp.Xirrt(0,1) = tokenizer.nextTokenAsDouble();
104 <            currProp.Xirrt(0,2) = tokenizer.nextTokenAsDouble();
105 <            currProp.Xirrt(1,0) = tokenizer.nextTokenAsDouble();
106 <            currProp.Xirrt(1,1) = tokenizer.nextTokenAsDouble();
107 <            currProp.Xirrt(1,2) = tokenizer.nextTokenAsDouble();
108 <            currProp.Xirrt(2,0) = tokenizer.nextTokenAsDouble();
109 <            currProp.Xirrt(2,1) = tokenizer.nextTokenAsDouble();
110 <            currProp.Xirrt(2,2) = tokenizer.nextTokenAsDouble();
111 <        
112 <            currProp.Xirtr(0,0) = tokenizer.nextTokenAsDouble();
113 <            currProp.Xirtr(0,1) = tokenizer.nextTokenAsDouble();
114 <            currProp.Xirtr(0,2) = tokenizer.nextTokenAsDouble();
115 <            currProp.Xirtr(1,0) = tokenizer.nextTokenAsDouble();
116 <            currProp.Xirtr(1,1) = tokenizer.nextTokenAsDouble();
117 <            currProp.Xirtr(1,2) = tokenizer.nextTokenAsDouble();
118 <            currProp.Xirtr(2,0) = tokenizer.nextTokenAsDouble();
119 <            currProp.Xirtr(2,1) = tokenizer.nextTokenAsDouble();
120 <            currProp.Xirtr(2,2) = tokenizer.nextTokenAsDouble();
121 <
122 <            currProp.Xirrr(0,0) = tokenizer.nextTokenAsDouble();
123 <            currProp.Xirrr(0,1) = tokenizer.nextTokenAsDouble();
124 <            currProp.Xirrr(0,2) = tokenizer.nextTokenAsDouble();
125 <            currProp.Xirrr(1,0) = tokenizer.nextTokenAsDouble();
126 <            currProp.Xirrr(1,1) = tokenizer.nextTokenAsDouble();
127 <            currProp.Xirrr(1,2) = tokenizer.nextTokenAsDouble();
128 <            currProp.Xirrr(2,0) = tokenizer.nextTokenAsDouble();
129 <            currProp.Xirrr(2,1) = tokenizer.nextTokenAsDouble();
130 <            currProp.Xirrr(2,2) = tokenizer.nextTokenAsDouble();
131 <
132 <            SquareMatrix<double, 6> Xir;
133 <            Xir.setSubMatrix(0, 0, currProp.Xirtt);
134 <            Xir.setSubMatrix(0, 3, currProp.Xirrt);
135 <            Xir.setSubMatrix(3, 0, currProp.Xirtr);
136 <            Xir.setSubMatrix(3, 3, currProp.Xirrr);
137 <            CholeskyDecomposition(Xir, currProp.S);            
138 <
139 <            props.insert(std::map<std::string, HydroProp>::value_type(atomName, currProp));
140 <        }
227 >      HydroProp* currProp = new HydroProp(buffer);
228 >      props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
229      }
230  
231      return props;
232    }
233 <  
234 <  void LDForceManager::postCalculation() {
233 >  
234 >  void LDForceManager::postCalculation(){
235      SimInfo::MoleculeIterator i;
236      Molecule::IntegrableObjectIterator  j;
237      Molecule* mol;
238 <    StuntDouble* integrableObject;
239 <    Vector3d vel;
238 >    StuntDouble* sd;
239 >    RealType mass;
240      Vector3d pos;
241      Vector3d frc;
242      Mat3x3d A;
243      Mat3x3d Atrans;
244      Vector3d Tb;
245      Vector3d ji;
158    double mass;
246      unsigned int index = 0;
247 +    bool doLangevinForces;
248 +    bool freezeMolecule;
249 +    int fdf;
250 +
251 +    fdf = 0;
252 +
253      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
161      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
162           integrableObject = mol->nextIntegrableObject(j)) {
254  
255 <          vel =integrableObject->getVel();
256 <          if (integrableObject->isDirectional()){
166 <             //calculate angular velocity in lab frame
167 <             Mat3x3d I = integrableObject->getI();
168 <             Vector3d angMom = integrableObject->getJ();
169 <             Vector3d omega;
255 >      doLangevinForces = true;          
256 >      freezeMolecule = false;
257  
258 <             if (integrableObject->isLinear()) {
259 <                int linearAxis = integrableObject->linearAxis();
258 >      if (sphericalBoundaryConditions_) {
259 >        
260 >        Vector3d molPos = mol->getCom();
261 >        RealType molRad = molPos.length();
262 >
263 >        doLangevinForces = false;
264 >        
265 >        if (molRad > langevinBufferRadius_) {
266 >          doLangevinForces = true;
267 >          freezeMolecule = false;
268 >        }
269 >        if (molRad > frozenBufferRadius_) {
270 >          doLangevinForces = false;
271 >          freezeMolecule = true;
272 >        }
273 >      }
274 >      
275 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
276 >           sd = mol->nextIntegrableObject(j)) {
277 >          
278 >        if (freezeMolecule)
279 >          fdf += sd->freeze();
280 >        
281 >        if (doLangevinForces) {  
282 >          mass = sd->getMass();
283 >          if (sd->isDirectional()){
284 >
285 >            // preliminaries for directional objects:
286 >
287 >            A = sd->getA();
288 >            Atrans = A.transpose();
289 >            Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();  
290 >
291 >            //apply random force and torque at center of resistance
292 >
293 >            Vector3d randomForceBody;
294 >            Vector3d randomTorqueBody;
295 >            genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
296 >            Vector3d randomForceLab = Atrans * randomForceBody;
297 >            Vector3d randomTorqueLab = Atrans * randomTorqueBody;
298 >            sd->addFrc(randomForceLab);            
299 >            sd->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));            
300 >
301 >            Mat3x3d I = sd->getI();
302 >            Vector3d omegaBody;
303 >
304 >            // What remains contains velocity explicitly, but the velocity required
305 >            // is at the full step: v(t + h), while we have initially the velocity
306 >            // at the half step: v(t + h/2).  We need to iterate to converge the
307 >            // friction force and friction torque vectors.
308 >
309 >            // this is the velocity at the half-step:
310 >            
311 >            Vector3d vel =sd->getVel();
312 >            Vector3d angMom = sd->getJ();
313 >
314 >            //estimate velocity at full-step using everything but friction forces:          
315 >
316 >            frc = sd->getFrc();
317 >            Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc;
318 >
319 >            Tb = sd->lab2Body(sd->getTrq());
320 >            Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb;                            
321 >
322 >            Vector3d omegaLab;
323 >            Vector3d vcdLab;
324 >            Vector3d vcdBody;
325 >            Vector3d frictionForceBody;
326 >            Vector3d frictionForceLab(0.0);
327 >            Vector3d oldFFL;  // used to test for convergence
328 >            Vector3d frictionTorqueBody(0.0);
329 >            Vector3d oldFTB;  // used to test for convergence
330 >            Vector3d frictionTorqueLab;
331 >            RealType fdot;
332 >            RealType tdot;
333 >
334 >            //iteration starts here:
335 >
336 >            for (int k = 0; k < maxIterNum_; k++) {
337 >                            
338 >              if (sd->isLinear()) {
339 >                int linearAxis = sd->linearAxis();
340                  int l = (linearAxis +1 )%3;
341                  int m = (linearAxis +2 )%3;
342 <                omega[l] = angMom[l] /I(l, l);
343 <                omega[m] = angMom[m] /I(m, m);
342 >                omegaBody[l] = angMomStep[l] /I(l, l);
343 >                omegaBody[m] = angMomStep[m] /I(m, m);
344                  
345 <             } else {
346 <                 omega[0] = angMom[0] /I(0, 0);
347 <                 omega[1] = angMom[1] /I(1, 1);
348 <                 omega[2] = angMom[2] /I(2, 2);
349 <             }
345 >              } else {
346 >                omegaBody[0] = angMomStep[0] /I(0, 0);
347 >                omegaBody[1] = angMomStep[1] /I(1, 1);
348 >                omegaBody[2] = angMomStep[2] /I(2, 2);
349 >              }
350 >              
351 >              omegaLab = Atrans * omegaBody;
352 >              
353 >              // apply friction force and torque at center of resistance
354 >              
355 >              vcdLab = velStep + cross(omegaLab, rcrLab);      
356 >              vcdBody = A * vcdLab;
357 >              frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
358 >              oldFFL = frictionForceLab;
359 >              frictionForceLab = Atrans * frictionForceBody;
360 >              oldFTB = frictionTorqueBody;
361 >              frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
362 >              frictionTorqueLab = Atrans * frictionTorqueBody;
363 >              
364 >              // re-estimate velocities at full-step using friction forces:
365 >              
366 >              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab);
367 >              angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody);
368  
369 <             //apply friction force and torque at center of resistance
370 <             A = integrableObject->getA();
371 <             Atrans = A.transpose();
372 <             Vector3d rcr = Atrans * hydroProps_[index].cor;  
373 <             Vector3d vcdLab = vel + cross(omega, rcr);
374 <             Vector3d vcdBody = A* vcdLab;
375 <             Vector3d frictionForceBody = -(hydroProps_[index].Xirtt * vcdBody + hydroProps_[index].Xirrt * omega);
376 <             Vector3d frictionForceLab = Atrans*frictionForceBody;
192 <             integrableObject->addFrc(frictionForceLab);
193 <             Vector3d frictionTorqueBody = - (hydroProps_[index].Xirtr * vcdBody + hydroProps_[index].Xirrr * omega);
194 <             Vector3d frictionTorqueLab = Atrans*frictionTorqueBody;
195 <             integrableObject->addTrq(frictionTorqueLab+ cross(rcr, frictionForceLab));
369 >              // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
370 >              
371 >              fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
372 >              tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
373 >              
374 >              if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
375 >                break; // iteration ends here
376 >            }
377  
378 <             //apply random force and torque at center of resistance
379 <             Vector3d randomForceBody;
199 <             Vector3d randomTorqueBody;
200 <             genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
201 <             Vector3d randomForceLab = Atrans*randomForceBody;
202 <             Vector3d randomTorqueLab = Atrans* randomTorqueBody;
203 <             integrableObject->addFrc(randomForceLab);            
204 <             integrableObject->addTrq(randomTorqueLab + cross(rcr, randomForceLab ));            
378 >            sd->addFrc(frictionForceLab);
379 >            sd->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
380  
381 +            
382            } else {
383 <             //spheric atom
208 <             Vector3d frictionForce = -(hydroProps_[index].Xirtt *vel);    
209 <             Vector3d randomForce;
210 <             Vector3d randomTorque;
211 <             genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
383 >            //spherical atom
384  
385 <             integrableObject->addFrc(frictionForce+randomForce);            
386 <          }
385 >            Vector3d randomForce;
386 >            Vector3d randomTorque;
387 >            genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
388 >            sd->addFrc(randomForce);            
389  
390 +            // What remains contains velocity explicitly, but the velocity required
391 +            // is at the full step: v(t + h), while we have initially the velocity
392 +            // at the half step: v(t + h/2).  We need to iterate to converge the
393 +            // friction force vector.
394 +
395 +            // this is the velocity at the half-step:
396 +            
397 +            Vector3d vel =sd->getVel();
398 +
399 +            //estimate velocity at full-step using everything but friction forces:          
400 +
401 +            frc = sd->getFrc();
402 +            Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc;
403 +
404 +            Vector3d frictionForce(0.0);
405 +            Vector3d oldFF;  // used to test for convergence
406 +            RealType fdot;
407 +
408 +            //iteration starts here:
409 +
410 +            for (int k = 0; k < maxIterNum_; k++) {
411 +
412 +              oldFF = frictionForce;                            
413 +              frictionForce = -hydroProps_[index]->getXitt() * velStep;
414 +
415 +              // re-estimate velocities at full-step using friction forces:
416 +              
417 +              velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce);
418 +
419 +              // check for convergence (if the vector has converged, fdot will be 1.0):
420 +              
421 +              fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
422 +              
423 +              if (fabs(1.0 - fdot) <= forceTolerance_)
424 +                break; // iteration ends here
425 +            }
426 +
427 +            sd->addFrc(frictionForce);
428 +
429 +          }
430 +        }
431 +          
432          ++index;
433      
434        }
435      }    
436  
437 <    ForceManager::postCalculation();
437 >    info_->setFdf(fdf);
438 >    veloMunge->removeComDrift();
439 >    // Remove angular drift if we are not using periodic boundary conditions.
440 >    if(!simParams->getUsePeriodicBoundaryConditions())
441 >      veloMunge->removeAngularDrift();
442  
443 <
224 <
443 >    ForceManager::postCalculation();  
444    }
445  
446 < void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, double variance) {
446 > void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
447  
448  
449 <    Vector<double, 6> Z;
450 <    Vector<double, 6> generalForce;
232 <
449 >    Vector<RealType, 6> Z;
450 >    Vector<RealType, 6> generalForce;
451          
452      Z[0] = randNumGen_.randNorm(0, variance);
453      Z[1] = randNumGen_.randNorm(0, variance);
# Line 238 | Line 456 | void LDForceManager::genRandomForceAndTorque(Vector3d&
456      Z[4] = randNumGen_.randNorm(0, variance);
457      Z[5] = randNumGen_.randNorm(0, variance);
458      
459 <
242 <    generalForce = hydroProps_[index].S*Z;
459 >    generalForce = hydroProps_[index]->getS()*Z;
460      
461      force[0] = generalForce[0];
462      force[1] = generalForce[1];
# Line 248 | Line 465 | void LDForceManager::genRandomForceAndTorque(Vector3d&
465      torque[1] = generalForce[4];
466      torque[2] = generalForce[5];
467      
468 < }
468 > }
469  
470   }

Comparing:
trunk/src/integrators/LDForceManager.cpp (property svn:keywords), Revision 908 by tim, Mon Mar 20 19:12:14 2006 UTC vs.
branches/development/src/integrators/LDForceManager.cpp (property svn:keywords), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines