1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
#include <fstream> |
43 |
#include <iostream> |
44 |
#include "integrators/LDForceManager.hpp" |
45 |
#include "math/CholeskyDecomposition.hpp" |
46 |
#include "utils/PhysicalConstants.hpp" |
47 |
#include "hydrodynamics/Sphere.hpp" |
48 |
#include "hydrodynamics/Ellipsoid.hpp" |
49 |
#include "utils/ElementsTable.hpp" |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) { |
54 |
simParams = info->getSimParams(); |
55 |
veloMunge = new Velocitizer(info); |
56 |
|
57 |
sphericalBoundaryConditions_ = false; |
58 |
if (simParams->getUseSphericalBoundaryConditions()) { |
59 |
sphericalBoundaryConditions_ = true; |
60 |
if (simParams->haveLangevinBufferRadius()) { |
61 |
langevinBufferRadius_ = simParams->getLangevinBufferRadius(); |
62 |
} else { |
63 |
sprintf( painCave.errMsg, |
64 |
"langevinBufferRadius must be specified " |
65 |
"when useSphericalBoundaryConditions is turned on.\n"); |
66 |
painCave.severity = OPENMD_ERROR; |
67 |
painCave.isFatal = 1; |
68 |
simError(); |
69 |
} |
70 |
|
71 |
if (simParams->haveFrozenBufferRadius()) { |
72 |
frozenBufferRadius_ = simParams->getFrozenBufferRadius(); |
73 |
} else { |
74 |
sprintf( painCave.errMsg, |
75 |
"frozenBufferRadius must be specified " |
76 |
"when useSphericalBoundaryConditions is turned on.\n"); |
77 |
painCave.severity = OPENMD_ERROR; |
78 |
painCave.isFatal = 1; |
79 |
simError(); |
80 |
} |
81 |
|
82 |
if (frozenBufferRadius_ < langevinBufferRadius_) { |
83 |
sprintf( painCave.errMsg, |
84 |
"frozenBufferRadius has been set smaller than the " |
85 |
"langevinBufferRadius. This is probably an error.\n"); |
86 |
painCave.severity = OPENMD_WARNING; |
87 |
painCave.isFatal = 0; |
88 |
simError(); |
89 |
} |
90 |
} |
91 |
|
92 |
// Build the hydroProp map: |
93 |
std::map<std::string, HydroProp*> hydroPropMap; |
94 |
|
95 |
Molecule* mol; |
96 |
StuntDouble* integrableObject; |
97 |
SimInfo::MoleculeIterator i; |
98 |
Molecule::IntegrableObjectIterator j; |
99 |
bool needHydroPropFile = false; |
100 |
|
101 |
for (mol = info->beginMolecule(i); mol != NULL; |
102 |
mol = info->nextMolecule(i)) { |
103 |
for (integrableObject = mol->beginIntegrableObject(j); |
104 |
integrableObject != NULL; |
105 |
integrableObject = mol->nextIntegrableObject(j)) { |
106 |
|
107 |
if (integrableObject->isRigidBody()) { |
108 |
RigidBody* rb = static_cast<RigidBody*>(integrableObject); |
109 |
if (rb->getNumAtoms() > 1) needHydroPropFile = true; |
110 |
} |
111 |
|
112 |
} |
113 |
} |
114 |
|
115 |
|
116 |
if (needHydroPropFile) { |
117 |
if (simParams->haveHydroPropFile()) { |
118 |
hydroPropMap = parseFrictionFile(simParams->getHydroPropFile()); |
119 |
} else { |
120 |
sprintf( painCave.errMsg, |
121 |
"HydroPropFile must be set to a file name if Langevin Dynamics\n" |
122 |
"\tis specified for rigidBodies which contain more than one atom\n" |
123 |
"\tTo create a HydroPropFile, run the \"Hydro\" program.\n"); |
124 |
painCave.severity = OPENMD_ERROR; |
125 |
painCave.isFatal = 1; |
126 |
simError(); |
127 |
} |
128 |
|
129 |
for (mol = info->beginMolecule(i); mol != NULL; |
130 |
mol = info->nextMolecule(i)) { |
131 |
for (integrableObject = mol->beginIntegrableObject(j); |
132 |
integrableObject != NULL; |
133 |
integrableObject = mol->nextIntegrableObject(j)) { |
134 |
|
135 |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
136 |
if (iter != hydroPropMap.end()) { |
137 |
hydroProps_.push_back(iter->second); |
138 |
} else { |
139 |
sprintf( painCave.errMsg, |
140 |
"Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str()); |
141 |
painCave.severity = OPENMD_ERROR; |
142 |
painCave.isFatal = 1; |
143 |
simError(); |
144 |
} |
145 |
} |
146 |
} |
147 |
} else { |
148 |
|
149 |
std::map<std::string, HydroProp*> hydroPropMap; |
150 |
for (mol = info->beginMolecule(i); mol != NULL; |
151 |
mol = info->nextMolecule(i)) { |
152 |
for (integrableObject = mol->beginIntegrableObject(j); |
153 |
integrableObject != NULL; |
154 |
integrableObject = mol->nextIntegrableObject(j)) { |
155 |
Shape* currShape = NULL; |
156 |
|
157 |
if (integrableObject->isAtom()){ |
158 |
Atom* atom = static_cast<Atom*>(integrableObject); |
159 |
AtomType* atomType = atom->getAtomType(); |
160 |
if (atomType->isGayBerne()) { |
161 |
DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType); |
162 |
GenericData* data = dAtomType->getPropertyByName("GayBerne"); |
163 |
if (data != NULL) { |
164 |
GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data); |
165 |
|
166 |
if (gayBerneData != NULL) { |
167 |
GayBerneParam gayBerneParam = gayBerneData->getData(); |
168 |
currShape = new Ellipsoid(V3Zero, |
169 |
gayBerneParam.GB_l / 2.0, |
170 |
gayBerneParam.GB_d / 2.0, |
171 |
Mat3x3d::identity()); |
172 |
} else { |
173 |
sprintf( painCave.errMsg, |
174 |
"Can not cast GenericData to GayBerneParam\n"); |
175 |
painCave.severity = OPENMD_ERROR; |
176 |
painCave.isFatal = 1; |
177 |
simError(); |
178 |
} |
179 |
} else { |
180 |
sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n"); |
181 |
painCave.severity = OPENMD_ERROR; |
182 |
painCave.isFatal = 1; |
183 |
simError(); |
184 |
} |
185 |
} else { |
186 |
if (atomType->isLennardJones()){ |
187 |
GenericData* data = atomType->getPropertyByName("LennardJones"); |
188 |
if (data != NULL) { |
189 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
190 |
if (ljData != NULL) { |
191 |
LJParam ljParam = ljData->getData(); |
192 |
currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0); |
193 |
} else { |
194 |
sprintf( painCave.errMsg, |
195 |
"Can not cast GenericData to LJParam\n"); |
196 |
painCave.severity = OPENMD_ERROR; |
197 |
painCave.isFatal = 1; |
198 |
simError(); |
199 |
} |
200 |
} |
201 |
} else { |
202 |
int aNum = etab.GetAtomicNum((atom->getType()).c_str()); |
203 |
if (aNum != 0) { |
204 |
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum)); |
205 |
} else { |
206 |
sprintf( painCave.errMsg, |
207 |
"Could not find atom type in default element.txt\n"); |
208 |
painCave.severity = OPENMD_ERROR; |
209 |
painCave.isFatal = 1; |
210 |
simError(); |
211 |
} |
212 |
} |
213 |
} |
214 |
} |
215 |
|
216 |
if (!simParams->haveTargetTemp()) { |
217 |
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n"); |
218 |
painCave.isFatal = 1; |
219 |
painCave.severity = OPENMD_ERROR; |
220 |
simError(); |
221 |
} |
222 |
|
223 |
if (!simParams->haveViscosity()) { |
224 |
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n"); |
225 |
painCave.isFatal = 1; |
226 |
painCave.severity = OPENMD_ERROR; |
227 |
simError(); |
228 |
} |
229 |
|
230 |
|
231 |
HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp()); |
232 |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
233 |
if (iter != hydroPropMap.end()) |
234 |
hydroProps_.push_back(iter->second); |
235 |
else { |
236 |
currHydroProp->complete(); |
237 |
hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp)); |
238 |
hydroProps_.push_back(currHydroProp); |
239 |
} |
240 |
} |
241 |
} |
242 |
} |
243 |
variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt(); |
244 |
} |
245 |
|
246 |
std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) { |
247 |
std::map<std::string, HydroProp*> props; |
248 |
std::ifstream ifs(filename.c_str()); |
249 |
if (ifs.is_open()) { |
250 |
|
251 |
} |
252 |
|
253 |
const unsigned int BufferSize = 65535; |
254 |
char buffer[BufferSize]; |
255 |
while (ifs.getline(buffer, BufferSize)) { |
256 |
HydroProp* currProp = new HydroProp(buffer); |
257 |
props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp)); |
258 |
} |
259 |
|
260 |
return props; |
261 |
} |
262 |
|
263 |
void LDForceManager::postCalculation(){ |
264 |
SimInfo::MoleculeIterator i; |
265 |
Molecule::IntegrableObjectIterator j; |
266 |
Molecule* mol; |
267 |
StuntDouble* integrableObject; |
268 |
RealType mass; |
269 |
Vector3d pos; |
270 |
Vector3d frc; |
271 |
Mat3x3d A; |
272 |
Mat3x3d Atrans; |
273 |
Vector3d Tb; |
274 |
Vector3d ji; |
275 |
unsigned int index = 0; |
276 |
bool doLangevinForces; |
277 |
bool freezeMolecule; |
278 |
int fdf; |
279 |
|
280 |
fdf = 0; |
281 |
|
282 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
283 |
|
284 |
doLangevinForces = true; |
285 |
freezeMolecule = false; |
286 |
|
287 |
if (sphericalBoundaryConditions_) { |
288 |
|
289 |
Vector3d molPos = mol->getCom(); |
290 |
RealType molRad = molPos.length(); |
291 |
|
292 |
doLangevinForces = false; |
293 |
|
294 |
if (molRad > langevinBufferRadius_) { |
295 |
doLangevinForces = true; |
296 |
freezeMolecule = false; |
297 |
} |
298 |
if (molRad > frozenBufferRadius_) { |
299 |
doLangevinForces = false; |
300 |
freezeMolecule = true; |
301 |
} |
302 |
} |
303 |
|
304 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
305 |
integrableObject = mol->nextIntegrableObject(j)) { |
306 |
|
307 |
if (freezeMolecule) |
308 |
fdf += integrableObject->freeze(); |
309 |
|
310 |
if (doLangevinForces) { |
311 |
mass = integrableObject->getMass(); |
312 |
if (integrableObject->isDirectional()){ |
313 |
|
314 |
// preliminaries for directional objects: |
315 |
|
316 |
A = integrableObject->getA(); |
317 |
Atrans = A.transpose(); |
318 |
Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR(); |
319 |
|
320 |
//apply random force and torque at center of resistance |
321 |
|
322 |
Vector3d randomForceBody; |
323 |
Vector3d randomTorqueBody; |
324 |
genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_); |
325 |
Vector3d randomForceLab = Atrans * randomForceBody; |
326 |
Vector3d randomTorqueLab = Atrans * randomTorqueBody; |
327 |
integrableObject->addFrc(randomForceLab); |
328 |
integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab )); |
329 |
|
330 |
Mat3x3d I = integrableObject->getI(); |
331 |
Vector3d omegaBody; |
332 |
|
333 |
// What remains contains velocity explicitly, but the velocity required |
334 |
// is at the full step: v(t + h), while we have initially the velocity |
335 |
// at the half step: v(t + h/2). We need to iterate to converge the |
336 |
// friction force and friction torque vectors. |
337 |
|
338 |
// this is the velocity at the half-step: |
339 |
|
340 |
Vector3d vel =integrableObject->getVel(); |
341 |
Vector3d angMom = integrableObject->getJ(); |
342 |
|
343 |
//estimate velocity at full-step using everything but friction forces: |
344 |
|
345 |
frc = integrableObject->getFrc(); |
346 |
Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc; |
347 |
|
348 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
349 |
Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb; |
350 |
|
351 |
Vector3d omegaLab; |
352 |
Vector3d vcdLab; |
353 |
Vector3d vcdBody; |
354 |
Vector3d frictionForceBody; |
355 |
Vector3d frictionForceLab(0.0); |
356 |
Vector3d oldFFL; // used to test for convergence |
357 |
Vector3d frictionTorqueBody(0.0); |
358 |
Vector3d oldFTB; // used to test for convergence |
359 |
Vector3d frictionTorqueLab; |
360 |
RealType fdot; |
361 |
RealType tdot; |
362 |
|
363 |
//iteration starts here: |
364 |
|
365 |
for (int k = 0; k < maxIterNum_; k++) { |
366 |
|
367 |
if (integrableObject->isLinear()) { |
368 |
int linearAxis = integrableObject->linearAxis(); |
369 |
int l = (linearAxis +1 )%3; |
370 |
int m = (linearAxis +2 )%3; |
371 |
omegaBody[l] = angMomStep[l] /I(l, l); |
372 |
omegaBody[m] = angMomStep[m] /I(m, m); |
373 |
|
374 |
} else { |
375 |
omegaBody[0] = angMomStep[0] /I(0, 0); |
376 |
omegaBody[1] = angMomStep[1] /I(1, 1); |
377 |
omegaBody[2] = angMomStep[2] /I(2, 2); |
378 |
} |
379 |
|
380 |
omegaLab = Atrans * omegaBody; |
381 |
|
382 |
// apply friction force and torque at center of resistance |
383 |
|
384 |
vcdLab = velStep + cross(omegaLab, rcrLab); |
385 |
vcdBody = A * vcdLab; |
386 |
frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody); |
387 |
oldFFL = frictionForceLab; |
388 |
frictionForceLab = Atrans * frictionForceBody; |
389 |
oldFTB = frictionTorqueBody; |
390 |
frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody); |
391 |
frictionTorqueLab = Atrans * frictionTorqueBody; |
392 |
|
393 |
// re-estimate velocities at full-step using friction forces: |
394 |
|
395 |
velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab); |
396 |
angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody); |
397 |
|
398 |
// check for convergence (if the vectors have converged, fdot and tdot will both be 1.0): |
399 |
|
400 |
fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare(); |
401 |
tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare(); |
402 |
|
403 |
if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_) |
404 |
break; // iteration ends here |
405 |
} |
406 |
|
407 |
integrableObject->addFrc(frictionForceLab); |
408 |
integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab)); |
409 |
|
410 |
|
411 |
} else { |
412 |
//spherical atom |
413 |
|
414 |
Vector3d randomForce; |
415 |
Vector3d randomTorque; |
416 |
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
417 |
integrableObject->addFrc(randomForce); |
418 |
|
419 |
// What remains contains velocity explicitly, but the velocity required |
420 |
// is at the full step: v(t + h), while we have initially the velocity |
421 |
// at the half step: v(t + h/2). We need to iterate to converge the |
422 |
// friction force vector. |
423 |
|
424 |
// this is the velocity at the half-step: |
425 |
|
426 |
Vector3d vel =integrableObject->getVel(); |
427 |
|
428 |
//estimate velocity at full-step using everything but friction forces: |
429 |
|
430 |
frc = integrableObject->getFrc(); |
431 |
Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc; |
432 |
|
433 |
Vector3d frictionForce(0.0); |
434 |
Vector3d oldFF; // used to test for convergence |
435 |
RealType fdot; |
436 |
|
437 |
//iteration starts here: |
438 |
|
439 |
for (int k = 0; k < maxIterNum_; k++) { |
440 |
|
441 |
oldFF = frictionForce; |
442 |
frictionForce = -hydroProps_[index]->getXitt() * velStep; |
443 |
|
444 |
// re-estimate velocities at full-step using friction forces: |
445 |
|
446 |
velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce); |
447 |
|
448 |
// check for convergence (if the vector has converged, fdot will be 1.0): |
449 |
|
450 |
fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare(); |
451 |
|
452 |
if (fabs(1.0 - fdot) <= forceTolerance_) |
453 |
break; // iteration ends here |
454 |
} |
455 |
|
456 |
integrableObject->addFrc(frictionForce); |
457 |
|
458 |
} |
459 |
} |
460 |
|
461 |
++index; |
462 |
|
463 |
} |
464 |
} |
465 |
|
466 |
info_->setFdf(fdf); |
467 |
veloMunge->removeComDrift(); |
468 |
// Remove angular drift if we are not using periodic boundary conditions. |
469 |
if(!simParams->getUsePeriodicBoundaryConditions()) |
470 |
veloMunge->removeAngularDrift(); |
471 |
|
472 |
ForceManager::postCalculation(); |
473 |
} |
474 |
|
475 |
void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) { |
476 |
|
477 |
|
478 |
Vector<RealType, 6> Z; |
479 |
Vector<RealType, 6> generalForce; |
480 |
|
481 |
Z[0] = randNumGen_.randNorm(0, variance); |
482 |
Z[1] = randNumGen_.randNorm(0, variance); |
483 |
Z[2] = randNumGen_.randNorm(0, variance); |
484 |
Z[3] = randNumGen_.randNorm(0, variance); |
485 |
Z[4] = randNumGen_.randNorm(0, variance); |
486 |
Z[5] = randNumGen_.randNorm(0, variance); |
487 |
|
488 |
generalForce = hydroProps_[index]->getS()*Z; |
489 |
|
490 |
force[0] = generalForce[0]; |
491 |
force[1] = generalForce[1]; |
492 |
force[2] = generalForce[2]; |
493 |
torque[0] = generalForce[3]; |
494 |
torque[1] = generalForce[4]; |
495 |
torque[2] = generalForce[5]; |
496 |
|
497 |
} |
498 |
|
499 |
} |