ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/LDForceManager.cpp
Revision: 1665
Committed: Tue Nov 22 20:38:56 2011 UTC (13 years, 6 months ago) by gezelter
File size: 19651 byte(s)
Log Message:
updated copyright notices

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include <fstream>
43 #include <iostream>
44 #include "integrators/LDForceManager.hpp"
45 #include "math/CholeskyDecomposition.hpp"
46 #include "utils/PhysicalConstants.hpp"
47 #include "hydrodynamics/Sphere.hpp"
48 #include "hydrodynamics/Ellipsoid.hpp"
49 #include "utils/ElementsTable.hpp"
50
51 namespace OpenMD {
52
53 LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
54 simParams = info->getSimParams();
55 veloMunge = new Velocitizer(info);
56
57 sphericalBoundaryConditions_ = false;
58 if (simParams->getUseSphericalBoundaryConditions()) {
59 sphericalBoundaryConditions_ = true;
60 if (simParams->haveLangevinBufferRadius()) {
61 langevinBufferRadius_ = simParams->getLangevinBufferRadius();
62 } else {
63 sprintf( painCave.errMsg,
64 "langevinBufferRadius must be specified "
65 "when useSphericalBoundaryConditions is turned on.\n");
66 painCave.severity = OPENMD_ERROR;
67 painCave.isFatal = 1;
68 simError();
69 }
70
71 if (simParams->haveFrozenBufferRadius()) {
72 frozenBufferRadius_ = simParams->getFrozenBufferRadius();
73 } else {
74 sprintf( painCave.errMsg,
75 "frozenBufferRadius must be specified "
76 "when useSphericalBoundaryConditions is turned on.\n");
77 painCave.severity = OPENMD_ERROR;
78 painCave.isFatal = 1;
79 simError();
80 }
81
82 if (frozenBufferRadius_ < langevinBufferRadius_) {
83 sprintf( painCave.errMsg,
84 "frozenBufferRadius has been set smaller than the "
85 "langevinBufferRadius. This is probably an error.\n");
86 painCave.severity = OPENMD_WARNING;
87 painCave.isFatal = 0;
88 simError();
89 }
90 }
91
92 // Build the hydroProp map:
93 std::map<std::string, HydroProp*> hydroPropMap;
94
95 Molecule* mol;
96 StuntDouble* integrableObject;
97 SimInfo::MoleculeIterator i;
98 Molecule::IntegrableObjectIterator j;
99 bool needHydroPropFile = false;
100
101 for (mol = info->beginMolecule(i); mol != NULL;
102 mol = info->nextMolecule(i)) {
103 for (integrableObject = mol->beginIntegrableObject(j);
104 integrableObject != NULL;
105 integrableObject = mol->nextIntegrableObject(j)) {
106
107 if (integrableObject->isRigidBody()) {
108 RigidBody* rb = static_cast<RigidBody*>(integrableObject);
109 if (rb->getNumAtoms() > 1) needHydroPropFile = true;
110 }
111
112 }
113 }
114
115
116 if (needHydroPropFile) {
117 if (simParams->haveHydroPropFile()) {
118 hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
119 } else {
120 sprintf( painCave.errMsg,
121 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
122 "\tis specified for rigidBodies which contain more than one atom\n"
123 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
124 painCave.severity = OPENMD_ERROR;
125 painCave.isFatal = 1;
126 simError();
127 }
128
129 for (mol = info->beginMolecule(i); mol != NULL;
130 mol = info->nextMolecule(i)) {
131 for (integrableObject = mol->beginIntegrableObject(j);
132 integrableObject != NULL;
133 integrableObject = mol->nextIntegrableObject(j)) {
134
135 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
136 if (iter != hydroPropMap.end()) {
137 hydroProps_.push_back(iter->second);
138 } else {
139 sprintf( painCave.errMsg,
140 "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
141 painCave.severity = OPENMD_ERROR;
142 painCave.isFatal = 1;
143 simError();
144 }
145 }
146 }
147 } else {
148
149 std::map<std::string, HydroProp*> hydroPropMap;
150 for (mol = info->beginMolecule(i); mol != NULL;
151 mol = info->nextMolecule(i)) {
152 for (integrableObject = mol->beginIntegrableObject(j);
153 integrableObject != NULL;
154 integrableObject = mol->nextIntegrableObject(j)) {
155 Shape* currShape = NULL;
156
157 if (integrableObject->isAtom()){
158 Atom* atom = static_cast<Atom*>(integrableObject);
159 AtomType* atomType = atom->getAtomType();
160 if (atomType->isGayBerne()) {
161 DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
162 GenericData* data = dAtomType->getPropertyByName("GayBerne");
163 if (data != NULL) {
164 GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
165
166 if (gayBerneData != NULL) {
167 GayBerneParam gayBerneParam = gayBerneData->getData();
168 currShape = new Ellipsoid(V3Zero,
169 gayBerneParam.GB_l / 2.0,
170 gayBerneParam.GB_d / 2.0,
171 Mat3x3d::identity());
172 } else {
173 sprintf( painCave.errMsg,
174 "Can not cast GenericData to GayBerneParam\n");
175 painCave.severity = OPENMD_ERROR;
176 painCave.isFatal = 1;
177 simError();
178 }
179 } else {
180 sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
181 painCave.severity = OPENMD_ERROR;
182 painCave.isFatal = 1;
183 simError();
184 }
185 } else {
186 if (atomType->isLennardJones()){
187 GenericData* data = atomType->getPropertyByName("LennardJones");
188 if (data != NULL) {
189 LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
190 if (ljData != NULL) {
191 LJParam ljParam = ljData->getData();
192 currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
193 } else {
194 sprintf( painCave.errMsg,
195 "Can not cast GenericData to LJParam\n");
196 painCave.severity = OPENMD_ERROR;
197 painCave.isFatal = 1;
198 simError();
199 }
200 }
201 } else {
202 int aNum = etab.GetAtomicNum((atom->getType()).c_str());
203 if (aNum != 0) {
204 currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
205 } else {
206 sprintf( painCave.errMsg,
207 "Could not find atom type in default element.txt\n");
208 painCave.severity = OPENMD_ERROR;
209 painCave.isFatal = 1;
210 simError();
211 }
212 }
213 }
214 }
215
216 if (!simParams->haveTargetTemp()) {
217 sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
218 painCave.isFatal = 1;
219 painCave.severity = OPENMD_ERROR;
220 simError();
221 }
222
223 if (!simParams->haveViscosity()) {
224 sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
225 painCave.isFatal = 1;
226 painCave.severity = OPENMD_ERROR;
227 simError();
228 }
229
230
231 HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
232 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
233 if (iter != hydroPropMap.end())
234 hydroProps_.push_back(iter->second);
235 else {
236 currHydroProp->complete();
237 hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
238 hydroProps_.push_back(currHydroProp);
239 }
240 }
241 }
242 }
243 variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt();
244 }
245
246 std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
247 std::map<std::string, HydroProp*> props;
248 std::ifstream ifs(filename.c_str());
249 if (ifs.is_open()) {
250
251 }
252
253 const unsigned int BufferSize = 65535;
254 char buffer[BufferSize];
255 while (ifs.getline(buffer, BufferSize)) {
256 HydroProp* currProp = new HydroProp(buffer);
257 props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
258 }
259
260 return props;
261 }
262
263 void LDForceManager::postCalculation(){
264 SimInfo::MoleculeIterator i;
265 Molecule::IntegrableObjectIterator j;
266 Molecule* mol;
267 StuntDouble* integrableObject;
268 RealType mass;
269 Vector3d pos;
270 Vector3d frc;
271 Mat3x3d A;
272 Mat3x3d Atrans;
273 Vector3d Tb;
274 Vector3d ji;
275 unsigned int index = 0;
276 bool doLangevinForces;
277 bool freezeMolecule;
278 int fdf;
279
280 fdf = 0;
281
282 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
283
284 doLangevinForces = true;
285 freezeMolecule = false;
286
287 if (sphericalBoundaryConditions_) {
288
289 Vector3d molPos = mol->getCom();
290 RealType molRad = molPos.length();
291
292 doLangevinForces = false;
293
294 if (molRad > langevinBufferRadius_) {
295 doLangevinForces = true;
296 freezeMolecule = false;
297 }
298 if (molRad > frozenBufferRadius_) {
299 doLangevinForces = false;
300 freezeMolecule = true;
301 }
302 }
303
304 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
305 integrableObject = mol->nextIntegrableObject(j)) {
306
307 if (freezeMolecule)
308 fdf += integrableObject->freeze();
309
310 if (doLangevinForces) {
311 mass = integrableObject->getMass();
312 if (integrableObject->isDirectional()){
313
314 // preliminaries for directional objects:
315
316 A = integrableObject->getA();
317 Atrans = A.transpose();
318 Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();
319
320 //apply random force and torque at center of resistance
321
322 Vector3d randomForceBody;
323 Vector3d randomTorqueBody;
324 genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
325 Vector3d randomForceLab = Atrans * randomForceBody;
326 Vector3d randomTorqueLab = Atrans * randomTorqueBody;
327 integrableObject->addFrc(randomForceLab);
328 integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));
329
330 Mat3x3d I = integrableObject->getI();
331 Vector3d omegaBody;
332
333 // What remains contains velocity explicitly, but the velocity required
334 // is at the full step: v(t + h), while we have initially the velocity
335 // at the half step: v(t + h/2). We need to iterate to converge the
336 // friction force and friction torque vectors.
337
338 // this is the velocity at the half-step:
339
340 Vector3d vel =integrableObject->getVel();
341 Vector3d angMom = integrableObject->getJ();
342
343 //estimate velocity at full-step using everything but friction forces:
344
345 frc = integrableObject->getFrc();
346 Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc;
347
348 Tb = integrableObject->lab2Body(integrableObject->getTrq());
349 Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb;
350
351 Vector3d omegaLab;
352 Vector3d vcdLab;
353 Vector3d vcdBody;
354 Vector3d frictionForceBody;
355 Vector3d frictionForceLab(0.0);
356 Vector3d oldFFL; // used to test for convergence
357 Vector3d frictionTorqueBody(0.0);
358 Vector3d oldFTB; // used to test for convergence
359 Vector3d frictionTorqueLab;
360 RealType fdot;
361 RealType tdot;
362
363 //iteration starts here:
364
365 for (int k = 0; k < maxIterNum_; k++) {
366
367 if (integrableObject->isLinear()) {
368 int linearAxis = integrableObject->linearAxis();
369 int l = (linearAxis +1 )%3;
370 int m = (linearAxis +2 )%3;
371 omegaBody[l] = angMomStep[l] /I(l, l);
372 omegaBody[m] = angMomStep[m] /I(m, m);
373
374 } else {
375 omegaBody[0] = angMomStep[0] /I(0, 0);
376 omegaBody[1] = angMomStep[1] /I(1, 1);
377 omegaBody[2] = angMomStep[2] /I(2, 2);
378 }
379
380 omegaLab = Atrans * omegaBody;
381
382 // apply friction force and torque at center of resistance
383
384 vcdLab = velStep + cross(omegaLab, rcrLab);
385 vcdBody = A * vcdLab;
386 frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
387 oldFFL = frictionForceLab;
388 frictionForceLab = Atrans * frictionForceBody;
389 oldFTB = frictionTorqueBody;
390 frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
391 frictionTorqueLab = Atrans * frictionTorqueBody;
392
393 // re-estimate velocities at full-step using friction forces:
394
395 velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab);
396 angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody);
397
398 // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
399
400 fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
401 tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
402
403 if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
404 break; // iteration ends here
405 }
406
407 integrableObject->addFrc(frictionForceLab);
408 integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
409
410
411 } else {
412 //spherical atom
413
414 Vector3d randomForce;
415 Vector3d randomTorque;
416 genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
417 integrableObject->addFrc(randomForce);
418
419 // What remains contains velocity explicitly, but the velocity required
420 // is at the full step: v(t + h), while we have initially the velocity
421 // at the half step: v(t + h/2). We need to iterate to converge the
422 // friction force vector.
423
424 // this is the velocity at the half-step:
425
426 Vector3d vel =integrableObject->getVel();
427
428 //estimate velocity at full-step using everything but friction forces:
429
430 frc = integrableObject->getFrc();
431 Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc;
432
433 Vector3d frictionForce(0.0);
434 Vector3d oldFF; // used to test for convergence
435 RealType fdot;
436
437 //iteration starts here:
438
439 for (int k = 0; k < maxIterNum_; k++) {
440
441 oldFF = frictionForce;
442 frictionForce = -hydroProps_[index]->getXitt() * velStep;
443
444 // re-estimate velocities at full-step using friction forces:
445
446 velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce);
447
448 // check for convergence (if the vector has converged, fdot will be 1.0):
449
450 fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
451
452 if (fabs(1.0 - fdot) <= forceTolerance_)
453 break; // iteration ends here
454 }
455
456 integrableObject->addFrc(frictionForce);
457
458 }
459 }
460
461 ++index;
462
463 }
464 }
465
466 info_->setFdf(fdf);
467 veloMunge->removeComDrift();
468 // Remove angular drift if we are not using periodic boundary conditions.
469 if(!simParams->getUsePeriodicBoundaryConditions())
470 veloMunge->removeAngularDrift();
471
472 ForceManager::postCalculation();
473 }
474
475 void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
476
477
478 Vector<RealType, 6> Z;
479 Vector<RealType, 6> generalForce;
480
481 Z[0] = randNumGen_.randNorm(0, variance);
482 Z[1] = randNumGen_.randNorm(0, variance);
483 Z[2] = randNumGen_.randNorm(0, variance);
484 Z[3] = randNumGen_.randNorm(0, variance);
485 Z[4] = randNumGen_.randNorm(0, variance);
486 Z[5] = randNumGen_.randNorm(0, variance);
487
488 generalForce = hydroProps_[index]->getS()*Z;
489
490 force[0] = generalForce[0];
491 force[1] = generalForce[1];
492 force[2] = generalForce[2];
493 torque[0] = generalForce[3];
494 torque[1] = generalForce[4];
495 torque[2] = generalForce[5];
496
497 }
498
499 }

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date