ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/NPT.cpp
(Generate patch)

Comparing:
trunk/src/integrators/NPT.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/integrators/NPT.cpp (file contents), Revision 1759 by gezelter, Thu Jun 21 18:55:33 2012 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 + */
42 +
43   #include <math.h>
44  
45 < #include "Atom.hpp"
46 < #include "SRI.hpp"
47 < #include "AbstractClasses.hpp"
48 < #include "SimInfo.hpp"
49 < #include "ForceFields.hpp"
50 < #include "Thermo.hpp"
51 < #include "ReadWrite.hpp"
10 < #include "Integrator.hpp"
11 < #include "simError.h"
45 > #include "brains/SimInfo.hpp"
46 > #include "brains/Thermo.hpp"
47 > #include "integrators/NPT.hpp"
48 > #include "math/SquareMatrix3.hpp"
49 > #include "primitives/Molecule.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51 > #include "utils/simError.h"
52  
13 #ifdef IS_MPI
14 #include "mpiSimulation.hpp"
15 #endif
16
17
53   // Basic isotropic thermostating and barostating via the Melchionna
54   // modification of the Hoover algorithm:
55   //
# Line 25 | Line 60
60   //
61   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
62  
63 < template<typename T> NPT<T>::NPT ( SimInfo *theInfo, ForceFields* the_ff):
29 <  T( theInfo, the_ff )
30 < {
31 <  GenericData* data;
32 <  DoubleData * chiValue;
33 <  DoubleData * integralOfChidtValue;
63 > namespace OpenMD {
64  
65 <  chiValue = NULL;
66 <  integralOfChidtValue = NULL;
65 >  NPT::NPT(SimInfo* info) :
66 >    VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) {
67  
68 <  chi = 0.0;
69 <  integralOfChidt = 0.0;
70 <  have_tau_thermostat = 0;
71 <  have_tau_barostat = 0;
72 <  have_target_temp = 0;
73 <  have_target_pressure = 0;
74 <  have_chi_tolerance = 0;
75 <  have_eta_tolerance = 0;
76 <  have_pos_iter_tolerance = 0;
68 >      Globals* simParams = info_->getSimParams();
69 >    
70 >      if (!simParams->getUseIntialExtendedSystemState()) {
71 >        Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
72 >        currSnapshot->setChi(0.0);
73 >        currSnapshot->setIntegralOfChiDt(0.0);
74 >        currSnapshot->setEta(Mat3x3d(0.0));
75 >      }
76 >    
77 >      if (!simParams->haveTargetTemp()) {
78 >        sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n");
79 >        painCave.isFatal = 1;
80 >        painCave.severity = OPENMD_ERROR;
81 >        simError();
82 >      } else {
83 >        targetTemp = simParams->getTargetTemp();
84 >      }
85  
86 <  // retrieve chi and integralOfChidt from simInfo
87 <  data = info->getProperty(CHIVALUE_ID);
88 <  if(data){
89 <    chiValue = dynamic_cast<DoubleData*>(data);
52 <  }
86 >      // We must set tauThermostat
87 >      if (!simParams->haveTauThermostat()) {
88 >        sprintf(painCave.errMsg, "If you use the constant temperature\n"
89 >                "\tintegrator, you must set tauThermostat.\n");
90  
91 <  data = info->getProperty(INTEGRALOFCHIDT_ID);
92 <  if(data){
93 <    integralOfChidtValue = dynamic_cast<DoubleData*>(data);
94 <  }
91 >        painCave.severity = OPENMD_ERROR;
92 >        painCave.isFatal = 1;
93 >        simError();
94 >      } else {
95 >        tauThermostat = simParams->getTauThermostat();
96 >      }
97  
98 <  // chi and integralOfChidt should appear by pair
99 <  if(chiValue && integralOfChidtValue){
100 <    chi = chiValue->getData();
62 <    integralOfChidt = integralOfChidtValue->getData();
63 <  }
98 >      if (!simParams->haveTargetPressure()) {
99 >        sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n"
100 >                "   without a targetPressure!\n");
101  
102 <  oldPos = new double[3*integrableObjects.size()];
103 <  oldVel = new double[3*integrableObjects.size()];
104 <  oldJi = new double[3*integrableObjects.size()];
102 >        painCave.isFatal = 1;
103 >        simError();
104 >      } else {
105 >        targetPressure = simParams->getTargetPressure();
106 >      }
107 >    
108 >      if (!simParams->haveTauBarostat()) {
109 >        sprintf(painCave.errMsg,
110 >                "If you use the NPT integrator, you must set tauBarostat.\n");
111 >        painCave.severity = OPENMD_ERROR;
112 >        painCave.isFatal = 1;
113 >        simError();
114 >      } else {
115 >        tauBarostat = simParams->getTauBarostat();
116 >      }
117 >    
118 >      tt2 = tauThermostat * tauThermostat;
119 >      tb2 = tauBarostat * tauBarostat;
120  
121 < }
121 >      updateSizes();
122 >    }
123  
124 < template<typename T> NPT<T>::~NPT() {
125 <  delete[] oldPos;
73 <  delete[] oldVel;
74 <  delete[] oldJi;
75 < }
124 >  NPT::~NPT() {
125 >  }
126  
127 < template<typename T> void NPT<T>::moveA() {
127 >  void NPT::doUpdateSizes() {
128  
129 <  //new version of NPT
130 <  int i, j, k;
131 <  double Tb[3], ji[3];
82 <  double mass;
83 <  double vel[3], pos[3], frc[3];
84 <  double sc[3];
85 <  double COM[3];
129 >    oldPos.resize(info_->getNIntegrableObjects());
130 >    oldVel.resize(info_->getNIntegrableObjects());
131 >    oldJi.resize(info_->getNIntegrableObjects());
132  
133 <  instaTemp = tStats->getTemperature();
88 <  tStats->getPressureTensor( press );
89 <  instaPress = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
90 <  instaVol = tStats->getVolume();
133 >  }
134  
135 <  tStats->getCOM(COM);
135 >  void NPT::moveA() {
136 >    SimInfo::MoleculeIterator i;
137 >    Molecule::IntegrableObjectIterator  j;
138 >    Molecule* mol;
139 >    StuntDouble* integrableObject;
140 >    Vector3d Tb, ji;
141 >    RealType mass;
142 >    Vector3d vel;
143 >    Vector3d pos;
144 >    Vector3d frc;
145 >    Vector3d sc;
146 >    int index;
147  
148 <  //evolve velocity half step
148 >    chi= currentSnapshot_->getChi();
149 >    integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
150 >    loadEta();
151 >    
152 >    instaTemp =thermo.getTemperature();
153 >    press = thermo.getPressureTensor();
154 >    instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0;
155 >    instaVol =thermo.getVolume();
156  
157 <  calcVelScale();
97 <  
98 <  for( i=0; i<integrableObjects.size(); i++ ){
157 >    Vector3d  COM = info_->getCom();
158  
159 <    integrableObjects[i]->getVel( vel );
101 <    integrableObjects[i]->getFrc( frc );
159 >    //evolve velocity half step
160  
161 <    mass = integrableObjects[i]->getMass();
161 >    calcVelScale();
162  
163 <    getVelScaleA( sc, vel );
163 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
164 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
165 >           integrableObject = mol->nextIntegrableObject(j)) {
166 >                
167 >        vel = integrableObject->getVel();
168 >        frc = integrableObject->getFrc();
169  
170 <    for (j=0; j < 3; j++) {
170 >        mass = integrableObject->getMass();
171  
172 <      // velocity half step  (use chi from previous step here):
110 <      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - sc[j]);
172 >        getVelScaleA(sc, vel);
173  
174 <    }
174 >        // velocity half step  (use chi from previous step here):
175 >        //vel[j] += dt2 * ((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]);
176 >        vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc;
177 >        integrableObject->setVel(vel);
178  
179 <    integrableObjects[i]->setVel( vel );
179 >        if (integrableObject->isDirectional()) {
180  
181 <    if( integrableObjects[i]->isDirectional() ){
181 >          // get and convert the torque to body frame
182  
183 <      // get and convert the torque to body frame
183 >          Tb = integrableObject->lab2Body(integrableObject->getTrq());
184  
185 <      integrableObjects[i]->getTrq( Tb );
121 <      integrableObjects[i]->lab2Body( Tb );
185 >          // get the angular momentum, and propagate a half step
186  
187 <      // get the angular momentum, and propagate a half step
187 >          ji = integrableObject->getJ();
188  
189 <      integrableObjects[i]->getJ( ji );
189 >          //ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi);
190 >          ji += dt2*PhysicalConstants::energyConvert * Tb - dt2*chi* ji;
191 >                
192 >          rotAlgo_->rotate(integrableObject, ji, dt);
193  
194 <      for (j=0; j < 3; j++)
195 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
194 >          integrableObject->setJ(ji);
195 >        }
196 >            
197 >      }
198 >    }
199 >    // evolve chi and eta  half step
200  
201 <      this->rotationPropagation( integrableObjects[i], ji );
201 >    chi += dt2 * (instaTemp / targetTemp - 1.0) / tt2;
202 >    
203 >    evolveEtaA();
204  
205 <      integrableObjects[i]->setJ( ji );
206 <    }
207 <  }
205 >    //calculate the integral of chidt
206 >    integralOfChidt += dt2 * chi;
207 >    
208 >    flucQ_->moveA();
209  
136  // evolve chi and eta  half step
210  
211 <  evolveChiA();
212 <  evolveEtaA();
211 >    index = 0;
212 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
213 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
214 >           integrableObject = mol->nextIntegrableObject(j)) {
215 >        oldPos[index++] = integrableObject->getPos();            
216 >      }
217 >    }
218 >    
219 >    //the first estimation of r(t+dt) is equal to  r(t)
220  
221 <  //calculate the integral of chidt
222 <  integralOfChidt += dt2*chi;
221 >    for(int k = 0; k < maxIterNum_; k++) {
222 >      index = 0;
223 >      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
224 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
225 >             integrableObject = mol->nextIntegrableObject(j)) {
226  
227 <  //save the old positions
228 <  for(i = 0; i < integrableObjects.size(); i++){
146 <    integrableObjects[i]->getPos(pos);
147 <    for(j = 0; j < 3; j++)
148 <      oldPos[i*3 + j] = pos[j];
149 <  }
227 >          vel = integrableObject->getVel();
228 >          pos = integrableObject->getPos();
229  
230 <  //the first estimation of r(t+dt) is equal to  r(t)
230 >          this->getPosScale(pos, COM, index, sc);
231  
232 <  for(k = 0; k < 5; k ++){
232 >          pos = oldPos[index] + dt * (vel + sc);
233 >          integrableObject->setPos(pos);    
234  
235 <    for(i =0 ; i < integrableObjects.size(); i++){
235 >          ++index;
236 >        }
237 >      }
238  
239 <      integrableObjects[i]->getVel(vel);
240 <      integrableObjects[i]->getPos(pos);
239 >      rattle_->constraintA();
240 >    }
241  
242 <      this->getPosScale( pos, COM, i, sc );
242 >    // Scale the box after all the positions have been moved:
243  
244 <      for(j = 0; j < 3; j++)
245 <        pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]);
244 >    this->scaleSimBox();
245 >
246 >    currentSnapshot_->setChi(chi);
247 >    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
248  
249 <      integrableObjects[i]->setPos( pos );
166 <    }
167 <    
168 <    if(nConstrained)
169 <      constrainA();
249 >    saveEta();
250    }
251  
252 +  void NPT::moveB(void) {
253 +    SimInfo::MoleculeIterator i;
254 +    Molecule::IntegrableObjectIterator  j;
255 +    Molecule* mol;
256 +    StuntDouble* integrableObject;
257 +    int index;
258 +    Vector3d Tb;
259 +    Vector3d ji;
260 +    Vector3d sc;
261 +    Vector3d vel;
262 +    Vector3d frc;
263 +    RealType mass;
264  
173  // Scale the box after all the positions have been moved:
265  
266 <  this->scaleSimBox();
267 < }
266 >    chi= currentSnapshot_->getChi();
267 >    integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
268 >    RealType oldChi  = chi;
269 >    RealType prevChi;
270  
271 < template<typename T> void NPT<T>::moveB( void ){
271 >    loadEta();
272 >    
273 >    //save velocity and angular momentum
274 >    index = 0;
275 >    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
276 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
277 >           integrableObject = mol->nextIntegrableObject(j)) {
278 >                
279 >        oldVel[index] = integrableObject->getVel();
280  
281 <  //new version of NPT
282 <  int i, j, k;
182 <  double Tb[3], ji[3], sc[3];
183 <  double vel[3], frc[3];
184 <  double mass;
281 >        if (integrableObject->isDirectional())
282 >           oldJi[index] = integrableObject->getJ();
283  
284 <  // Set things up for the iteration:
285 <
188 <  for( i=0; i<integrableObjects.size(); i++ ){
189 <
190 <    integrableObjects[i]->getVel( vel );
191 <
192 <    for (j=0; j < 3; j++)
193 <      oldVel[3*i + j]  = vel[j];
194 <
195 <    if( integrableObjects[i]->isDirectional() ){
196 <
197 <      integrableObjects[i]->getJ( ji );
198 <
199 <      for (j=0; j < 3; j++)
200 <        oldJi[3*i + j] = ji[j];
201 <
284 >        ++index;
285 >      }
286      }
203  }
287  
288 <  // do the iteration:
288 >    // do the iteration:
289 >    instaVol =thermo.getVolume();
290  
291 <  instaVol = tStats->getVolume();
291 >    for(int k = 0; k < maxIterNum_; k++) {
292 >      instaTemp =thermo.getTemperature();
293 >      instaPress =thermo.getPressure();
294  
295 <  for (k=0; k < 4; k++) {
295 >      // evolve chi another half step using the temperature at t + dt/2
296 >      prevChi = chi;
297 >      chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2;
298  
299 <    instaTemp = tStats->getTemperature();
300 <    instaPress = tStats->getPressure();
299 >      //evolve eta
300 >      this->evolveEtaB();
301 >      this->calcVelScale();
302  
303 <    // evolve chi another half step using the temperature at t + dt/2
303 >      index = 0;
304 >      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
305 >        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
306 >             integrableObject = mol->nextIntegrableObject(j)) {            
307  
308 <    this->evolveChiB();
309 <    this->evolveEtaB();
218 <    this->calcVelScale();
308 >          frc = integrableObject->getFrc();
309 >          vel = integrableObject->getVel();
310  
311 <    for( i=0; i<integrableObjects.size(); i++ ){
311 >          mass = integrableObject->getMass();
312  
313 <      integrableObjects[i]->getFrc( frc );
223 <      integrableObjects[i]->getVel(vel);
313 >          getVelScaleB(sc, index);
314  
315 <      mass = integrableObjects[i]->getMass();
315 >          // velocity half step
316 >          //vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]);
317 >          vel = oldVel[index] + dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc;
318 >          integrableObject->setVel(vel);
319  
320 <      getVelScaleB( sc, i );
320 >          if (integrableObject->isDirectional()) {
321 >            // get and convert the torque to body frame
322 >            Tb = integrableObject->lab2Body(integrableObject->getTrq());
323  
324 <      // velocity half step
325 <      for (j=0; j < 3; j++)
326 <        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - sc[j]);
324 >            //ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi[3*i+j]*chi);
325 >            ji = oldJi[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi*oldJi[index];
326 >            integrableObject->setJ(ji);
327 >          }
328  
329 <      integrableObjects[i]->setVel( vel );
330 <
235 <      if( integrableObjects[i]->isDirectional() ){
236 <
237 <        // get and convert the torque to body frame
238 <
239 <        integrableObjects[i]->getTrq( Tb );
240 <        integrableObjects[i]->lab2Body( Tb );
241 <
242 <        for (j=0; j < 3; j++)
243 <          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
244 <
245 <          integrableObjects[i]->setJ( ji );
329 >          ++index;
330 >        }
331        }
332 +        
333 +      rattle_->constraintB();
334 +
335 +      if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged())
336 +        break;
337      }
338  
339 <    if(nConstrained)
340 <      constrainB();
339 >    //calculate integral of chidt
340 >    integralOfChidt += dt2 * chi;
341  
342 <    if ( this->chiConverged() && this->etaConverged() ) break;
343 <  }
342 >    currentSnapshot_->setChi(chi);
343 >    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);    
344  
345 <  //calculate integral of chida
346 <  integralOfChidt += dt2*chi;
257 <
258 <
259 < }
260 <
261 < template<typename T> void NPT<T>::resetIntegrator() {
262 <  chi = 0.0;
263 <  T::resetIntegrator();
264 < }
265 <
266 < template<typename T> void NPT<T>::evolveChiA() {
267 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
268 <  oldChi = chi;
269 < }
270 <
271 < template<typename T> void NPT<T>::evolveChiB() {
272 <
273 <  prevChi = chi;
274 <  chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
275 < }
276 <
277 < template<typename T> bool NPT<T>::chiConverged() {
278 <
279 <  return ( fabs( prevChi - chi ) <= chiTolerance );
280 < }
281 <
282 < template<typename T> int NPT<T>::readyCheck() {
283 <
284 <  //check parent's readyCheck() first
285 <  if (T::readyCheck() == -1)
286 <    return -1;
287 <
288 <  // First check to see if we have a target temperature.
289 <  // Not having one is fatal.
290 <
291 <  if (!have_target_temp) {
292 <    sprintf( painCave.errMsg,
293 <             "NPT error: You can't use the NPT integrator\n"
294 <             "   without a targetTemp!\n"
295 <             );
296 <    painCave.isFatal = 1;
297 <    simError();
298 <    return -1;
345 >    flucQ_->moveB();
346 >    saveEta();
347    }
348  
349 <  if (!have_target_pressure) {
350 <    sprintf( painCave.errMsg,
351 <             "NPT error: You can't use the NPT integrator\n"
352 <             "   without a targetPressure!\n"
305 <             );
306 <    painCave.isFatal = 1;
307 <    simError();
308 <    return -1;
349 >  void NPT::resetIntegrator(){
350 >      currentSnapshot_->setChi(0.0);
351 >      currentSnapshot_->setIntegralOfChiDt(0.0);
352 >      resetEta();
353    }
354  
311  // We must set tauThermostat.
355  
356 <  if (!have_tau_thermostat) {
357 <    sprintf( painCave.errMsg,
358 <             "NPT error: If you use the NPT\n"
359 <             "   integrator, you must set tauThermostat.\n");
360 <    painCave.isFatal = 1;
318 <    simError();
319 <    return -1;
320 <  }
321 <
322 <  // We must set tauBarostat.
323 <
324 <  if (!have_tau_barostat) {
325 <    sprintf( painCave.errMsg,
326 <             "If you use the NPT integrator, you must set tauBarostat.\n");
327 <    painCave.severity = OOPSE_ERROR;
328 <    painCave.isFatal = 1;
329 <    simError();
330 <    return -1;
331 <  }
332 <
333 <  if (!have_chi_tolerance) {
334 <    sprintf( painCave.errMsg,
335 <             "Setting chi tolerance to 1e-6 in NPT integrator\n");
336 <    chiTolerance = 1e-6;
337 <    have_chi_tolerance = 1;
338 <    painCave.severity = OOPSE_INFO;
339 <    painCave.isFatal = 0;
340 <    simError();
341 <  }
342 <
343 <  if (!have_eta_tolerance) {
344 <    sprintf( painCave.errMsg,
345 <             "Setting eta tolerance to 1e-6 in NPT integrator");
346 <    etaTolerance = 1e-6;
347 <    have_eta_tolerance = 1;
348 <    painCave.severity = OOPSE_INFO;
349 <    painCave.isFatal = 0;
350 <    simError();
351 <  }
352 <
353 <  // We need NkBT a lot, so just set it here: This is the RAW number
354 <  // of integrableObjects, so no subtraction or addition of constraints or
355 <  // orientational degrees of freedom:
356 <
357 <  NkBT = (double)(info->getTotIntegrableObjects()) * kB * targetTemp;
358 <
359 <  // fkBT is used because the thermostat operates on more degrees of freedom
360 <  // than the barostat (when there are particles with orientational degrees
361 <  // of freedom).  
362 <
363 <  fkBT = (double)(info->getNDF()) * kB * targetTemp;
364 <
365 <  tt2 = tauThermostat * tauThermostat;
366 <  tb2 = tauBarostat * tauBarostat;
367 <
368 <  return 1;
356 >    void NPT::resetEta() {
357 >      Mat3x3d etaMat(0.0);
358 >      currentSnapshot_->setEta(etaMat);    
359 >    }
360 >    
361   }

Comparing:
trunk/src/integrators/NPT.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/integrators/NPT.cpp (property svn:keywords), Revision 1759 by gezelter, Thu Jun 21 18:55:33 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines