6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <math.h> |
47 |
|
#include "integrators/NPT.hpp" |
48 |
|
#include "math/SquareMatrix3.hpp" |
49 |
|
#include "primitives/Molecule.hpp" |
50 |
< |
#include "utils/OOPSEConstant.hpp" |
50 |
> |
#include "utils/PhysicalConstants.hpp" |
51 |
|
#include "utils/simError.h" |
52 |
|
|
53 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
60 |
|
// |
61 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
62 |
|
|
63 |
< |
namespace oopse { |
63 |
> |
namespace OpenMD { |
64 |
|
|
65 |
|
NPT::NPT(SimInfo* info) : |
66 |
|
VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { |
67 |
|
|
68 |
|
Globals* simParams = info_->getSimParams(); |
69 |
|
|
70 |
< |
if (!simParams->getUseInitXSstate()) { |
70 |
> |
if (!simParams->getUseIntialExtendedSystemState()) { |
71 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
72 |
|
currSnapshot->setChi(0.0); |
73 |
|
currSnapshot->setIntegralOfChiDt(0.0); |
77 |
|
if (!simParams->haveTargetTemp()) { |
78 |
|
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); |
79 |
|
painCave.isFatal = 1; |
80 |
< |
painCave.severity = OOPSE_ERROR; |
80 |
> |
painCave.severity = OPENMD_ERROR; |
81 |
|
simError(); |
82 |
|
} else { |
83 |
|
targetTemp = simParams->getTargetTemp(); |
86 |
|
// We must set tauThermostat |
87 |
|
if (!simParams->haveTauThermostat()) { |
88 |
|
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
89 |
< |
"\tintegrator, you must set tauThermostat_.\n"); |
89 |
> |
"\tintegrator, you must set tauThermostat.\n"); |
90 |
|
|
91 |
< |
painCave.severity = OOPSE_ERROR; |
91 |
> |
painCave.severity = OPENMD_ERROR; |
92 |
|
painCave.isFatal = 1; |
93 |
|
simError(); |
94 |
|
} else { |
108 |
|
if (!simParams->haveTauBarostat()) { |
109 |
|
sprintf(painCave.errMsg, |
110 |
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
111 |
< |
painCave.severity = OOPSE_ERROR; |
111 |
> |
painCave.severity = OPENMD_ERROR; |
112 |
|
painCave.isFatal = 1; |
113 |
|
simError(); |
114 |
|
} else { |
118 |
|
tt2 = tauThermostat * tauThermostat; |
119 |
|
tb2 = tauBarostat * tauBarostat; |
120 |
|
|
121 |
< |
update(); |
121 |
> |
updateSizes(); |
122 |
|
} |
123 |
|
|
124 |
|
NPT::~NPT() { |
125 |
|
} |
126 |
|
|
127 |
< |
void NPT::doUpdate() { |
127 |
> |
void NPT::doUpdateSizes() { |
128 |
|
|
129 |
|
oldPos.resize(info_->getNIntegrableObjects()); |
130 |
|
oldVel.resize(info_->getNIntegrableObjects()); |
138 |
|
Molecule* mol; |
139 |
|
StuntDouble* integrableObject; |
140 |
|
Vector3d Tb, ji; |
141 |
< |
double mass; |
141 |
> |
RealType mass; |
142 |
|
Vector3d vel; |
143 |
|
Vector3d pos; |
144 |
|
Vector3d frc; |
151 |
|
|
152 |
|
instaTemp =thermo.getTemperature(); |
153 |
|
press = thermo.getPressureTensor(); |
154 |
< |
instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
154 |
> |
instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
155 |
|
instaVol =thermo.getVolume(); |
156 |
|
|
157 |
|
Vector3d COM = info_->getCom(); |
172 |
|
getVelScaleA(sc, vel); |
173 |
|
|
174 |
|
// velocity half step (use chi from previous step here): |
175 |
< |
//vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
176 |
< |
vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
175 |
> |
//vel[j] += dt2 * ((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]); |
176 |
> |
vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
177 |
|
integrableObject->setVel(vel); |
178 |
|
|
179 |
|
if (integrableObject->isDirectional()) { |
186 |
|
|
187 |
|
ji = integrableObject->getJ(); |
188 |
|
|
189 |
< |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
190 |
< |
ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; |
189 |
> |
//ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); |
190 |
> |
ji += dt2*PhysicalConstants::energyConvert * Tb - dt2*chi* ji; |
191 |
|
|
192 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
192 |
> |
rotAlgo_->rotate(integrableObject, ji, dt); |
193 |
|
|
194 |
|
integrableObject->setJ(ji); |
195 |
|
} |
205 |
|
//calculate the integral of chidt |
206 |
|
integralOfChidt += dt2 * chi; |
207 |
|
|
208 |
+ |
flucQ_->moveA(); |
209 |
+ |
|
210 |
+ |
|
211 |
|
index = 0; |
212 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
213 |
|
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
236 |
|
} |
237 |
|
} |
238 |
|
|
239 |
< |
rattle->constraintA(); |
239 |
> |
rattle_->constraintA(); |
240 |
|
} |
241 |
|
|
242 |
|
// Scale the box after all the positions have been moved: |
260 |
|
Vector3d sc; |
261 |
|
Vector3d vel; |
262 |
|
Vector3d frc; |
263 |
< |
double mass; |
263 |
> |
RealType mass; |
264 |
|
|
265 |
|
|
266 |
|
chi= currentSnapshot_->getChi(); |
267 |
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
268 |
< |
double oldChi = chi; |
269 |
< |
double prevChi; |
268 |
> |
RealType oldChi = chi; |
269 |
> |
RealType prevChi; |
270 |
|
|
271 |
|
loadEta(); |
272 |
|
|
277 |
|
integrableObject = mol->nextIntegrableObject(j)) { |
278 |
|
|
279 |
|
oldVel[index] = integrableObject->getVel(); |
280 |
< |
oldJi[index] = integrableObject->getJ(); |
280 |
> |
|
281 |
> |
if (integrableObject->isDirectional()) |
282 |
> |
oldJi[index] = integrableObject->getJ(); |
283 |
> |
|
284 |
|
++index; |
285 |
|
} |
286 |
|
} |
313 |
|
getVelScaleB(sc, index); |
314 |
|
|
315 |
|
// velocity half step |
316 |
< |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
317 |
< |
vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
316 |
> |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]); |
317 |
> |
vel = oldVel[index] + dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
318 |
|
integrableObject->setVel(vel); |
319 |
|
|
320 |
|
if (integrableObject->isDirectional()) { |
321 |
|
// get and convert the torque to body frame |
322 |
|
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
323 |
|
|
324 |
< |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); |
325 |
< |
ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; |
324 |
> |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi[3*i+j]*chi); |
325 |
> |
ji = oldJi[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi*oldJi[index]; |
326 |
|
integrableObject->setJ(ji); |
327 |
|
} |
328 |
|
|
330 |
|
} |
331 |
|
} |
332 |
|
|
333 |
< |
rattle->constraintB(); |
333 |
> |
rattle_->constraintB(); |
334 |
|
|
335 |
|
if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) |
336 |
|
break; |
342 |
|
currentSnapshot_->setChi(chi); |
343 |
|
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
344 |
|
|
345 |
+ |
flucQ_->moveB(); |
346 |
|
saveEta(); |
347 |
|
} |
348 |
|
|