| 1 | /* Copyright (c) 2010 The University of Notre Dame. All Rights Reserved. | 
| 2 | * | 
| 3 | * The University of Notre Dame grants you ("Licensee") a | 
| 4 | * non-exclusive, royalty free, license to use, modify and | 
| 5 | * redistribute this software in source and binary code form, provided | 
| 6 | * that the following conditions are met: | 
| 7 | * | 
| 8 | * 1. Redistributions of source code must retain the above copyright | 
| 9 | *    notice, this list of conditions and the following disclaimer. | 
| 10 | * | 
| 11 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 12 | *    notice, this list of conditions and the following disclaimer in the | 
| 13 | *    documentation and/or other materials provided with the | 
| 14 | *    distribution. | 
| 15 | * | 
| 16 | * This software is provided "AS IS," without a warranty of any | 
| 17 | * kind. All express or implied conditions, representations and | 
| 18 | * warranties, including any implied warranty of merchantability, | 
| 19 | * fitness for a particular purpose or non-infringement, are hereby | 
| 20 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 21 | * be liable for any damages suffered by licensee as a result of | 
| 22 | * using, modifying or distributing the software or its | 
| 23 | * derivatives. In no event will the University of Notre Dame or its | 
| 24 | * licensors be liable for any lost revenue, profit or data, or for | 
| 25 | * direct, indirect, special, consequential, incidental or punitive | 
| 26 | * damages, however caused and regardless of the theory of liability, | 
| 27 | * arising out of the use of or inability to use software, even if the | 
| 28 | * University of Notre Dame has been advised of the possibility of | 
| 29 | * such damages. | 
| 30 | * | 
| 31 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 32 | * research, please cite the appropriate papers when you publish your | 
| 33 | * work.  Good starting points are: | 
| 34 | * | 
| 35 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 36 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 37 | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 38 | * [4] Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 39 | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 40 | * | 
| 41 | *  AlphaHull.cpp | 
| 42 | * | 
| 43 | *  Purpose: To calculate an alpha-shape hull. | 
| 44 | */ | 
| 45 |  | 
| 46 | /* Standard includes independent of library */ | 
| 47 |  | 
| 48 | #include <iostream> | 
| 49 | #include <fstream> | 
| 50 | #include <list> | 
| 51 | #include <algorithm> | 
| 52 | #include <iterator> | 
| 53 | #include "math/AlphaHull.hpp" | 
| 54 | #include "utils/simError.h" | 
| 55 |  | 
| 56 | #ifdef IS_MPI | 
| 57 | #include <mpi.h> | 
| 58 | #endif | 
| 59 |  | 
| 60 | #include "math/qhull.hpp" | 
| 61 |  | 
| 62 | #ifdef HAVE_QHULL | 
| 63 | using namespace std; | 
| 64 | using namespace OpenMD; | 
| 65 |  | 
| 66 | double calculate_circumradius(pointT* p0, pointT* p1, pointT* p2, int dim); | 
| 67 |  | 
| 68 | AlphaHull::AlphaHull(double alpha) : Hull(), dim_(3), alpha_(alpha), | 
| 69 | options_("qhull d QJ Tcv Pp") { | 
| 70 | } | 
| 71 |  | 
| 72 | void AlphaHull::computeHull(vector<StuntDouble*> bodydoubles) { | 
| 73 |  | 
| 74 | int numpoints = bodydoubles.size(); | 
| 75 |  | 
| 76 | Triangles_.clear(); | 
| 77 |  | 
| 78 | vertexT *vertex; | 
| 79 | facetT *facet, *neighbor; | 
| 80 | pointT *interiorPoint; | 
| 81 | int curlong, totlong; | 
| 82 |  | 
| 83 | Vector3d boxMax; | 
| 84 | Vector3d boxMin; | 
| 85 |  | 
| 86 | vector<double> ptArray(numpoints*dim_); | 
| 87 |  | 
| 88 | // Copy the positon vector into a points vector for qhull. | 
| 89 | vector<StuntDouble*>::iterator SD; | 
| 90 | int i = 0; | 
| 91 | for (SD =bodydoubles.begin(); SD != bodydoubles.end(); ++SD){ | 
| 92 | Vector3d pos = (*SD)->getPos(); | 
| 93 | ptArray[dim_ * i] = pos.x(); | 
| 94 | ptArray[dim_ * i + 1] = pos.y(); | 
| 95 | ptArray[dim_ * i + 2] = pos.z(); | 
| 96 | i++; | 
| 97 | } | 
| 98 |  | 
| 99 | /* Clean up memory from previous convex hull calculations*/ | 
| 100 | boolT ismalloc = False; | 
| 101 |  | 
| 102 | /* compute the hull for our local points (or all the points for single | 
| 103 | processor versions) */ | 
| 104 | if (qh_new_qhull(dim_, numpoints, &ptArray[0], ismalloc, | 
| 105 | const_cast<char *>(options_.c_str()), NULL, stderr)) { | 
| 106 |  | 
| 107 | sprintf(painCave.errMsg, "AlphaHull: Qhull failed to compute convex hull"); | 
| 108 | painCave.isFatal = 1; | 
| 109 | simError(); | 
| 110 |  | 
| 111 | } //qh_new_qhull | 
| 112 |  | 
| 113 |  | 
| 114 | #ifdef IS_MPI | 
| 115 | //If we are doing the mpi version, set up some vectors for data communication | 
| 116 |  | 
| 117 | int nproc = MPI::COMM_WORLD.Get_size(); | 
| 118 | int myrank = MPI::COMM_WORLD.Get_rank(); | 
| 119 | int localHullSites = 0; | 
| 120 |  | 
| 121 | vector<int> hullSitesOnProc(nproc, 0); | 
| 122 | vector<int> coordsOnProc(nproc, 0); | 
| 123 | vector<int> displacements(nproc, 0); | 
| 124 | vector<int> vectorDisplacements(nproc, 0); | 
| 125 |  | 
| 126 | vector<double> coords; | 
| 127 | vector<double> vels; | 
| 128 | vector<int> indexMap; | 
| 129 | vector<double> masses; | 
| 130 |  | 
| 131 | FORALLvertices{ | 
| 132 | localHullSites++; | 
| 133 |  | 
| 134 | int idx = qh_pointid(vertex->point); | 
| 135 |  | 
| 136 | indexMap.push_back(idx); | 
| 137 |  | 
| 138 | coords.push_back(ptArray[dim_  * idx]); | 
| 139 | coords.push_back(ptArray[dim_  * idx + 1]); | 
| 140 | coords.push_back(ptArray[dim_  * idx + 2]); | 
| 141 |  | 
| 142 | StuntDouble* sd = bodydoubles[idx]; | 
| 143 |  | 
| 144 | Vector3d vel = sd->getVel(); | 
| 145 | vels.push_back(vel.x()); | 
| 146 | vels.push_back(vel.y()); | 
| 147 | vels.push_back(vel.z()); | 
| 148 |  | 
| 149 | masses.push_back(sd->getMass()); | 
| 150 | } | 
| 151 |  | 
| 152 | MPI::COMM_WORLD.Allgather(&localHullSites, 1, MPI::INT, &hullSitesOnProc[0], | 
| 153 | 1, MPI::INT); | 
| 154 |  | 
| 155 | int globalHullSites = 0; | 
| 156 | for (int iproc = 0; iproc < nproc; iproc++){ | 
| 157 | globalHullSites += hullSitesOnProc[iproc]; | 
| 158 | coordsOnProc[iproc] = dim_ * hullSitesOnProc[iproc]; | 
| 159 | } | 
| 160 |  | 
| 161 | displacements[0] = 0; | 
| 162 | vectorDisplacements[0] = 0; | 
| 163 |  | 
| 164 | for (int iproc = 1; iproc < nproc; iproc++){ | 
| 165 | displacements[iproc] = displacements[iproc-1] + hullSitesOnProc[iproc-1]; | 
| 166 | vectorDisplacements[iproc] = vectorDisplacements[iproc-1] + coordsOnProc[iproc-1]; | 
| 167 | } | 
| 168 |  | 
| 169 | vector<double> globalCoords(dim_ * globalHullSites); | 
| 170 | vector<double> globalVels(dim_ * globalHullSites); | 
| 171 | vector<double> globalMasses(globalHullSites); | 
| 172 |  | 
| 173 | int count = coordsOnProc[myrank]; | 
| 174 |  | 
| 175 | MPI::COMM_WORLD.Allgatherv(&coords[0], count, MPI::DOUBLE, &globalCoords[0], | 
| 176 | &coordsOnProc[0], &vectorDisplacements[0], | 
| 177 | MPI::DOUBLE); | 
| 178 |  | 
| 179 | MPI::COMM_WORLD.Allgatherv(&vels[0], count, MPI::DOUBLE, &globalVels[0], | 
| 180 | &coordsOnProc[0], &vectorDisplacements[0], | 
| 181 | MPI::DOUBLE); | 
| 182 |  | 
| 183 | MPI::COMM_WORLD.Allgatherv(&masses[0], localHullSites, MPI::DOUBLE, | 
| 184 | &globalMasses[0], &hullSitesOnProc[0], | 
| 185 | &displacements[0], MPI::DOUBLE); | 
| 186 |  | 
| 187 | // Free previous hull | 
| 188 | qh_freeqhull(!qh_ALL); | 
| 189 | qh_memfreeshort(&curlong, &totlong); | 
| 190 | if (curlong || totlong) { | 
| 191 | sprintf(painCave.errMsg, "AlphaHull: qhull internal warning:\n" | 
| 192 | "\tdid not free %d bytes of long memory (%d pieces)", | 
| 193 | totlong, curlong); | 
| 194 | painCave.isFatal = 1; | 
| 195 | simError(); | 
| 196 | } | 
| 197 |  | 
| 198 | if (qh_new_qhull(dim_, globalHullSites, &globalCoords[0], ismalloc, | 
| 199 | const_cast<char *>(options_.c_str()), NULL, stderr)){ | 
| 200 |  | 
| 201 | sprintf(painCave.errMsg, | 
| 202 | "AlphaHull: Qhull failed to compute global convex hull"); | 
| 203 | painCave.isFatal = 1; | 
| 204 | simError(); | 
| 205 |  | 
| 206 | } //qh_new_qhull | 
| 207 |  | 
| 208 | #endif | 
| 209 |  | 
| 210 | //Set facet->center as the Voronoi center | 
| 211 | qh_setvoronoi_all(); | 
| 212 |  | 
| 213 |  | 
| 214 | int convexNumVert = qh_setsize(qh_facetvertices (qh facet_list, NULL, false)); | 
| 215 | //Insert all the sample points, because, even with alpha=0, the alpha shape/alpha complex will | 
| 216 | //contain them. | 
| 217 |  | 
| 218 | //  tri::Allocator<CMeshO>::AddVertices(pm.cm,convexNumVert); | 
| 219 |  | 
| 220 | /*ivp length is 'qh num_vertices' because each vertex is accessed through its ID whose range is | 
| 221 | 0<=qh_pointid(vertex->point)<qh num_vertices*/ | 
| 222 | //  vector<tri::Allocator<CMeshO>::VertexPointer> ivp(qh num_vertices); | 
| 223 | /*i=0; | 
| 224 | FORALLvertices{ | 
| 225 | if ((*vertex).point){ | 
| 226 | //  pm.cm.vert[i].P()[0] = (*vertex).point[0]; | 
| 227 | // pm.cm.vert[i].P()[1] = (*vertex).point[1]; | 
| 228 | //pm.cm.vert[i].P()[2] = (*vertex).point[2]; | 
| 229 | // ivp[qh_pointid(vertex->point)] = &pm.cm.vert[i]; | 
| 230 | i++; | 
| 231 | } | 
| 232 | } | 
| 233 | */ | 
| 234 | //Set of alpha complex triangles for alphashape filtering | 
| 235 | setT* set= qh_settemp(4* qh num_facets); | 
| 236 |  | 
| 237 | qh visit_id++; | 
| 238 | int numFacets=0; | 
| 239 | vector<vector <int> > facetlist; | 
| 240 | interiorPoint = qh interior_point; | 
| 241 | FORALLfacet_(qh facet_list) { | 
| 242 | numFacets++; | 
| 243 | if (!facet->upperdelaunay) { | 
| 244 | //For all facets (that are tetrahedrons)calculate the radius of the empty circumsphere considering | 
| 245 | //the distance between the circumcenter and a vertex of the facet | 
| 246 | vertexT* vertex = (vertexT *)(facet->vertices->e[0].p); | 
| 247 | double* center = facet->center; | 
| 248 | double radius =  qh_pointdist(vertex->point,center,dim_); | 
| 249 |  | 
| 250 | if (radius>alpha_) // if the facet is not good consider the ridges | 
| 251 | { | 
| 252 | //if calculating the alphashape, unmark the facet ('good' is used as 'marked'). | 
| 253 | facet->good=false; | 
| 254 |  | 
| 255 | //Compute each ridge (triangle) once and test the cironference radius with alpha | 
| 256 | facet->visitid= qh visit_id; | 
| 257 | qh_makeridges(facet); | 
| 258 | ridgeT *ridge, **ridgep; | 
| 259 | int goodTriangles=0; | 
| 260 | FOREACHridge_(facet->ridges) { | 
| 261 | neighbor= otherfacet_(ridge, facet); | 
| 262 | if (( neighbor->visitid != qh visit_id)){ | 
| 263 | //Calculate the radius of the circumference | 
| 264 | pointT* p0 = ((vertexT*) (ridge->vertices->e[0].p))->point; | 
| 265 | pointT* p1 = ((vertexT*) (ridge->vertices->e[1].p))->point; | 
| 266 | pointT* p2 = ((vertexT*) (ridge->vertices->e[2].p))->point; | 
| 267 |  | 
| 268 | radius = calculate_circumradius(p0,p1,p2, dim_); | 
| 269 |  | 
| 270 | if(radius <=alpha_){ | 
| 271 | goodTriangles++; | 
| 272 | //save the triangle (ridge) for subsequent filtering | 
| 273 | qh_setappend(&set, ridge); | 
| 274 | } | 
| 275 | } | 
| 276 | } | 
| 277 |  | 
| 278 | //If calculating the alphashape, mark the facet('good' is used as 'marked'). | 
| 279 | //This facet will have some triangles hidden by the facet's neighbor. | 
| 280 | if(goodTriangles==4) | 
| 281 | facet->good=true; | 
| 282 |  | 
| 283 | } | 
| 284 | else //the facet is good. Put all the triangles of the tetrahedron in the mesh | 
| 285 | { | 
| 286 | //Compute each ridge (triangle) once | 
| 287 | facet->visitid= qh visit_id; | 
| 288 | //If calculating the alphashape, mark the facet('good' is used as 'marked'). | 
| 289 | //This facet will have some triangles hidden by the facet's neighbor. | 
| 290 | facet->good=true; | 
| 291 | qh_makeridges(facet); | 
| 292 | ridgeT *ridge, **ridgep; | 
| 293 | FOREACHridge_(facet->ridges) { | 
| 294 | neighbor= otherfacet_(ridge, facet); | 
| 295 | if ((neighbor->visitid != qh visit_id)){ | 
| 296 | qh_setappend(&set, ridge); | 
| 297 | } | 
| 298 | } | 
| 299 | } | 
| 300 | } | 
| 301 | } | 
| 302 | //assert(numFacets== qh num_facets); | 
| 303 |  | 
| 304 | //Filter the triangles (only the ones on the boundary of the alpha complex) and build the mesh | 
| 305 |  | 
| 306 | int ridgesCount=0; | 
| 307 |  | 
| 308 | ridgeT *ridge, **ridgep; | 
| 309 | FOREACHridge_(set) { | 
| 310 | if ((!ridge->top->good || !ridge->bottom->good || ridge->top->upperdelaunay || ridge->bottom->upperdelaunay)){ | 
| 311 | //        tri::Allocator<CMeshO>::FaceIterator fi=tri::Allocator<CMeshO>::AddFaces(pm.cm,1); | 
| 312 | ridgesCount++; | 
| 313 | int vertex_n, vertex_i; | 
| 314 | Triangle face; | 
| 315 |  | 
| 316 | // Vector3d V3dNormal(facet->normal[0], facet->normal[1], facet->normal[2]); | 
| 317 | //face.setNormal(V3dNormal); | 
| 318 |  | 
| 319 |  | 
| 320 | //coordT *center = qh_getcenter(ridge->vertices); | 
| 321 | //cout << "Centers are " << center[0] << "  " <<center[1] << "  " << center[2] << endl; | 
| 322 | //Vector3d V3dCentroid(center[0], center[1], center[2]); | 
| 323 | //face.setCentroid(V3dCentroid); | 
| 324 |  | 
| 325 |  | 
| 326 | Vector3d faceVel = V3Zero; | 
| 327 | Vector3d p[3]; | 
| 328 | RealType faceMass = 0.0; | 
| 329 |  | 
| 330 | int ver = 0; | 
| 331 | vector<int> virtexlist; | 
| 332 | FOREACHvertex_i_(ridge->vertices){ | 
| 333 | int id = qh_pointid(vertex->point); | 
| 334 | p[ver][0] = vertex->point[0]; | 
| 335 | p[ver][1] = vertex->point[1]; | 
| 336 | p[ver][2] = vertex->point[2]; | 
| 337 | Vector3d vel; | 
| 338 | RealType mass; | 
| 339 | ver++; | 
| 340 | virtexlist.push_back(id); | 
| 341 | // cout << "Ridge: " << ridgesCount << " Vertex " << id << endl; | 
| 342 |  | 
| 343 | vel = bodydoubles[id]->getVel(); | 
| 344 | mass = bodydoubles[id]->getMass(); | 
| 345 | face.addVertexSD(bodydoubles[id]); | 
| 346 |  | 
| 347 |  | 
| 348 | faceVel = faceVel + vel; | 
| 349 | faceMass = faceMass + mass; | 
| 350 | } //FOREACH Vertex | 
| 351 | facetlist.push_back(virtexlist); | 
| 352 | face.addVertices(p[0],p[1],p[2]); | 
| 353 | face.setFacetMass(faceMass); | 
| 354 | face.setFacetVelocity(faceVel / RealType(3.0)); | 
| 355 |  | 
| 356 | RealType area = face.getArea(); | 
| 357 | area_ += area; | 
| 358 | Vector3d normal = face.getUnitNormal(); | 
| 359 | RealType offset =  ((0.0-p[0][0])*normal[0] + (0.0-p[0][1])*normal[1] + (0.0-p[0][2])*normal[2]); | 
| 360 | RealType dist =  normal[0] * interiorPoint[0] + normal[1]*interiorPoint[1] + normal[2]*interiorPoint[2]; | 
| 361 | cout << "Dist and normal and area are: " << normal << endl; | 
| 362 | volume_ += dist *area/qh hull_dim; | 
| 363 |  | 
| 364 | Triangles_.push_back(face); | 
| 365 | } | 
| 366 | } | 
| 367 |  | 
| 368 | cout << "Volume is: " << volume_ << endl; | 
| 369 |  | 
| 370 | //assert(pm.cm.fn == ridgesCount); | 
| 371 | /* | 
| 372 | std::cout <<"OFF"<<std::endl; | 
| 373 | std::cout << bodydoubles.size() << "  " << facetlist.size() << "  " << 3*facetlist.size() << std::endl; | 
| 374 | for (SD =bodydoubles.begin(); SD != bodydoubles.end(); ++SD){ | 
| 375 | Vector3d pos = (*SD)->getPos(); | 
| 376 | std::cout << pos.x() << "  " << pos.y() << "  " << pos.z() << std::endl; | 
| 377 | } | 
| 378 |  | 
| 379 |  | 
| 380 | std::vector<std::vector<int> >::iterator thisfacet; | 
| 381 | std::vector<int>::iterator thisvertex; | 
| 382 |  | 
| 383 | for (thisfacet = facetlist.begin(); thisfacet != facetlist.end(); thisfacet++){ | 
| 384 | std::cout << (*thisfacet).size(); | 
| 385 | for (thisvertex = (*thisfacet).begin(); thisvertex != (*thisfacet).end(); thisvertex++){ | 
| 386 | std::cout << "  " <<  *thisvertex; | 
| 387 | } | 
| 388 | std::cout << std::endl; | 
| 389 | } | 
| 390 | */ | 
| 391 |  | 
| 392 |  | 
| 393 |  | 
| 394 | /* | 
| 395 | FORALLfacets { | 
| 396 | Triangle face; | 
| 397 |  | 
| 398 | Vector3d V3dNormal(facet->normal[0], facet->normal[1], facet->normal[2]); | 
| 399 | face.setNormal(V3dNormal); | 
| 400 |  | 
| 401 | RealType faceArea = qh_facetarea(facet); | 
| 402 | face.setArea(faceArea); | 
| 403 |  | 
| 404 | vertices = qh_facet3vertex(facet); | 
| 405 |  | 
| 406 | coordT *center = qh_getcenter(vertices); | 
| 407 | Vector3d V3dCentroid(center[0], center[1], center[2]); | 
| 408 | face.setCentroid(V3dCentroid); | 
| 409 |  | 
| 410 | Vector3d faceVel = V3Zero; | 
| 411 | Vector3d p[3]; | 
| 412 | RealType faceMass = 0.0; | 
| 413 |  | 
| 414 | int ver = 0; | 
| 415 |  | 
| 416 | FOREACHvertex_(vertices){ | 
| 417 | int id = qh_pointid(vertex->point); | 
| 418 | p[ver][0] = vertex->point[0]; | 
| 419 | p[ver][1] = vertex->point[1]; | 
| 420 | p[ver][2] = vertex->point[2]; | 
| 421 |  | 
| 422 | Vector3d vel; | 
| 423 | RealType mass; | 
| 424 |  | 
| 425 | #ifdef IS_MPI | 
| 426 | vel = Vector3d(globalVels[dim_ * id], | 
| 427 | globalVels[dim_ * id + 1], | 
| 428 | globalVels[dim_ * id + 2]); | 
| 429 | mass = globalMasses[id]; | 
| 430 |  | 
| 431 | // localID will be between 0 and hullSitesOnProc[myrank] if we | 
| 432 | // own this guy. | 
| 433 |  | 
| 434 | int localID = id - displacements[myrank]; | 
| 435 |  | 
| 436 | if (localID >= 0 && localID < hullSitesOnProc[myrank]) | 
| 437 | face.addVertexSD(bodydoubles[indexMap[localID]]); | 
| 438 |  | 
| 439 | #else | 
| 440 | vel = bodydoubles[id]->getVel(); | 
| 441 | mass = bodydoubles[id]->getMass(); | 
| 442 | face.addVertexSD(bodydoubles[id]); | 
| 443 | #endif | 
| 444 |  | 
| 445 | faceVel = faceVel + vel; | 
| 446 | faceMass = faceMass + mass; | 
| 447 | ver++; | 
| 448 | } //Foreachvertex | 
| 449 |  | 
| 450 | face.addVertices(p[0], p[1], p[2]); | 
| 451 | face.setFacetMass(faceMass); | 
| 452 | face.setFacetVelocity(faceVel/3.0); | 
| 453 | Triangles_.push_back(face); | 
| 454 | qh_settempfree(&vertices); | 
| 455 |  | 
| 456 | } //FORALLfacets | 
| 457 | */ | 
| 458 | // qh_getarea(qh facet_list); | 
| 459 | //volume_ = qh totvol; | 
| 460 | // area_ = qh totarea; | 
| 461 |  | 
| 462 |  | 
| 463 | int index = 0; | 
| 464 | FORALLvertices { | 
| 465 | Vector3d point(vertex->point[0], vertex->point[1], vertex->point[2]); | 
| 466 | if (index == 0) { | 
| 467 | boxMax = point; | 
| 468 | boxMin = point; | 
| 469 | } else { | 
| 470 | for (int i = 0; i < 3; i++) { | 
| 471 | boxMax[i] = max(boxMax[i], point[i]); | 
| 472 | boxMin[i] = min(boxMin[i], point[i]); | 
| 473 | } | 
| 474 | } | 
| 475 | index++; | 
| 476 | } | 
| 477 | boundingBox_ = Mat3x3d(0.0); | 
| 478 | boundingBox_(0,0) = boxMax[0] - boxMin[0]; | 
| 479 | boundingBox_(1,1) = boxMax[1] - boxMin[1]; | 
| 480 | boundingBox_(2,2) = boxMax[2] - boxMin[2]; | 
| 481 |  | 
| 482 | qh_freeqhull(!qh_ALL); | 
| 483 | qh_memfreeshort(&curlong, &totlong); | 
| 484 | if (curlong || totlong) { | 
| 485 | sprintf(painCave.errMsg, "AlphaHull: qhull internal warning:\n" | 
| 486 | "\tdid not free %d bytes of long memory (%d pieces)", | 
| 487 | totlong, curlong); | 
| 488 | painCave.isFatal = 1; | 
| 489 | simError(); | 
| 490 | } | 
| 491 | } | 
| 492 |  | 
| 493 | void AlphaHull::printHull(const string& geomFileName) { | 
| 494 |  | 
| 495 | #ifdef IS_MPI | 
| 496 | if (worldRank == 0)  { | 
| 497 | #endif | 
| 498 | FILE *newGeomFile; | 
| 499 |  | 
| 500 | //create new .md file based on old .md file | 
| 501 | newGeomFile = fopen(geomFileName.c_str(), "w"); | 
| 502 | qh_findgood_all(qh facet_list); | 
| 503 | for (int i = 0; i < qh_PRINTEND; i++) | 
| 504 | qh_printfacets(newGeomFile, qh PRINTout[i], qh facet_list, NULL, !qh_ALL); | 
| 505 |  | 
| 506 | fclose(newGeomFile); | 
| 507 | #ifdef IS_MPI | 
| 508 | } | 
| 509 | #endif | 
| 510 | } | 
| 511 |  | 
| 512 | double calculate_circumradius(pointT* p0,pointT* p1,pointT* p2, int dim){ | 
| 513 | coordT a = qh_pointdist(p0,p1,dim); | 
| 514 | coordT b = qh_pointdist(p1,p2,dim); | 
| 515 | coordT c = qh_pointdist(p2,p0,dim); | 
| 516 |  | 
| 517 | coordT sum =(a + b + c)*0.5; | 
| 518 | coordT area = sum*(a+b-sum)*(a+c-sum)*(b+c-sum); | 
| 519 | return (double) (a*b*c)/(4*sqrt(area)); | 
| 520 | } | 
| 521 |  | 
| 522 | #endif //QHULL |