| 35 | 
  | 
 *                                                                       | 
| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
< | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 38 | 
> | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
  | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
  | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
+ | 
 | 
| 43 | 
+ | 
#include "math/Vector.hpp" | 
| 44 | 
+ | 
 | 
| 45 | 
  | 
#ifndef MATH_CHOLESKYDECOMPOSITION_HPP | 
| 46 | 
  | 
#define MATH_CHOLESKYDECOMPOSITION_HPP | 
| 47 | 
  | 
 | 
| 48 | 
+ | 
using namespace std; | 
| 49 | 
  | 
namespace OpenMD { | 
| 50 | 
< | 
template<class MatrixType> | 
| 51 | 
< | 
int CholeskyDecomposition(MatrixType& A, MatrixType& L) { | 
| 50 | 
> | 
 | 
| 51 | 
> | 
  template<class MatrixType> | 
| 52 | 
> | 
  void CholeskyDecomposition(MatrixType& A, MatrixType& L) { | 
| 53 | 
> | 
 | 
| 54 | 
  | 
    int n = A.getNRow(); | 
| 55 | 
< | 
    assert(n == A.getNCol() && n == L.getNRow()&& n==L.getNCol()); | 
| 56 | 
< | 
    for(int i = 0; i < n; ++i) { | 
| 57 | 
< | 
        RealType sum1 = 0; | 
| 58 | 
< | 
        for (int k = 0; k < i -1; ++k) { | 
| 59 | 
< | 
            sum1 +=L(i,k)*L(i,k); | 
| 55 | 
> | 
    assert(n == A.getNCol() && n == L.getNRow() && n == L.getNCol()); | 
| 56 | 
> | 
 | 
| 57 | 
> | 
    bool isspd(true);   | 
| 58 | 
> | 
    RealType eps = A.diagonals().abs().max()  * | 
| 59 | 
> | 
      (numeric_limits<RealType>::epsilon())/100; | 
| 60 | 
> | 
 | 
| 61 | 
> | 
   | 
| 62 | 
> | 
    for(int j = 0; j < n; j++) { | 
| 63 | 
> | 
      RealType d(0.0); | 
| 64 | 
> | 
      for (int k = 0; k < j; k++) { | 
| 65 | 
> | 
        RealType s(0.0); | 
| 66 | 
> | 
       | 
| 67 | 
> | 
        for (int i = 0; i < k; i++) { | 
| 68 | 
> | 
          s += L(k,i) * L(j,i); | 
| 69 | 
  | 
        } | 
| 70 | 
< | 
        L(i, i) = sqrt(A(i, i) - sum1); | 
| 71 | 
< | 
        for (int j = i+1; j < n; ++j) { | 
| 72 | 
< | 
            RealType sum2 = 0; | 
| 73 | 
< | 
            for (int k = 0; k < i-1; ++k) { | 
| 74 | 
< | 
                sum2 += L(j ,k)*L(i, k); | 
| 75 | 
< | 
            } | 
| 76 | 
< | 
            L(j, i) = (A(j, i) - sum2) /L(i,i); | 
| 70 | 
> | 
       | 
| 71 | 
> | 
        // if L(k,k) != 0 | 
| 72 | 
> | 
        if (std::abs(L(k,k)) > eps) { | 
| 73 | 
> | 
          s = (A(j,k) - s) / L(k,k); | 
| 74 | 
> | 
        } else { | 
| 75 | 
> | 
          s = (A(j,k) -s); | 
| 76 | 
> | 
          isspd = false; | 
| 77 | 
  | 
        } | 
| 78 | 
+ | 
        L(j,k) = s; | 
| 79 | 
+ | 
        d = d + s*s; | 
| 80 | 
+ | 
       | 
| 81 | 
+ | 
        // this is approximately doing: isspd = isspd && ( A(k,j) == A(j,k) ) | 
| 82 | 
+ | 
        isspd = isspd && (abs(A(k,j) - A(j,k)) < eps ); | 
| 83 | 
+ | 
      } | 
| 84 | 
+ | 
      d = A(j,j) - d; | 
| 85 | 
+ | 
      isspd = isspd && (d > eps); | 
| 86 | 
+ | 
      L(j,j) = sqrt(d > 0.0 ? d : 0.0); | 
| 87 | 
+ | 
      for (int k = j+1; k < n; k++)  { | 
| 88 | 
+ | 
        L(j,k) = 0.0; | 
| 89 | 
+ | 
      } | 
| 90 | 
  | 
    } | 
| 91 | 
< | 
 | 
| 65 | 
< | 
    return 0; | 
| 66 | 
< | 
 | 
| 91 | 
> | 
  } | 
| 92 | 
  | 
} | 
| 93 | 
  | 
 | 
| 69 | 
– | 
 | 
| 70 | 
– | 
} | 
| 71 | 
– | 
 | 
| 94 | 
  | 
#endif |