| 1 |
gezelter |
1475 |
/* |
| 2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
* |
| 12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
* documentation and/or other materials provided with the |
| 15 |
|
|
* distribution. |
| 16 |
|
|
* |
| 17 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 18 |
|
|
* kind. All express or implied conditions, representations and |
| 19 |
|
|
* warranties, including any implied warranty of merchantability, |
| 20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 23 |
|
|
* using, modifying or distributing the software or its |
| 24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 28 |
|
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
|
* such damages. |
| 31 |
|
|
* |
| 32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
|
|
* research, please cite the appropriate papers when you publish your |
| 34 |
|
|
* work. Good starting points are: |
| 35 |
|
|
* |
| 36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
|
*/ |
| 41 |
|
|
|
| 42 |
|
|
#include "math/CubicSpline.hpp" |
| 43 |
|
|
#include "utils/simError.h" |
| 44 |
|
|
#include <cmath> |
| 45 |
|
|
#include <algorithm> |
| 46 |
|
|
|
| 47 |
|
|
using namespace OpenMD; |
| 48 |
|
|
using namespace std; |
| 49 |
|
|
|
| 50 |
gezelter |
1536 |
CubicSpline::CubicSpline() : generated(false), isUniform(true) { |
| 51 |
|
|
data_.clear(); |
| 52 |
|
|
} |
| 53 |
gezelter |
1475 |
|
| 54 |
gezelter |
1536 |
void CubicSpline::addPoint(const RealType xp, const RealType yp) { |
| 55 |
|
|
data_.push_back(make_pair(xp, yp)); |
| 56 |
gezelter |
1475 |
} |
| 57 |
|
|
|
| 58 |
|
|
void CubicSpline::addPoints(const vector<RealType>& xps, |
| 59 |
|
|
const vector<RealType>& yps) { |
| 60 |
|
|
|
| 61 |
|
|
if (xps.size() != yps.size()) { |
| 62 |
|
|
printf( painCave.errMsg, |
| 63 |
|
|
"CubicSpline::addPoints was passed vectors of different length!\n"); |
| 64 |
|
|
painCave.severity = OPENMD_ERROR; |
| 65 |
|
|
painCave.isFatal = 1; |
| 66 |
|
|
simError(); |
| 67 |
|
|
} |
| 68 |
|
|
|
| 69 |
|
|
for (int i = 0; i < xps.size(); i++) |
| 70 |
gezelter |
1536 |
data_.push_back(make_pair(xps[i], yps[i])); |
| 71 |
gezelter |
1475 |
} |
| 72 |
|
|
|
| 73 |
|
|
void CubicSpline::generate() { |
| 74 |
|
|
// Calculate coefficients defining a smooth cubic interpolatory spline. |
| 75 |
|
|
// |
| 76 |
|
|
// class values constructed: |
| 77 |
gezelter |
1536 |
// n = number of data_ points. |
| 78 |
gezelter |
1475 |
// x = vector of independent variable values |
| 79 |
|
|
// y = vector of dependent variable values |
| 80 |
|
|
// b = vector of S'(x[i]) values. |
| 81 |
|
|
// c = vector of S"(x[i])/2 values. |
| 82 |
|
|
// d = vector of S'''(x[i]+)/6 values (i < n). |
| 83 |
|
|
// Local variables: |
| 84 |
gezelter |
1536 |
|
| 85 |
gezelter |
1475 |
RealType fp1, fpn, h, p; |
| 86 |
|
|
|
| 87 |
|
|
// make sure the sizes match |
| 88 |
|
|
|
| 89 |
gezelter |
1536 |
n = data_.size(); |
| 90 |
gezelter |
1475 |
b.resize(n); |
| 91 |
|
|
c.resize(n); |
| 92 |
|
|
d.resize(n); |
| 93 |
|
|
|
| 94 |
|
|
// make sure we are monotonically increasing in x: |
| 95 |
|
|
|
| 96 |
|
|
bool sorted = true; |
| 97 |
|
|
|
| 98 |
|
|
for (int i = 1; i < n; i++) { |
| 99 |
gezelter |
1536 |
if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false; |
| 100 |
gezelter |
1475 |
} |
| 101 |
|
|
|
| 102 |
|
|
// sort if necessary |
| 103 |
|
|
|
| 104 |
gezelter |
1536 |
if (!sorted) sort(data_.begin(), data_.end()); |
| 105 |
gezelter |
1475 |
|
| 106 |
|
|
// Calculate coefficients for the tridiagonal system: store |
| 107 |
|
|
// sub-diagonal in B, diagonal in D, difference quotient in C. |
| 108 |
|
|
|
| 109 |
gezelter |
1536 |
b[0] = data_[1].first - data_[0].first; |
| 110 |
|
|
c[0] = (data_[1].second - data_[0].second) / b[0]; |
| 111 |
gezelter |
1475 |
|
| 112 |
|
|
if (n == 2) { |
| 113 |
|
|
|
| 114 |
|
|
// Assume the derivatives at both endpoints are zero. Another |
| 115 |
|
|
// assumption could be made to have a linear interpolant between |
| 116 |
|
|
// the two points. In that case, the b coefficients below would be |
| 117 |
gezelter |
1536 |
// (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first) |
| 118 |
gezelter |
1475 |
// and the c and d coefficients would both be zero. |
| 119 |
|
|
b[0] = 0.0; |
| 120 |
gezelter |
1536 |
c[0] = -3.0 * pow((data_[1].second - data_[0].second) / |
| 121 |
|
|
(data_[1].first-data_[0].first), 2); |
| 122 |
|
|
d[0] = -2.0 * pow((data_[1].second - data_[0].second) / |
| 123 |
|
|
(data_[1].first-data_[0].first), 3); |
| 124 |
gezelter |
1475 |
b[1] = b[0]; |
| 125 |
|
|
c[1] = 0.0; |
| 126 |
|
|
d[1] = 0.0; |
| 127 |
gezelter |
1536 |
dx = 1.0 / (data_[1].first - data_[0].first); |
| 128 |
gezelter |
1475 |
isUniform = true; |
| 129 |
|
|
generated = true; |
| 130 |
|
|
return; |
| 131 |
|
|
} |
| 132 |
|
|
|
| 133 |
|
|
d[0] = 2.0 * b[0]; |
| 134 |
|
|
|
| 135 |
|
|
for (int i = 1; i < n-1; i++) { |
| 136 |
gezelter |
1536 |
b[i] = data_[i+1].first - data_[i].first; |
| 137 |
gezelter |
1475 |
if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; |
| 138 |
gezelter |
1536 |
c[i] = (data_[i+1].second - data_[i].second) / b[i]; |
| 139 |
gezelter |
1475 |
d[i] = 2.0 * (b[i] + b[i-1]); |
| 140 |
|
|
} |
| 141 |
|
|
|
| 142 |
|
|
d[n-1] = 2.0 * b[n-2]; |
| 143 |
|
|
|
| 144 |
|
|
// Calculate estimates for the end slopes using polynomials |
| 145 |
gezelter |
1536 |
// that interpolate the data_ nearest the end. |
| 146 |
gezelter |
1475 |
|
| 147 |
|
|
fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); |
| 148 |
|
|
if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / |
| 149 |
|
|
(b[1] + b[2]) - |
| 150 |
gezelter |
1536 |
c[1] + c[0]) / (data_[3].first - data_[0].first); |
| 151 |
gezelter |
1475 |
|
| 152 |
|
|
fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); |
| 153 |
|
|
|
| 154 |
|
|
if (n > 3) fpn = fpn + b[n-2] * |
| 155 |
|
|
(c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * |
| 156 |
gezelter |
1536 |
(c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data_[n-1].first - data_[n-4].first); |
| 157 |
gezelter |
1475 |
|
| 158 |
|
|
|
| 159 |
|
|
// Calculate the right hand side and store it in C. |
| 160 |
|
|
|
| 161 |
|
|
c[n-1] = 3.0 * (fpn - c[n-2]); |
| 162 |
|
|
for (int i = n-2; i > 0; i--) |
| 163 |
|
|
c[i] = 3.0 * (c[i] - c[i-1]); |
| 164 |
|
|
c[0] = 3.0 * (c[0] - fp1); |
| 165 |
|
|
|
| 166 |
|
|
// Solve the tridiagonal system. |
| 167 |
|
|
|
| 168 |
|
|
for (int k = 1; k < n; k++) { |
| 169 |
|
|
p = b[k-1] / d[k-1]; |
| 170 |
|
|
d[k] = d[k] - p*b[k-1]; |
| 171 |
|
|
c[k] = c[k] - p*c[k-1]; |
| 172 |
|
|
} |
| 173 |
|
|
|
| 174 |
|
|
c[n-1] = c[n-1] / d[n-1]; |
| 175 |
|
|
|
| 176 |
|
|
for (int k = n-2; k >= 0; k--) |
| 177 |
|
|
c[k] = (c[k] - b[k] * c[k+1]) / d[k]; |
| 178 |
|
|
|
| 179 |
|
|
// Calculate the coefficients defining the spline. |
| 180 |
|
|
|
| 181 |
|
|
for (int i = 0; i < n-1; i++) { |
| 182 |
gezelter |
1536 |
h = data_[i+1].first - data_[i].first; |
| 183 |
gezelter |
1475 |
d[i] = (c[i+1] - c[i]) / (3.0 * h); |
| 184 |
gezelter |
1536 |
b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]); |
| 185 |
gezelter |
1475 |
} |
| 186 |
|
|
|
| 187 |
|
|
b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); |
| 188 |
|
|
|
| 189 |
gezelter |
1536 |
if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first); |
| 190 |
gezelter |
1475 |
|
| 191 |
|
|
generated = true; |
| 192 |
|
|
return; |
| 193 |
|
|
} |
| 194 |
|
|
|
| 195 |
|
|
RealType CubicSpline::getValueAt(RealType t) { |
| 196 |
|
|
// Evaluate the spline at t using coefficients |
| 197 |
|
|
// |
| 198 |
|
|
// Input parameters |
| 199 |
|
|
// t = point where spline is to be evaluated. |
| 200 |
|
|
// Output: |
| 201 |
|
|
// value of spline at t. |
| 202 |
|
|
|
| 203 |
|
|
if (!generated) generate(); |
| 204 |
|
|
RealType dt; |
| 205 |
|
|
|
| 206 |
gezelter |
1536 |
if ( t < data_[0].first || t > data_[n-1].first ) { |
| 207 |
gezelter |
1475 |
sprintf( painCave.errMsg, |
| 208 |
|
|
"CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); |
| 209 |
|
|
painCave.severity = OPENMD_ERROR; |
| 210 |
|
|
painCave.isFatal = 1; |
| 211 |
|
|
simError(); |
| 212 |
|
|
} |
| 213 |
|
|
|
| 214 |
|
|
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
| 215 |
|
|
// to t. |
| 216 |
|
|
|
| 217 |
|
|
int j; |
| 218 |
|
|
|
| 219 |
|
|
if (isUniform) { |
| 220 |
|
|
|
| 221 |
gezelter |
1536 |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
| 222 |
gezelter |
1475 |
|
| 223 |
|
|
} else { |
| 224 |
|
|
|
| 225 |
|
|
j = n-1; |
| 226 |
|
|
|
| 227 |
|
|
for (int i = 0; i < n; i++) { |
| 228 |
gezelter |
1536 |
if ( t < data_[i].first ) { |
| 229 |
gezelter |
1475 |
j = i-1; |
| 230 |
|
|
break; |
| 231 |
|
|
} |
| 232 |
|
|
} |
| 233 |
|
|
} |
| 234 |
|
|
|
| 235 |
|
|
// Evaluate the cubic polynomial. |
| 236 |
|
|
|
| 237 |
gezelter |
1536 |
dt = t - data_[j].first; |
| 238 |
|
|
return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
| 239 |
gezelter |
1475 |
|
| 240 |
|
|
} |
| 241 |
|
|
|
| 242 |
|
|
|
| 243 |
|
|
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { |
| 244 |
|
|
// Evaluate the spline and first derivative at t using coefficients |
| 245 |
|
|
// |
| 246 |
|
|
// Input parameters |
| 247 |
|
|
// t = point where spline is to be evaluated. |
| 248 |
|
|
// Output: |
| 249 |
|
|
// pair containing value of spline at t and first derivative at t |
| 250 |
|
|
|
| 251 |
|
|
if (!generated) generate(); |
| 252 |
|
|
RealType dt; |
| 253 |
|
|
|
| 254 |
gezelter |
1536 |
if ( t < data_.front().first || t > data_.back().first ) { |
| 255 |
gezelter |
1475 |
sprintf( painCave.errMsg, |
| 256 |
|
|
"CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); |
| 257 |
|
|
painCave.severity = OPENMD_ERROR; |
| 258 |
|
|
painCave.isFatal = 1; |
| 259 |
|
|
simError(); |
| 260 |
|
|
} |
| 261 |
|
|
|
| 262 |
|
|
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
| 263 |
|
|
// to t. |
| 264 |
|
|
|
| 265 |
|
|
int j; |
| 266 |
|
|
|
| 267 |
|
|
if (isUniform) { |
| 268 |
|
|
|
| 269 |
gezelter |
1536 |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
| 270 |
gezelter |
1475 |
|
| 271 |
|
|
} else { |
| 272 |
|
|
|
| 273 |
|
|
j = n-1; |
| 274 |
|
|
|
| 275 |
|
|
for (int i = 0; i < n; i++) { |
| 276 |
gezelter |
1536 |
if ( t < data_[i].first ) { |
| 277 |
gezelter |
1475 |
j = i-1; |
| 278 |
|
|
break; |
| 279 |
|
|
} |
| 280 |
|
|
} |
| 281 |
|
|
} |
| 282 |
|
|
|
| 283 |
|
|
// Evaluate the cubic polynomial. |
| 284 |
|
|
|
| 285 |
gezelter |
1536 |
dt = t - data_[j].first; |
| 286 |
gezelter |
1475 |
|
| 287 |
gezelter |
1536 |
RealType yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
| 288 |
gezelter |
1475 |
RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
| 289 |
|
|
|
| 290 |
|
|
return make_pair(yval, dydx); |
| 291 |
|
|
} |