# | Line 42 | Line 42 | |
---|---|---|
42 | #include "math/CubicSpline.hpp" | |
43 | #include "utils/simError.h" | |
44 | #include <cmath> | |
45 | + | #include <cstdio> |
46 | #include <algorithm> | |
46 | – | #include <iostream> |
47 | ||
48 | using namespace OpenMD; | |
49 | using namespace std; | |
50 | ||
51 | < | CubicSpline::CubicSpline() : generated(false), isUniform(true) {} |
51 | > | CubicSpline::CubicSpline() : generated(false), isUniform(true) { |
52 | > | data_.clear(); |
53 | > | } |
54 | ||
55 | < | void CubicSpline::addPoint(RealType xp, RealType yp) { |
56 | < | data.push_back(make_pair(xp, yp)); |
55 | > | void CubicSpline::addPoint(const RealType xp, const RealType yp) { |
56 | > | data_.push_back(make_pair(xp, yp)); |
57 | } | |
58 | ||
59 | void CubicSpline::addPoints(const vector<RealType>& xps, | |
# | Line 66 | Line 68 | void CubicSpline::addPoints(const vector<RealType>& xp | |
68 | } | |
69 | ||
70 | for (int i = 0; i < xps.size(); i++) | |
71 | < | data.push_back(make_pair(xps[i], yps[i])); |
71 | > | data_.push_back(make_pair(xps[i], yps[i])); |
72 | } | |
73 | ||
74 | void CubicSpline::generate() { | |
75 | // Calculate coefficients defining a smooth cubic interpolatory spline. | |
76 | // | |
77 | // class values constructed: | |
78 | < | // n = number of data points. |
78 | > | // n = number of data_ points. |
79 | // x = vector of independent variable values | |
80 | // y = vector of dependent variable values | |
81 | // b = vector of S'(x[i]) values. | |
82 | // c = vector of S"(x[i])/2 values. | |
83 | // d = vector of S'''(x[i]+)/6 values (i < n). | |
84 | // Local variables: | |
85 | < | |
85 | > | |
86 | RealType fp1, fpn, h, p; | |
87 | ||
88 | // make sure the sizes match | |
89 | ||
90 | < | n = data.size(); |
90 | > | n = data_.size(); |
91 | b.resize(n); | |
92 | c.resize(n); | |
93 | d.resize(n); | |
# | Line 95 | Line 97 | void CubicSpline::generate() { | |
97 | bool sorted = true; | |
98 | ||
99 | for (int i = 1; i < n; i++) { | |
100 | < | if ( (data[i].first - data[i-1].first ) <= 0.0 ) sorted = false; |
100 | > | if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false; |
101 | } | |
102 | ||
103 | // sort if necessary | |
104 | ||
105 | < | if (!sorted) sort(data.begin(), data.end()); |
105 | > | if (!sorted) sort(data_.begin(), data_.end()); |
106 | ||
107 | // Calculate coefficients for the tridiagonal system: store | |
108 | // sub-diagonal in B, diagonal in D, difference quotient in C. | |
109 | ||
110 | < | b[0] = data[1].first - data[0].first; |
111 | < | c[0] = (data[1].second - data[0].second) / b[0]; |
110 | > | b[0] = data_[1].first - data_[0].first; |
111 | > | c[0] = (data_[1].second - data_[0].second) / b[0]; |
112 | ||
113 | if (n == 2) { | |
114 | ||
115 | // Assume the derivatives at both endpoints are zero. Another | |
116 | // assumption could be made to have a linear interpolant between | |
117 | // the two points. In that case, the b coefficients below would be | |
118 | < | // (data[1].second - data[0].second) / (data[1].first - data[0].first) |
118 | > | // (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first) |
119 | // and the c and d coefficients would both be zero. | |
120 | b[0] = 0.0; | |
121 | < | c[0] = -3.0 * pow((data[1].second - data[0].second) / |
122 | < | (data[1].first-data[0].first), 2); |
123 | < | d[0] = -2.0 * pow((data[1].second - data[0].second) / |
124 | < | (data[1].first-data[0].first), 3); |
121 | > | c[0] = -3.0 * pow((data_[1].second - data_[0].second) / |
122 | > | (data_[1].first-data_[0].first), 2); |
123 | > | d[0] = -2.0 * pow((data_[1].second - data_[0].second) / |
124 | > | (data_[1].first-data_[0].first), 3); |
125 | b[1] = b[0]; | |
126 | c[1] = 0.0; | |
127 | d[1] = 0.0; | |
128 | < | dx = 1.0 / (data[1].first - data[0].first); |
128 | > | dx = 1.0 / (data_[1].first - data_[0].first); |
129 | isUniform = true; | |
130 | generated = true; | |
131 | return; | |
# | Line 132 | Line 134 | void CubicSpline::generate() { | |
134 | d[0] = 2.0 * b[0]; | |
135 | ||
136 | for (int i = 1; i < n-1; i++) { | |
137 | < | b[i] = data[i+1].first - data[i].first; |
137 | > | b[i] = data_[i+1].first - data_[i].first; |
138 | if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; | |
139 | < | c[i] = (data[i+1].second - data[i].second) / b[i]; |
139 | > | c[i] = (data_[i+1].second - data_[i].second) / b[i]; |
140 | d[i] = 2.0 * (b[i] + b[i-1]); | |
141 | } | |
142 | ||
143 | d[n-1] = 2.0 * b[n-2]; | |
144 | ||
145 | // Calculate estimates for the end slopes using polynomials | |
146 | < | // that interpolate the data nearest the end. |
146 | > | // that interpolate the data_ nearest the end. |
147 | ||
148 | fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); | |
149 | if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / | |
150 | (b[1] + b[2]) - | |
151 | < | c[1] + c[0]) / (data[3].first - data[0].first); |
151 | > | c[1] + c[0]) / (data_[3].first - data_[0].first); |
152 | ||
153 | fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); | |
154 | ||
155 | if (n > 3) fpn = fpn + b[n-2] * | |
156 | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * | |
157 | < | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data[n-1].first - data[n-4].first); |
157 | > | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data_[n-1].first - data_[n-4].first); |
158 | ||
159 | ||
160 | // Calculate the right hand side and store it in C. | |
# | Line 178 | Line 180 | void CubicSpline::generate() { | |
180 | // Calculate the coefficients defining the spline. | |
181 | ||
182 | for (int i = 0; i < n-1; i++) { | |
183 | < | h = data[i+1].first - data[i].first; |
183 | > | h = data_[i+1].first - data_[i].first; |
184 | d[i] = (c[i+1] - c[i]) / (3.0 * h); | |
185 | < | b[i] = (data[i+1].second - data[i].second)/h - h * (c[i] + h * d[i]); |
185 | > | b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]); |
186 | } | |
187 | ||
188 | b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); | |
189 | ||
190 | < | if (isUniform) dx = 1.0 / (data[1].first - data[0].first); |
190 | > | if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first); |
191 | ||
192 | generated = true; | |
193 | return; | |
# | Line 202 | Line 204 | RealType CubicSpline::getValueAt(RealType t) { | |
204 | if (!generated) generate(); | |
205 | RealType dt; | |
206 | ||
207 | < | if ( t < data[0].first || t > data[n-1].first ) { |
207 | > | if ( t < data_[0].first || t > data_[n-1].first ) { |
208 | sprintf( painCave.errMsg, | |
209 | "CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); | |
210 | painCave.severity = OPENMD_ERROR; | |
# | Line 217 | Line 219 | RealType CubicSpline::getValueAt(RealType t) { | |
219 | ||
220 | if (isUniform) { | |
221 | ||
222 | < | j = max(0, min(n-1, int((t - data[0].first) * dx))); |
222 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
223 | ||
224 | } else { | |
225 | ||
226 | j = n-1; | |
227 | ||
228 | for (int i = 0; i < n; i++) { | |
229 | < | if ( t < data[i].first ) { |
229 | > | if ( t < data_[i].first ) { |
230 | j = i-1; | |
231 | break; | |
232 | } | |
# | Line 233 | Line 235 | RealType CubicSpline::getValueAt(RealType t) { | |
235 | ||
236 | // Evaluate the cubic polynomial. | |
237 | ||
238 | < | dt = t - data[j].first; |
239 | < | return data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
238 | > | dt = t - data_[j].first; |
239 | > | return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
240 | ||
241 | } | |
242 | ||
# | Line 250 | Line 252 | pair<RealType, RealType> CubicSpline::getValueAndDeriv | |
252 | if (!generated) generate(); | |
253 | RealType dt; | |
254 | ||
255 | < | if ( t < data.front().first || t > data.back().first ) { |
255 | > | if ( t < data_.front().first || t > data_.back().first ) { |
256 | sprintf( painCave.errMsg, | |
257 | "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); | |
258 | painCave.severity = OPENMD_ERROR; | |
# | Line 265 | Line 267 | pair<RealType, RealType> CubicSpline::getValueAndDeriv | |
267 | ||
268 | if (isUniform) { | |
269 | ||
270 | < | j = max(0, min(n-1, int((t - data[0].first) * dx))); |
270 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
271 | ||
272 | } else { | |
273 | ||
274 | j = n-1; | |
275 | ||
276 | for (int i = 0; i < n; i++) { | |
277 | < | if ( t < data[i].first ) { |
277 | > | if ( t < data_[i].first ) { |
278 | j = i-1; | |
279 | break; | |
280 | } | |
# | Line 281 | Line 283 | pair<RealType, RealType> CubicSpline::getValueAndDeriv | |
283 | ||
284 | // Evaluate the cubic polynomial. | |
285 | ||
286 | < | dt = t - data[j].first; |
286 | > | dt = t - data_[j].first; |
287 | ||
288 | < | RealType yval = data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
288 | > | RealType yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
289 | RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); | |
290 | ||
291 | return make_pair(yval, dydx); |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |