# | Line 35 | Line 35 | |
---|---|---|
35 | * | |
36 | * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | |
37 | * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | |
38 | < | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 | < | * [4] Vardeman & Gezelter, in progress (2009). |
38 | > | * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 | > | * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 | > | * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 | */ | |
42 | ||
43 | #include "math/CubicSpline.hpp" | |
43 | – | #include "utils/simError.h" |
44 | #include <cmath> | |
45 | + | #include <cassert> |
46 | + | #include <cstdio> |
47 | #include <algorithm> | |
46 | – | #include <iostream> |
48 | ||
49 | using namespace OpenMD; | |
50 | using namespace std; | |
51 | ||
52 | < | CubicSpline::CubicSpline() : generated(false), isUniform(true) {} |
52 | > | CubicSpline::CubicSpline() : generated(false), isUniform(true) { |
53 | > | data_.clear(); |
54 | > | } |
55 | ||
56 | < | void CubicSpline::addPoint(RealType xp, RealType yp) { |
57 | < | data.push_back(make_pair(xp, yp)); |
56 | > | void CubicSpline::addPoint(const RealType xp, const RealType yp) { |
57 | > | data_.push_back(make_pair(xp, yp)); |
58 | } | |
59 | ||
60 | void CubicSpline::addPoints(const vector<RealType>& xps, | |
61 | const vector<RealType>& yps) { | |
62 | ||
63 | < | if (xps.size() != yps.size()) { |
64 | < | printf( painCave.errMsg, |
65 | < | "CubicSpline::addPoints was passed vectors of different length!\n"); |
66 | < | painCave.severity = OPENMD_ERROR; |
64 | < | painCave.isFatal = 1; |
65 | < | simError(); |
66 | < | } |
67 | < | |
68 | < | for (int i = 0; i < xps.size(); i++) |
69 | < | data.push_back(make_pair(xps[i], yps[i])); |
63 | > | assert(xps.size() == yps.size()); |
64 | > | |
65 | > | for (unsigned int i = 0; i < xps.size(); i++) |
66 | > | data_.push_back(make_pair(xps[i], yps[i])); |
67 | } | |
68 | ||
69 | void CubicSpline::generate() { | |
70 | // Calculate coefficients defining a smooth cubic interpolatory spline. | |
71 | // | |
72 | // class values constructed: | |
73 | < | // n = number of data points. |
73 | > | // n = number of data_ points. |
74 | // x = vector of independent variable values | |
75 | // y = vector of dependent variable values | |
76 | // b = vector of S'(x[i]) values. | |
77 | // c = vector of S"(x[i])/2 values. | |
78 | // d = vector of S'''(x[i]+)/6 values (i < n). | |
79 | // Local variables: | |
80 | < | |
80 | > | |
81 | RealType fp1, fpn, h, p; | |
82 | ||
83 | // make sure the sizes match | |
84 | ||
85 | < | n = data.size(); |
85 | > | n = data_.size(); |
86 | b.resize(n); | |
87 | c.resize(n); | |
88 | d.resize(n); | |
# | Line 95 | Line 92 | void CubicSpline::generate() { | |
92 | bool sorted = true; | |
93 | ||
94 | for (int i = 1; i < n; i++) { | |
95 | < | if ( (data[i].first - data[i-1].first ) <= 0.0 ) sorted = false; |
95 | > | if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false; |
96 | } | |
97 | ||
98 | // sort if necessary | |
99 | ||
100 | < | if (!sorted) sort(data.begin(), data.end()); |
100 | > | if (!sorted) sort(data_.begin(), data_.end()); |
101 | ||
102 | // Calculate coefficients for the tridiagonal system: store | |
103 | // sub-diagonal in B, diagonal in D, difference quotient in C. | |
104 | ||
105 | < | b[0] = data[1].first - data[0].first; |
106 | < | c[0] = (data[1].second - data[0].second) / b[0]; |
105 | > | b[0] = data_[1].first - data_[0].first; |
106 | > | c[0] = (data_[1].second - data_[0].second) / b[0]; |
107 | ||
108 | if (n == 2) { | |
109 | ||
110 | // Assume the derivatives at both endpoints are zero. Another | |
111 | // assumption could be made to have a linear interpolant between | |
112 | // the two points. In that case, the b coefficients below would be | |
113 | < | // (data[1].second - data[0].second) / (data[1].first - data[0].first) |
113 | > | // (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first) |
114 | // and the c and d coefficients would both be zero. | |
115 | b[0] = 0.0; | |
116 | < | c[0] = -3.0 * pow((data[1].second - data[0].second) / |
117 | < | (data[1].first-data[0].first), 2); |
118 | < | d[0] = -2.0 * pow((data[1].second - data[0].second) / |
119 | < | (data[1].first-data[0].first), 3); |
116 | > | c[0] = -3.0 * pow((data_[1].second - data_[0].second) / |
117 | > | (data_[1].first-data_[0].first), 2); |
118 | > | d[0] = -2.0 * pow((data_[1].second - data_[0].second) / |
119 | > | (data_[1].first-data_[0].first), 3); |
120 | b[1] = b[0]; | |
121 | c[1] = 0.0; | |
122 | d[1] = 0.0; | |
123 | < | dx = 1.0 / (data[1].first - data[0].first); |
123 | > | dx = 1.0 / (data_[1].first - data_[0].first); |
124 | isUniform = true; | |
125 | generated = true; | |
126 | return; | |
# | Line 132 | Line 129 | void CubicSpline::generate() { | |
129 | d[0] = 2.0 * b[0]; | |
130 | ||
131 | for (int i = 1; i < n-1; i++) { | |
132 | < | b[i] = data[i+1].first - data[i].first; |
132 | > | b[i] = data_[i+1].first - data_[i].first; |
133 | if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; | |
134 | < | c[i] = (data[i+1].second - data[i].second) / b[i]; |
134 | > | c[i] = (data_[i+1].second - data_[i].second) / b[i]; |
135 | d[i] = 2.0 * (b[i] + b[i-1]); | |
136 | } | |
137 | ||
138 | d[n-1] = 2.0 * b[n-2]; | |
139 | ||
140 | // Calculate estimates for the end slopes using polynomials | |
141 | < | // that interpolate the data nearest the end. |
141 | > | // that interpolate the data_ nearest the end. |
142 | ||
143 | fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); | |
144 | if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / | |
145 | (b[1] + b[2]) - | |
146 | < | c[1] + c[0]) / (data[3].first - data[0].first); |
146 | > | c[1] + c[0]) / (data_[3].first - data_[0].first); |
147 | ||
148 | fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); | |
149 | < | |
149 | > | |
150 | if (n > 3) fpn = fpn + b[n-2] * | |
151 | < | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * |
152 | < | (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data[n-1].first - data[n-4].first); |
151 | > | (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * |
152 | > | (c[n-3] - c[n-4])/(b[n-3] + b[n-4])) / |
153 | > | (data_[n-1].first - data_[n-4].first); |
154 | ||
157 | – | |
155 | // Calculate the right hand side and store it in C. | |
156 | ||
157 | c[n-1] = 3.0 * (fpn - c[n-2]); | |
# | Line 178 | Line 175 | void CubicSpline::generate() { | |
175 | // Calculate the coefficients defining the spline. | |
176 | ||
177 | for (int i = 0; i < n-1; i++) { | |
178 | < | h = data[i+1].first - data[i].first; |
178 | > | h = data_[i+1].first - data_[i].first; |
179 | d[i] = (c[i+1] - c[i]) / (3.0 * h); | |
180 | < | b[i] = (data[i+1].second - data[i].second)/h - h * (c[i] + h * d[i]); |
180 | > | b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]); |
181 | } | |
182 | ||
183 | b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); | |
184 | ||
185 | < | if (isUniform) dx = 1.0 / (data[1].first - data[0].first); |
185 | > | if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first); |
186 | ||
187 | generated = true; | |
188 | return; | |
# | Line 200 | Line 197 | RealType CubicSpline::getValueAt(RealType t) { | |
197 | // value of spline at t. | |
198 | ||
199 | if (!generated) generate(); | |
203 | – | RealType dt; |
200 | ||
201 | < | if ( t < data[0].first || t > data[n-1].first ) { |
202 | < | sprintf( painCave.errMsg, |
207 | < | "CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); |
208 | < | painCave.severity = OPENMD_ERROR; |
209 | < | painCave.isFatal = 1; |
210 | < | simError(); |
211 | < | } |
201 | > | assert(t > data_.front().first); |
202 | > | assert(t < data_.back().first); |
203 | ||
204 | // Find the interval ( x[j], x[j+1] ) that contains or is nearest | |
205 | // to t. | |
206 | ||
216 | – | int j; |
217 | – | |
207 | if (isUniform) { | |
208 | ||
209 | < | j = max(0, min(n-1, int((t - data[0].first) * dx))); |
209 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
210 | ||
211 | } else { | |
212 | ||
213 | j = n-1; | |
214 | ||
215 | for (int i = 0; i < n; i++) { | |
216 | < | if ( t < data[i].first ) { |
216 | > | if ( t < data_[i].first ) { |
217 | j = i-1; | |
218 | break; | |
219 | } | |
# | Line 233 | Line 222 | RealType CubicSpline::getValueAt(RealType t) { | |
222 | ||
223 | // Evaluate the cubic polynomial. | |
224 | ||
225 | < | dt = t - data[j].first; |
226 | < | return data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
238 | < | |
225 | > | dt = t - data_[j].first; |
226 | > | return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
227 | } | |
228 | ||
229 | ||
# | Line 248 | Line 236 | pair<RealType, RealType> CubicSpline::getValueAndDeriv | |
236 | // pair containing value of spline at t and first derivative at t | |
237 | ||
238 | if (!generated) generate(); | |
251 | – | RealType dt; |
239 | ||
240 | < | if ( t < data.front().first || t > data.back().first ) { |
241 | < | sprintf( painCave.errMsg, |
255 | < | "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); |
256 | < | painCave.severity = OPENMD_ERROR; |
257 | < | painCave.isFatal = 1; |
258 | < | simError(); |
259 | < | } |
240 | > | assert(t > data_.front().first); |
241 | > | assert(t < data_.back().first); |
242 | ||
243 | // Find the interval ( x[j], x[j+1] ) that contains or is nearest | |
244 | // to t. | |
245 | ||
264 | – | int j; |
265 | – | |
246 | if (isUniform) { | |
247 | ||
248 | < | j = max(0, min(n-1, int((t - data[0].first) * dx))); |
248 | > | j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
249 | ||
250 | } else { | |
251 | ||
252 | j = n-1; | |
253 | ||
254 | for (int i = 0; i < n; i++) { | |
255 | < | if ( t < data[i].first ) { |
255 | > | if ( t < data_[i].first ) { |
256 | j = i-1; | |
257 | break; | |
258 | } | |
# | Line 281 | Line 261 | pair<RealType, RealType> CubicSpline::getValueAndDeriv | |
261 | ||
262 | // Evaluate the cubic polynomial. | |
263 | ||
264 | < | dt = t - data[j].first; |
264 | > | dt = t - data_[j].first; |
265 | ||
266 | < | RealType yval = data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
267 | < | RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
266 | > | yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
267 | > | dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
268 | ||
269 | return make_pair(yval, dydx); | |
270 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |