| 188 |
|
return; |
| 189 |
|
} |
| 190 |
|
|
| 191 |
< |
RealType CubicSpline::getValueAt(RealType t) { |
| 191 |
> |
RealType CubicSpline::getValueAt(const RealType& t) { |
| 192 |
|
// Evaluate the spline at t using coefficients |
| 193 |
|
// |
| 194 |
|
// Input parameters |
| 227 |
|
} |
| 228 |
|
|
| 229 |
|
|
| 230 |
< |
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { |
| 230 |
> |
void CubicSpline::getValueAt(const RealType& t, RealType& v) { |
| 231 |
> |
// Evaluate the spline at t using coefficients |
| 232 |
> |
// |
| 233 |
> |
// Input parameters |
| 234 |
> |
// t = point where spline is to be evaluated. |
| 235 |
> |
// Output: |
| 236 |
> |
// value of spline at t. |
| 237 |
> |
|
| 238 |
> |
if (!generated) generate(); |
| 239 |
> |
|
| 240 |
> |
assert(t > data_.front().first); |
| 241 |
> |
assert(t < data_.back().first); |
| 242 |
> |
|
| 243 |
> |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
| 244 |
> |
// to t. |
| 245 |
> |
|
| 246 |
> |
if (isUniform) { |
| 247 |
> |
|
| 248 |
> |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
| 249 |
> |
|
| 250 |
> |
} else { |
| 251 |
> |
|
| 252 |
> |
j = n-1; |
| 253 |
> |
|
| 254 |
> |
for (int i = 0; i < n; i++) { |
| 255 |
> |
if ( t < data_[i].first ) { |
| 256 |
> |
j = i-1; |
| 257 |
> |
break; |
| 258 |
> |
} |
| 259 |
> |
} |
| 260 |
> |
} |
| 261 |
> |
|
| 262 |
> |
// Evaluate the cubic polynomial. |
| 263 |
> |
|
| 264 |
> |
dt = t - data_[j].first; |
| 265 |
> |
v = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
| 266 |
> |
} |
| 267 |
> |
|
| 268 |
> |
|
| 269 |
> |
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(const RealType& t){ |
| 270 |
|
// Evaluate the spline and first derivative at t using coefficients |
| 271 |
|
// |
| 272 |
|
// Input parameters |
| 303 |
|
dt = t - data_[j].first; |
| 304 |
|
|
| 305 |
|
yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
| 306 |
< |
dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
| 307 |
< |
|
| 306 |
> |
dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
| 307 |
> |
|
| 308 |
|
return make_pair(yval, dydx); |
| 309 |
|
} |
| 310 |
+ |
|
| 311 |
+ |
void CubicSpline::getValueAndDerivativeAt(const RealType& t, RealType& v, |
| 312 |
+ |
RealType &dv) { |
| 313 |
+ |
// Evaluate the spline and first derivative at t using coefficients |
| 314 |
+ |
// |
| 315 |
+ |
// Input parameters |
| 316 |
+ |
// t = point where spline is to be evaluated. |
| 317 |
+ |
|
| 318 |
+ |
if (!generated) generate(); |
| 319 |
+ |
|
| 320 |
+ |
assert(t > data_.front().first); |
| 321 |
+ |
assert(t < data_.back().first); |
| 322 |
+ |
|
| 323 |
+ |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
| 324 |
+ |
// to t. |
| 325 |
+ |
|
| 326 |
+ |
if (isUniform) { |
| 327 |
+ |
|
| 328 |
+ |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
| 329 |
+ |
|
| 330 |
+ |
} else { |
| 331 |
+ |
|
| 332 |
+ |
j = n-1; |
| 333 |
+ |
|
| 334 |
+ |
for (int i = 0; i < n; i++) { |
| 335 |
+ |
if ( t < data_[i].first ) { |
| 336 |
+ |
j = i-1; |
| 337 |
+ |
break; |
| 338 |
+ |
} |
| 339 |
+ |
} |
| 340 |
+ |
} |
| 341 |
+ |
|
| 342 |
+ |
// Evaluate the cubic polynomial. |
| 343 |
+ |
|
| 344 |
+ |
dt = t - data_[j].first; |
| 345 |
+ |
|
| 346 |
+ |
v = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
| 347 |
+ |
dv = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
| 348 |
+ |
} |