| 1 | 
gezelter | 
1358 | 
#ifndef JAMA_EIG_H | 
| 2 | 
  | 
  | 
#define JAMA_EIG_H | 
| 3 | 
  | 
  | 
 | 
| 4 | 
  | 
  | 
#include "math/DynamicRectMatrix.hpp" | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
#include <algorithm> | 
| 7 | 
  | 
  | 
// for min(), max() below | 
| 8 | 
  | 
  | 
#include <cmath> | 
| 9 | 
  | 
  | 
// for abs() below | 
| 10 | 
  | 
  | 
 | 
| 11 | 
gezelter | 
1390 | 
using namespace OpenMD; | 
| 12 | 
gezelter | 
1358 | 
using namespace std; | 
| 13 | 
  | 
  | 
 | 
| 14 | 
  | 
  | 
namespace JAMA | 
| 15 | 
  | 
  | 
{ | 
| 16 | 
  | 
  | 
   | 
| 17 | 
  | 
  | 
  /**  | 
| 18 | 
  | 
  | 
       | 
| 19 | 
  | 
  | 
  Computes eigenvalues and eigenvectors of a real (non-complex) | 
| 20 | 
  | 
  | 
  matrix.  | 
| 21 | 
  | 
  | 
  <P> | 
| 22 | 
  | 
  | 
  If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is | 
| 23 | 
  | 
  | 
  diagonal and the eigenvector matrix V is orthogonal. That is, | 
| 24 | 
  | 
  | 
  the diagonal values of D are the eigenvalues, and | 
| 25 | 
  | 
  | 
  V*V' = I, where I is the identity matrix.  The columns of V  | 
| 26 | 
  | 
  | 
  represent the eigenvectors in the sense that A*V = V*D. | 
| 27 | 
  | 
  | 
   | 
| 28 | 
  | 
  | 
  <P> | 
| 29 | 
  | 
  | 
  If A is not symmetric, then the eigenvalue matrix D is block diagonal | 
| 30 | 
  | 
  | 
  with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, | 
| 31 | 
  | 
  | 
  a + i*b, in 2-by-2 blocks, [a, b; -b, a].  That is, if the complex | 
| 32 | 
  | 
  | 
  eigenvalues look like | 
| 33 | 
  | 
  | 
<pre> | 
| 34 | 
  | 
  | 
 | 
| 35 | 
  | 
  | 
          u + iv     .        .          .      .    . | 
| 36 | 
  | 
  | 
            .      u - iv     .          .      .    . | 
| 37 | 
  | 
  | 
            .        .      a + ib       .      .    . | 
| 38 | 
  | 
  | 
            .        .        .        a - ib   .    . | 
| 39 | 
  | 
  | 
            .        .        .          .      x    . | 
| 40 | 
  | 
  | 
            .        .        .          .      .    y | 
| 41 | 
  | 
  | 
</pre> | 
| 42 | 
  | 
  | 
  then D looks like | 
| 43 | 
  | 
  | 
<pre> | 
| 44 | 
  | 
  | 
 | 
| 45 | 
  | 
  | 
            u        v        .          .      .    . | 
| 46 | 
  | 
  | 
           -v        u        .          .      .    .  | 
| 47 | 
  | 
  | 
            .        .        a          b      .    . | 
| 48 | 
  | 
  | 
            .        .       -b          a      .    . | 
| 49 | 
  | 
  | 
            .        .        .          .      x    . | 
| 50 | 
  | 
  | 
            .        .        .          .      .    y | 
| 51 | 
  | 
  | 
</pre> | 
| 52 | 
  | 
  | 
  This keeps V a real matrix in both symmetric and non-symmetric | 
| 53 | 
  | 
  | 
  cases, and A*V = V*D. | 
| 54 | 
  | 
  | 
 | 
| 55 | 
  | 
  | 
  <p> | 
| 56 | 
  | 
  | 
  The matrix V may be badly | 
| 57 | 
  | 
  | 
  conditioned, or even singular, so the validity of the equation | 
| 58 | 
  | 
  | 
  A = V*D*inverse(V) depends upon the condition number of V. | 
| 59 | 
  | 
  | 
   | 
| 60 | 
  | 
  | 
  <p> | 
| 61 | 
  | 
  | 
  (Adapted from JAMA, a Java Matrix Library, developed by jointly  | 
| 62 | 
  | 
  | 
  by the Mathworks and NIST; see  http://math.nist.gov/javanumerics/jama). | 
| 63 | 
  | 
  | 
  **/ | 
| 64 | 
  | 
  | 
   | 
| 65 | 
  | 
  | 
  template <class Real> | 
| 66 | 
  | 
  | 
  class Eigenvalue | 
| 67 | 
  | 
  | 
  { | 
| 68 | 
  | 
  | 
     | 
| 69 | 
  | 
  | 
     | 
| 70 | 
  | 
  | 
    /** Row and column dimension (square matrix).  */ | 
| 71 | 
  | 
  | 
    int n; | 
| 72 | 
  | 
  | 
     | 
| 73 | 
  | 
  | 
    int issymmetric; /* boolean*/ | 
| 74 | 
  | 
  | 
     | 
| 75 | 
  | 
  | 
    /** Arrays for internal storage of eigenvalues. */ | 
| 76 | 
  | 
  | 
     | 
| 77 | 
  | 
  | 
    DynamicVector<Real> d;         /* real part */ | 
| 78 | 
  | 
  | 
    DynamicVector<Real> e;         /* img part */ | 
| 79 | 
  | 
  | 
     | 
| 80 | 
  | 
  | 
    /** Array for internal storage of eigenvectors. */ | 
| 81 | 
  | 
  | 
    DynamicRectMatrix<Real> V; | 
| 82 | 
  | 
  | 
     | 
| 83 | 
  | 
  | 
    /** Array for internal storage of nonsymmetric Hessenberg form. | 
| 84 | 
  | 
  | 
        @serial internal storage of nonsymmetric Hessenberg form. | 
| 85 | 
  | 
  | 
    */ | 
| 86 | 
  | 
  | 
    DynamicRectMatrix<Real> H; | 
| 87 | 
  | 
  | 
     | 
| 88 | 
  | 
  | 
     | 
| 89 | 
  | 
  | 
    /** Working storage for nonsymmetric algorithm. | 
| 90 | 
  | 
  | 
        @serial working storage for nonsymmetric algorithm. | 
| 91 | 
  | 
  | 
    */ | 
| 92 | 
  | 
  | 
    DynamicVector<Real> ort; | 
| 93 | 
  | 
  | 
     | 
| 94 | 
  | 
  | 
     | 
| 95 | 
  | 
  | 
    // Symmetric Householder reduction to tridiagonal form. | 
| 96 | 
  | 
  | 
     | 
| 97 | 
  | 
  | 
    void tred2() { | 
| 98 | 
  | 
  | 
       | 
| 99 | 
  | 
  | 
      //  This is derived from the Algol procedures tred2 by | 
| 100 | 
  | 
  | 
      //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for | 
| 101 | 
  | 
  | 
      //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding | 
| 102 | 
  | 
  | 
      //  Fortran subroutine in EISPACK. | 
| 103 | 
  | 
  | 
       | 
| 104 | 
  | 
  | 
      for (int j = 0; j < n; j++) { | 
| 105 | 
  | 
  | 
        d(j) = V(n-1,j); | 
| 106 | 
  | 
  | 
      } | 
| 107 | 
  | 
  | 
       | 
| 108 | 
  | 
  | 
      // Householder reduction to tridiagonal form. | 
| 109 | 
  | 
  | 
       | 
| 110 | 
  | 
  | 
      for (int i = n-1; i > 0; i--) { | 
| 111 | 
  | 
  | 
         | 
| 112 | 
  | 
  | 
        // Scale to avoid under/overflow. | 
| 113 | 
  | 
  | 
         | 
| 114 | 
  | 
  | 
        Real scale = 0.0; | 
| 115 | 
  | 
  | 
        Real h = 0.0; | 
| 116 | 
  | 
  | 
        for (int k = 0; k < i; k++) { | 
| 117 | 
  | 
  | 
          scale = scale + abs(d(k)); | 
| 118 | 
  | 
  | 
        } | 
| 119 | 
  | 
  | 
        if (scale == 0.0) { | 
| 120 | 
  | 
  | 
          e(i) = d(i-1); | 
| 121 | 
  | 
  | 
          for (int j = 0; j < i; j++) { | 
| 122 | 
  | 
  | 
            d(j) = V(i-1,j); | 
| 123 | 
  | 
  | 
            V(i,j) = 0.0; | 
| 124 | 
  | 
  | 
            V(j,i) = 0.0; | 
| 125 | 
  | 
  | 
          } | 
| 126 | 
  | 
  | 
        } else { | 
| 127 | 
  | 
  | 
           | 
| 128 | 
  | 
  | 
          // Generate Householder vector. | 
| 129 | 
  | 
  | 
           | 
| 130 | 
  | 
  | 
          for (int k = 0; k < i; k++) { | 
| 131 | 
  | 
  | 
            d(k) /= scale; | 
| 132 | 
  | 
  | 
            h += d(k) * d(k); | 
| 133 | 
  | 
  | 
          } | 
| 134 | 
  | 
  | 
          Real f = d(i-1); | 
| 135 | 
  | 
  | 
          Real g = sqrt(h); | 
| 136 | 
  | 
  | 
          if (f > 0) { | 
| 137 | 
  | 
  | 
            g = -g; | 
| 138 | 
  | 
  | 
          } | 
| 139 | 
  | 
  | 
          e(i) = scale * g; | 
| 140 | 
  | 
  | 
          h = h - f * g; | 
| 141 | 
  | 
  | 
          d(i-1) = f - g; | 
| 142 | 
  | 
  | 
          for (int j = 0; j < i; j++) { | 
| 143 | 
  | 
  | 
            e(j) = 0.0; | 
| 144 | 
  | 
  | 
          } | 
| 145 | 
  | 
  | 
           | 
| 146 | 
  | 
  | 
          // Apply similarity transformation to remaining columns. | 
| 147 | 
  | 
  | 
           | 
| 148 | 
  | 
  | 
          for (int j = 0; j < i; j++) { | 
| 149 | 
  | 
  | 
            f = d(j); | 
| 150 | 
  | 
  | 
            V(j,i) = f; | 
| 151 | 
  | 
  | 
            g = e(j) + V(j,j) * f; | 
| 152 | 
  | 
  | 
            for (int k = j+1; k <= i-1; k++) { | 
| 153 | 
  | 
  | 
              g += V(k,j) * d(k); | 
| 154 | 
  | 
  | 
              e(k) += V(k,j) * f; | 
| 155 | 
  | 
  | 
            } | 
| 156 | 
  | 
  | 
            e(j) = g; | 
| 157 | 
  | 
  | 
          } | 
| 158 | 
  | 
  | 
          f = 0.0; | 
| 159 | 
  | 
  | 
          for (int j = 0; j < i; j++) { | 
| 160 | 
  | 
  | 
            e(j) /= h; | 
| 161 | 
  | 
  | 
            f += e(j) * d(j); | 
| 162 | 
  | 
  | 
          } | 
| 163 | 
  | 
  | 
          Real hh = f / (h + h); | 
| 164 | 
  | 
  | 
          for (int j = 0; j < i; j++) { | 
| 165 | 
  | 
  | 
            e(j) -= hh * d(j); | 
| 166 | 
  | 
  | 
          } | 
| 167 | 
  | 
  | 
          for (int j = 0; j < i; j++) { | 
| 168 | 
  | 
  | 
            f = d(j); | 
| 169 | 
  | 
  | 
            g = e(j); | 
| 170 | 
  | 
  | 
            for (int k = j; k <= i-1; k++) { | 
| 171 | 
  | 
  | 
              V(k,j) -= (f * e(k) + g * d(k)); | 
| 172 | 
  | 
  | 
            } | 
| 173 | 
  | 
  | 
            d(j) = V(i-1,j); | 
| 174 | 
  | 
  | 
            V(i,j) = 0.0; | 
| 175 | 
  | 
  | 
          } | 
| 176 | 
  | 
  | 
        } | 
| 177 | 
  | 
  | 
        d(i) = h; | 
| 178 | 
  | 
  | 
      } | 
| 179 | 
  | 
  | 
       | 
| 180 | 
  | 
  | 
      // Accumulate transformations. | 
| 181 | 
  | 
  | 
       | 
| 182 | 
  | 
  | 
      for (int i = 0; i < n-1; i++) { | 
| 183 | 
  | 
  | 
        V(n-1,i) = V(i,i); | 
| 184 | 
  | 
  | 
        V(i,i) = 1.0; | 
| 185 | 
  | 
  | 
        Real h = d(i+1); | 
| 186 | 
  | 
  | 
        if (h != 0.0) { | 
| 187 | 
  | 
  | 
          for (int k = 0; k <= i; k++) { | 
| 188 | 
  | 
  | 
            d(k) = V(k,i+1) / h; | 
| 189 | 
  | 
  | 
          } | 
| 190 | 
  | 
  | 
          for (int j = 0; j <= i; j++) { | 
| 191 | 
  | 
  | 
            Real g = 0.0; | 
| 192 | 
  | 
  | 
            for (int k = 0; k <= i; k++) { | 
| 193 | 
  | 
  | 
              g += V(k,i+1) * V(k,j); | 
| 194 | 
  | 
  | 
            } | 
| 195 | 
  | 
  | 
            for (int k = 0; k <= i; k++) { | 
| 196 | 
  | 
  | 
              V(k,j) -= g * d(k); | 
| 197 | 
  | 
  | 
            } | 
| 198 | 
  | 
  | 
          } | 
| 199 | 
  | 
  | 
        } | 
| 200 | 
  | 
  | 
        for (int k = 0; k <= i; k++) { | 
| 201 | 
  | 
  | 
          V(k,i+1) = 0.0; | 
| 202 | 
  | 
  | 
        } | 
| 203 | 
  | 
  | 
      } | 
| 204 | 
  | 
  | 
      for (int j = 0; j < n; j++) { | 
| 205 | 
  | 
  | 
        d(j) = V(n-1,j); | 
| 206 | 
  | 
  | 
        V(n-1,j) = 0.0; | 
| 207 | 
  | 
  | 
      } | 
| 208 | 
  | 
  | 
      V(n-1,n-1) = 1.0; | 
| 209 | 
  | 
  | 
      e(0) = 0.0; | 
| 210 | 
  | 
  | 
    }  | 
| 211 | 
  | 
  | 
     | 
| 212 | 
  | 
  | 
    // Symmetric tridiagonal QL algorithm. | 
| 213 | 
  | 
  | 
     | 
| 214 | 
  | 
  | 
    void tql2 () { | 
| 215 | 
  | 
  | 
       | 
| 216 | 
  | 
  | 
      //  This is derived from the Algol procedures tql2, by | 
| 217 | 
  | 
  | 
      //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for | 
| 218 | 
  | 
  | 
      //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding | 
| 219 | 
  | 
  | 
      //  Fortran subroutine in EISPACK. | 
| 220 | 
  | 
  | 
       | 
| 221 | 
  | 
  | 
      for (int i = 1; i < n; i++) { | 
| 222 | 
  | 
  | 
        e(i-1) = e(i); | 
| 223 | 
  | 
  | 
      } | 
| 224 | 
  | 
  | 
      e(n-1) = 0.0; | 
| 225 | 
  | 
  | 
       | 
| 226 | 
  | 
  | 
      Real f = 0.0; | 
| 227 | 
  | 
  | 
      Real tst1 = 0.0; | 
| 228 | 
  | 
  | 
      Real eps = pow(2.0,-52.0); | 
| 229 | 
  | 
  | 
      for (int l = 0; l < n; l++) { | 
| 230 | 
  | 
  | 
         | 
| 231 | 
  | 
  | 
        // Find small subdiagonal element | 
| 232 | 
  | 
  | 
         | 
| 233 | 
  | 
  | 
        tst1 = max(tst1,abs(d(l)) + abs(e(l))); | 
| 234 | 
  | 
  | 
        int m = l; | 
| 235 | 
  | 
  | 
         | 
| 236 | 
  | 
  | 
        // Original while-loop from Java code | 
| 237 | 
  | 
  | 
        while (m < n) { | 
| 238 | 
  | 
  | 
          if (abs(e(m)) <= eps*tst1) { | 
| 239 | 
  | 
  | 
            break; | 
| 240 | 
  | 
  | 
          } | 
| 241 | 
  | 
  | 
          m++; | 
| 242 | 
  | 
  | 
        } | 
| 243 | 
  | 
  | 
         | 
| 244 | 
  | 
  | 
         | 
| 245 | 
  | 
  | 
        // If m == l, d(l) is an eigenvalue, | 
| 246 | 
  | 
  | 
        // otherwise, iterate. | 
| 247 | 
  | 
  | 
         | 
| 248 | 
  | 
  | 
        if (m > l) { | 
| 249 | 
  | 
  | 
          int iter = 0; | 
| 250 | 
  | 
  | 
          do { | 
| 251 | 
  | 
  | 
            iter = iter + 1;  // (Could check iteration count here.) | 
| 252 | 
  | 
  | 
             | 
| 253 | 
  | 
  | 
            // Compute implicit shift | 
| 254 | 
  | 
  | 
             | 
| 255 | 
  | 
  | 
            Real g = d(l); | 
| 256 | 
  | 
  | 
            Real p = (d(l+1) - g) / (2.0 * e(l)); | 
| 257 | 
  | 
  | 
            Real r = hypot(p,1.0); | 
| 258 | 
  | 
  | 
            if (p < 0) { | 
| 259 | 
  | 
  | 
              r = -r; | 
| 260 | 
  | 
  | 
            } | 
| 261 | 
  | 
  | 
            d(l) = e(l) / (p + r); | 
| 262 | 
  | 
  | 
            d(l+1) = e(l) * (p + r); | 
| 263 | 
  | 
  | 
            Real dl1 = d(l+1); | 
| 264 | 
  | 
  | 
            Real h = g - d(l); | 
| 265 | 
  | 
  | 
            for (int i = l+2; i < n; i++) { | 
| 266 | 
  | 
  | 
              d(i) -= h; | 
| 267 | 
  | 
  | 
            } | 
| 268 | 
  | 
  | 
            f = f + h; | 
| 269 | 
  | 
  | 
             | 
| 270 | 
  | 
  | 
            // Implicit QL transformation. | 
| 271 | 
  | 
  | 
             | 
| 272 | 
  | 
  | 
            p = d(m); | 
| 273 | 
  | 
  | 
            Real c = 1.0; | 
| 274 | 
  | 
  | 
            Real c2 = c; | 
| 275 | 
  | 
  | 
            Real c3 = c; | 
| 276 | 
  | 
  | 
            Real el1 = e(l+1); | 
| 277 | 
  | 
  | 
            Real s = 0.0; | 
| 278 | 
  | 
  | 
            Real s2 = 0.0; | 
| 279 | 
  | 
  | 
            for (int i = m-1; i >= l; i--) { | 
| 280 | 
  | 
  | 
              c3 = c2; | 
| 281 | 
  | 
  | 
              c2 = c; | 
| 282 | 
  | 
  | 
              s2 = s; | 
| 283 | 
  | 
  | 
              g = c * e(i); | 
| 284 | 
  | 
  | 
              h = c * p; | 
| 285 | 
  | 
  | 
              r = hypot(p,e(i)); | 
| 286 | 
  | 
  | 
              e(i+1) = s * r; | 
| 287 | 
  | 
  | 
              s = e(i) / r; | 
| 288 | 
  | 
  | 
              c = p / r; | 
| 289 | 
  | 
  | 
              p = c * d(i) - s * g; | 
| 290 | 
  | 
  | 
              d(i+1) = h + s * (c * g + s * d(i)); | 
| 291 | 
  | 
  | 
               | 
| 292 | 
  | 
  | 
              // Accumulate transformation. | 
| 293 | 
  | 
  | 
               | 
| 294 | 
  | 
  | 
              for (int k = 0; k < n; k++) { | 
| 295 | 
  | 
  | 
                h = V(k,i+1); | 
| 296 | 
  | 
  | 
                V(k,i+1) = s * V(k,i) + c * h; | 
| 297 | 
  | 
  | 
                V(k,i) = c * V(k,i) - s * h; | 
| 298 | 
  | 
  | 
              } | 
| 299 | 
  | 
  | 
            } | 
| 300 | 
  | 
  | 
            p = -s * s2 * c3 * el1 * e(l) / dl1; | 
| 301 | 
  | 
  | 
            e(l) = s * p; | 
| 302 | 
  | 
  | 
            d(l) = c * p; | 
| 303 | 
  | 
  | 
             | 
| 304 | 
  | 
  | 
            // Check for convergence. | 
| 305 | 
  | 
  | 
             | 
| 306 | 
  | 
  | 
          } while (abs(e(l)) > eps*tst1); | 
| 307 | 
  | 
  | 
        } | 
| 308 | 
  | 
  | 
        d(l) = d(l) + f; | 
| 309 | 
  | 
  | 
        e(l) = 0.0; | 
| 310 | 
  | 
  | 
      } | 
| 311 | 
  | 
  | 
       | 
| 312 | 
  | 
  | 
      // Sort eigenvalues and corresponding vectors. | 
| 313 | 
  | 
  | 
       | 
| 314 | 
  | 
  | 
      for (int i = 0; i < n-1; i++) { | 
| 315 | 
  | 
  | 
        int k = i; | 
| 316 | 
  | 
  | 
        Real p = d(i); | 
| 317 | 
  | 
  | 
        for (int j = i+1; j < n; j++) { | 
| 318 | 
  | 
  | 
          if (d(j) < p) { | 
| 319 | 
  | 
  | 
            k = j; | 
| 320 | 
  | 
  | 
            p = d(j); | 
| 321 | 
  | 
  | 
          } | 
| 322 | 
  | 
  | 
        } | 
| 323 | 
  | 
  | 
        if (k != i) { | 
| 324 | 
  | 
  | 
          d(k) = d(i); | 
| 325 | 
  | 
  | 
          d(i) = p; | 
| 326 | 
  | 
  | 
          for (int j = 0; j < n; j++) { | 
| 327 | 
  | 
  | 
            p = V(j,i); | 
| 328 | 
  | 
  | 
            V(j,i) = V(j,k); | 
| 329 | 
  | 
  | 
            V(j,k) = p; | 
| 330 | 
  | 
  | 
          } | 
| 331 | 
  | 
  | 
        } | 
| 332 | 
  | 
  | 
      } | 
| 333 | 
  | 
  | 
    } | 
| 334 | 
  | 
  | 
     | 
| 335 | 
  | 
  | 
    // Nonsymmetric reduction to Hessenberg form. | 
| 336 | 
  | 
  | 
     | 
| 337 | 
  | 
  | 
    void orthes () { | 
| 338 | 
  | 
  | 
       | 
| 339 | 
  | 
  | 
      //  This is derived from the Algol procedures orthes and ortran, | 
| 340 | 
  | 
  | 
      //  by Martin and Wilkinson, Handbook for Auto. Comp., | 
| 341 | 
  | 
  | 
      //  Vol.ii-Linear Algebra, and the corresponding | 
| 342 | 
  | 
  | 
      //  Fortran subroutines in EISPACK. | 
| 343 | 
  | 
  | 
    | 
| 344 | 
  | 
  | 
      int low = 0; | 
| 345 | 
  | 
  | 
      int high = n-1; | 
| 346 | 
  | 
  | 
       | 
| 347 | 
  | 
  | 
      for (int m = low+1; m <= high-1; m++) { | 
| 348 | 
  | 
  | 
         | 
| 349 | 
  | 
  | 
        // Scale column. | 
| 350 | 
  | 
  | 
         | 
| 351 | 
  | 
  | 
        Real scale = 0.0; | 
| 352 | 
  | 
  | 
        for (int i = m; i <= high; i++) { | 
| 353 | 
  | 
  | 
          scale = scale + abs(H(i,m-1)); | 
| 354 | 
  | 
  | 
        } | 
| 355 | 
  | 
  | 
        if (scale != 0.0) { | 
| 356 | 
  | 
  | 
           | 
| 357 | 
  | 
  | 
          // Compute Householder transformation. | 
| 358 | 
  | 
  | 
           | 
| 359 | 
  | 
  | 
          Real h = 0.0; | 
| 360 | 
  | 
  | 
          for (int i = high; i >= m; i--) { | 
| 361 | 
  | 
  | 
            ort(i) = H(i,m-1)/scale; | 
| 362 | 
  | 
  | 
            h += ort(i) * ort(i); | 
| 363 | 
  | 
  | 
          } | 
| 364 | 
  | 
  | 
          Real g = sqrt(h); | 
| 365 | 
  | 
  | 
          if (ort(m) > 0) { | 
| 366 | 
  | 
  | 
            g = -g; | 
| 367 | 
  | 
  | 
          } | 
| 368 | 
  | 
  | 
          h = h - ort(m) * g; | 
| 369 | 
  | 
  | 
          ort(m) = ort(m) - g; | 
| 370 | 
  | 
  | 
           | 
| 371 | 
  | 
  | 
          // Apply Householder similarity transformation | 
| 372 | 
  | 
  | 
          // H = (I-u*u'/h)*H*(I-u*u')/h) | 
| 373 | 
  | 
  | 
           | 
| 374 | 
  | 
  | 
          for (int j = m; j < n; j++) { | 
| 375 | 
  | 
  | 
            Real f = 0.0; | 
| 376 | 
  | 
  | 
            for (int i = high; i >= m; i--) { | 
| 377 | 
  | 
  | 
              f += ort(i)*H(i,j); | 
| 378 | 
  | 
  | 
            } | 
| 379 | 
  | 
  | 
            f = f/h; | 
| 380 | 
  | 
  | 
            for (int i = m; i <= high; i++) { | 
| 381 | 
  | 
  | 
              H(i,j) -= f*ort(i); | 
| 382 | 
  | 
  | 
            } | 
| 383 | 
  | 
  | 
          } | 
| 384 | 
  | 
  | 
           | 
| 385 | 
  | 
  | 
          for (int i = 0; i <= high; i++) { | 
| 386 | 
  | 
  | 
            Real f = 0.0; | 
| 387 | 
  | 
  | 
            for (int j = high; j >= m; j--) { | 
| 388 | 
  | 
  | 
              f += ort(j)*H(i,j); | 
| 389 | 
  | 
  | 
            } | 
| 390 | 
  | 
  | 
            f = f/h; | 
| 391 | 
  | 
  | 
            for (int j = m; j <= high; j++) { | 
| 392 | 
  | 
  | 
              H(i,j) -= f*ort(j); | 
| 393 | 
  | 
  | 
            } | 
| 394 | 
  | 
  | 
          } | 
| 395 | 
  | 
  | 
          ort(m) = scale*ort(m); | 
| 396 | 
  | 
  | 
          H(m,m-1) = scale*g; | 
| 397 | 
  | 
  | 
        } | 
| 398 | 
  | 
  | 
      } | 
| 399 | 
  | 
  | 
       | 
| 400 | 
  | 
  | 
      // Accumulate transformations (Algol's ortran). | 
| 401 | 
  | 
  | 
       | 
| 402 | 
  | 
  | 
      for (int i = 0; i < n; i++) { | 
| 403 | 
  | 
  | 
        for (int j = 0; j < n; j++) { | 
| 404 | 
  | 
  | 
          V(i,j) = (i == j ? 1.0 : 0.0); | 
| 405 | 
  | 
  | 
        } | 
| 406 | 
  | 
  | 
      } | 
| 407 | 
  | 
  | 
       | 
| 408 | 
  | 
  | 
      for (int m = high-1; m >= low+1; m--) { | 
| 409 | 
  | 
  | 
        if (H(m,m-1) != 0.0) { | 
| 410 | 
  | 
  | 
          for (int i = m+1; i <= high; i++) { | 
| 411 | 
  | 
  | 
            ort(i) = H(i,m-1); | 
| 412 | 
  | 
  | 
          } | 
| 413 | 
  | 
  | 
          for (int j = m; j <= high; j++) { | 
| 414 | 
  | 
  | 
            Real g = 0.0; | 
| 415 | 
  | 
  | 
            for (int i = m; i <= high; i++) { | 
| 416 | 
  | 
  | 
              g += ort(i) * V(i,j); | 
| 417 | 
  | 
  | 
            } | 
| 418 | 
  | 
  | 
            // Double division avoids possible underflow | 
| 419 | 
  | 
  | 
            g = (g / ort(m)) / H(m,m-1); | 
| 420 | 
  | 
  | 
            for (int i = m; i <= high; i++) { | 
| 421 | 
  | 
  | 
              V(i,j) += g * ort(i); | 
| 422 | 
  | 
  | 
            } | 
| 423 | 
  | 
  | 
          } | 
| 424 | 
  | 
  | 
        } | 
| 425 | 
  | 
  | 
      } | 
| 426 | 
  | 
  | 
    } | 
| 427 | 
  | 
  | 
     | 
| 428 | 
  | 
  | 
     | 
| 429 | 
  | 
  | 
    // Complex scalar division. | 
| 430 | 
  | 
  | 
     | 
| 431 | 
  | 
  | 
    Real cdivr, cdivi; | 
| 432 | 
  | 
  | 
    void cdiv(Real xr, Real xi, Real yr, Real yi) { | 
| 433 | 
  | 
  | 
      Real r,d; | 
| 434 | 
  | 
  | 
      if (abs(yr) > abs(yi)) { | 
| 435 | 
  | 
  | 
        r = yi/yr; | 
| 436 | 
  | 
  | 
        d = yr + r*yi; | 
| 437 | 
  | 
  | 
        cdivr = (xr + r*xi)/d; | 
| 438 | 
  | 
  | 
        cdivi = (xi - r*xr)/d; | 
| 439 | 
  | 
  | 
      } else { | 
| 440 | 
  | 
  | 
        r = yr/yi; | 
| 441 | 
  | 
  | 
        d = yi + r*yr; | 
| 442 | 
  | 
  | 
        cdivr = (r*xr + xi)/d; | 
| 443 | 
  | 
  | 
        cdivi = (r*xi - xr)/d; | 
| 444 | 
  | 
  | 
      } | 
| 445 | 
  | 
  | 
    } | 
| 446 | 
  | 
  | 
     | 
| 447 | 
  | 
  | 
     | 
| 448 | 
  | 
  | 
    // Nonsymmetric reduction from Hessenberg to real Schur form. | 
| 449 | 
  | 
  | 
     | 
| 450 | 
  | 
  | 
    void hqr2 () { | 
| 451 | 
  | 
  | 
       | 
| 452 | 
  | 
  | 
      //  This is derived from the Algol procedure hqr2, | 
| 453 | 
  | 
  | 
      //  by Martin and Wilkinson, Handbook for Auto. Comp., | 
| 454 | 
  | 
  | 
      //  Vol.ii-Linear Algebra, and the corresponding | 
| 455 | 
  | 
  | 
      //  Fortran subroutine in EISPACK. | 
| 456 | 
  | 
  | 
       | 
| 457 | 
  | 
  | 
      // Initialize | 
| 458 | 
  | 
  | 
       | 
| 459 | 
  | 
  | 
      int nn = this->n; | 
| 460 | 
  | 
  | 
      int n = nn-1; | 
| 461 | 
  | 
  | 
      int low = 0; | 
| 462 | 
  | 
  | 
      int high = nn-1; | 
| 463 | 
  | 
  | 
      Real eps = pow(2.0,-52.0); | 
| 464 | 
  | 
  | 
      Real exshift = 0.0; | 
| 465 | 
  | 
  | 
      Real p=0,q=0,r=0,s=0,z=0,t,w,x,y; | 
| 466 | 
  | 
  | 
       | 
| 467 | 
  | 
  | 
      // Store roots isolated by balanc and compute matrix norm | 
| 468 | 
  | 
  | 
       | 
| 469 | 
  | 
  | 
      Real norm = 0.0; | 
| 470 | 
  | 
  | 
      for (int i = 0; i < nn; i++) { | 
| 471 | 
  | 
  | 
        if ((i < low) || (i > high)) { | 
| 472 | 
  | 
  | 
          d(i) = H(i,i); | 
| 473 | 
  | 
  | 
          e(i) = 0.0; | 
| 474 | 
  | 
  | 
        } | 
| 475 | 
  | 
  | 
        for (int j = max(i-1,0); j < nn; j++) { | 
| 476 | 
  | 
  | 
          norm = norm + abs(H(i,j)); | 
| 477 | 
  | 
  | 
        } | 
| 478 | 
  | 
  | 
      } | 
| 479 | 
  | 
  | 
       | 
| 480 | 
  | 
  | 
      // Outer loop over eigenvalue index | 
| 481 | 
  | 
  | 
    | 
| 482 | 
  | 
  | 
      int iter = 0; | 
| 483 | 
  | 
  | 
      while (n >= low) { | 
| 484 | 
  | 
  | 
         | 
| 485 | 
  | 
  | 
        // Look for single small sub-diagonal element | 
| 486 | 
  | 
  | 
         | 
| 487 | 
  | 
  | 
        int l = n; | 
| 488 | 
  | 
  | 
        while (l > low) { | 
| 489 | 
  | 
  | 
          s = abs(H(l-1,l-1)) + abs(H(l,l)); | 
| 490 | 
  | 
  | 
          if (s == 0.0) { | 
| 491 | 
  | 
  | 
            s = norm; | 
| 492 | 
  | 
  | 
          } | 
| 493 | 
  | 
  | 
          if (abs(H(l,l-1)) < eps * s) { | 
| 494 | 
  | 
  | 
            break; | 
| 495 | 
  | 
  | 
          } | 
| 496 | 
  | 
  | 
          l--; | 
| 497 | 
  | 
  | 
        } | 
| 498 | 
  | 
  | 
         | 
| 499 | 
  | 
  | 
        // Check for convergence | 
| 500 | 
  | 
  | 
        // One root found | 
| 501 | 
  | 
  | 
         | 
| 502 | 
  | 
  | 
        if (l == n) { | 
| 503 | 
  | 
  | 
          H(n,n) = H(n,n) + exshift; | 
| 504 | 
  | 
  | 
          d(n) = H(n,n); | 
| 505 | 
  | 
  | 
          e(n) = 0.0; | 
| 506 | 
  | 
  | 
          n--; | 
| 507 | 
  | 
  | 
          iter = 0; | 
| 508 | 
  | 
  | 
           | 
| 509 | 
  | 
  | 
          // Two roots found | 
| 510 | 
  | 
  | 
           | 
| 511 | 
  | 
  | 
        } else if (l == n-1) { | 
| 512 | 
  | 
  | 
          w = H(n,n-1) * H(n-1,n); | 
| 513 | 
  | 
  | 
          p = (H(n-1,n-1) - H(n,n)) / 2.0; | 
| 514 | 
  | 
  | 
          q = p * p + w; | 
| 515 | 
  | 
  | 
          z = sqrt(abs(q)); | 
| 516 | 
  | 
  | 
          H(n,n) = H(n,n) + exshift; | 
| 517 | 
  | 
  | 
          H(n-1,n-1) = H(n-1,n-1) + exshift; | 
| 518 | 
  | 
  | 
          x = H(n,n); | 
| 519 | 
  | 
  | 
           | 
| 520 | 
  | 
  | 
          // Real pair | 
| 521 | 
  | 
  | 
           | 
| 522 | 
  | 
  | 
          if (q >= 0) { | 
| 523 | 
  | 
  | 
            if (p >= 0) { | 
| 524 | 
  | 
  | 
              z = p + z; | 
| 525 | 
  | 
  | 
            } else { | 
| 526 | 
  | 
  | 
              z = p - z; | 
| 527 | 
  | 
  | 
            } | 
| 528 | 
  | 
  | 
            d(n-1) = x + z; | 
| 529 | 
  | 
  | 
            d(n) = d(n-1); | 
| 530 | 
  | 
  | 
            if (z != 0.0) { | 
| 531 | 
  | 
  | 
              d(n) = x - w / z; | 
| 532 | 
  | 
  | 
            } | 
| 533 | 
  | 
  | 
            e(n-1) = 0.0; | 
| 534 | 
  | 
  | 
            e(n) = 0.0; | 
| 535 | 
  | 
  | 
            x = H(n,n-1); | 
| 536 | 
  | 
  | 
            s = abs(x) + abs(z); | 
| 537 | 
  | 
  | 
            p = x / s; | 
| 538 | 
  | 
  | 
            q = z / s; | 
| 539 | 
  | 
  | 
            r = sqrt(p * p+q * q); | 
| 540 | 
  | 
  | 
            p = p / r; | 
| 541 | 
  | 
  | 
            q = q / r; | 
| 542 | 
  | 
  | 
             | 
| 543 | 
  | 
  | 
            // Row modification | 
| 544 | 
  | 
  | 
             | 
| 545 | 
  | 
  | 
            for (int j = n-1; j < nn; j++) { | 
| 546 | 
  | 
  | 
              z = H(n-1,j); | 
| 547 | 
  | 
  | 
              H(n-1,j) = q * z + p * H(n,j); | 
| 548 | 
  | 
  | 
              H(n,j) = q * H(n,j) - p * z; | 
| 549 | 
  | 
  | 
            } | 
| 550 | 
  | 
  | 
             | 
| 551 | 
  | 
  | 
            // Column modification | 
| 552 | 
  | 
  | 
             | 
| 553 | 
  | 
  | 
            for (int i = 0; i <= n; i++) { | 
| 554 | 
  | 
  | 
              z = H(i,n-1); | 
| 555 | 
  | 
  | 
              H(i,n-1) = q * z + p * H(i,n); | 
| 556 | 
  | 
  | 
              H(i,n) = q * H(i,n) - p * z; | 
| 557 | 
  | 
  | 
            } | 
| 558 | 
  | 
  | 
             | 
| 559 | 
  | 
  | 
            // Accumulate transformations | 
| 560 | 
  | 
  | 
             | 
| 561 | 
  | 
  | 
            for (int i = low; i <= high; i++) { | 
| 562 | 
  | 
  | 
              z = V(i,n-1); | 
| 563 | 
  | 
  | 
              V(i,n-1) = q * z + p * V(i,n); | 
| 564 | 
  | 
  | 
              V(i,n) = q * V(i,n) - p * z; | 
| 565 | 
  | 
  | 
            } | 
| 566 | 
  | 
  | 
             | 
| 567 | 
  | 
  | 
            // Complex pair | 
| 568 | 
  | 
  | 
             | 
| 569 | 
  | 
  | 
          } else { | 
| 570 | 
  | 
  | 
            d(n-1) = x + p; | 
| 571 | 
  | 
  | 
            d(n) = x + p; | 
| 572 | 
  | 
  | 
            e(n-1) = z; | 
| 573 | 
  | 
  | 
            e(n) = -z; | 
| 574 | 
  | 
  | 
          } | 
| 575 | 
  | 
  | 
          n = n - 2; | 
| 576 | 
  | 
  | 
          iter = 0; | 
| 577 | 
  | 
  | 
           | 
| 578 | 
  | 
  | 
          // No convergence yet | 
| 579 | 
  | 
  | 
           | 
| 580 | 
  | 
  | 
        } else { | 
| 581 | 
  | 
  | 
           | 
| 582 | 
  | 
  | 
          // Form shift | 
| 583 | 
  | 
  | 
           | 
| 584 | 
  | 
  | 
          x = H(n,n); | 
| 585 | 
  | 
  | 
          y = 0.0; | 
| 586 | 
  | 
  | 
          w = 0.0; | 
| 587 | 
  | 
  | 
          if (l < n) { | 
| 588 | 
  | 
  | 
            y = H(n-1,n-1); | 
| 589 | 
  | 
  | 
            w = H(n,n-1) * H(n-1,n); | 
| 590 | 
  | 
  | 
          } | 
| 591 | 
  | 
  | 
           | 
| 592 | 
  | 
  | 
          // Wilkinson's original ad hoc shift | 
| 593 | 
  | 
  | 
           | 
| 594 | 
  | 
  | 
          if (iter == 10) { | 
| 595 | 
  | 
  | 
            exshift += x; | 
| 596 | 
  | 
  | 
            for (int i = low; i <= n; i++) { | 
| 597 | 
  | 
  | 
              H(i,i) -= x; | 
| 598 | 
  | 
  | 
            } | 
| 599 | 
  | 
  | 
            s = abs(H(n,n-1)) + abs(H(n-1,n-2)); | 
| 600 | 
  | 
  | 
            x = y = 0.75 * s; | 
| 601 | 
  | 
  | 
            w = -0.4375 * s * s; | 
| 602 | 
  | 
  | 
          } | 
| 603 | 
  | 
  | 
           | 
| 604 | 
  | 
  | 
          // MATLAB's new ad hoc shift | 
| 605 | 
  | 
  | 
           | 
| 606 | 
  | 
  | 
          if (iter == 30) { | 
| 607 | 
  | 
  | 
            s = (y - x) / 2.0; | 
| 608 | 
  | 
  | 
            s = s * s + w; | 
| 609 | 
  | 
  | 
            if (s > 0) { | 
| 610 | 
  | 
  | 
              s = sqrt(s); | 
| 611 | 
  | 
  | 
              if (y < x) { | 
| 612 | 
  | 
  | 
                s = -s; | 
| 613 | 
  | 
  | 
              } | 
| 614 | 
  | 
  | 
              s = x - w / ((y - x) / 2.0 + s); | 
| 615 | 
  | 
  | 
              for (int i = low; i <= n; i++) { | 
| 616 | 
  | 
  | 
                H(i,i) -= s; | 
| 617 | 
  | 
  | 
              } | 
| 618 | 
  | 
  | 
              exshift += s; | 
| 619 | 
  | 
  | 
              x = y = w = 0.964; | 
| 620 | 
  | 
  | 
            } | 
| 621 | 
  | 
  | 
          } | 
| 622 | 
  | 
  | 
           | 
| 623 | 
  | 
  | 
          iter = iter + 1;   // (Could check iteration count here.) | 
| 624 | 
  | 
  | 
           | 
| 625 | 
  | 
  | 
          // Look for two consecutive small sub-diagonal elements | 
| 626 | 
  | 
  | 
           | 
| 627 | 
  | 
  | 
          int m = n-2; | 
| 628 | 
  | 
  | 
          while (m >= l) { | 
| 629 | 
  | 
  | 
            z = H(m,m); | 
| 630 | 
  | 
  | 
            r = x - z; | 
| 631 | 
  | 
  | 
            s = y - z; | 
| 632 | 
  | 
  | 
            p = (r * s - w) / H(m+1,m) + H(m,m+1); | 
| 633 | 
  | 
  | 
            q = H(m+1,m+1) - z - r - s; | 
| 634 | 
  | 
  | 
            r = H(m+2,m+1); | 
| 635 | 
  | 
  | 
            s = abs(p) + abs(q) + abs(r); | 
| 636 | 
  | 
  | 
            p = p / s; | 
| 637 | 
  | 
  | 
            q = q / s; | 
| 638 | 
  | 
  | 
            r = r / s; | 
| 639 | 
  | 
  | 
            if (m == l) { | 
| 640 | 
  | 
  | 
              break; | 
| 641 | 
  | 
  | 
            } | 
| 642 | 
  | 
  | 
            if (abs(H(m,m-1)) * (abs(q) + abs(r)) < | 
| 643 | 
  | 
  | 
                eps * (abs(p) * (abs(H(m-1,m-1)) + abs(z) + | 
| 644 | 
  | 
  | 
                                 abs(H(m+1,m+1))))) { | 
| 645 | 
  | 
  | 
              break; | 
| 646 | 
  | 
  | 
            } | 
| 647 | 
  | 
  | 
            m--; | 
| 648 | 
  | 
  | 
          } | 
| 649 | 
  | 
  | 
           | 
| 650 | 
  | 
  | 
          for (int i = m+2; i <= n; i++) { | 
| 651 | 
  | 
  | 
            H(i,i-2) = 0.0; | 
| 652 | 
  | 
  | 
            if (i > m+2) { | 
| 653 | 
  | 
  | 
              H(i,i-3) = 0.0; | 
| 654 | 
  | 
  | 
            } | 
| 655 | 
  | 
  | 
          } | 
| 656 | 
  | 
  | 
           | 
| 657 | 
  | 
  | 
          // Double QR step involving rows l:n and columns m:n | 
| 658 | 
  | 
  | 
           | 
| 659 | 
  | 
  | 
          for (int k = m; k <= n-1; k++) { | 
| 660 | 
  | 
  | 
            int notlast = (k != n-1); | 
| 661 | 
  | 
  | 
            if (k != m) { | 
| 662 | 
  | 
  | 
              p = H(k,k-1); | 
| 663 | 
  | 
  | 
              q = H(k+1,k-1); | 
| 664 | 
  | 
  | 
              r = (notlast ? H(k+2,k-1) : 0.0); | 
| 665 | 
  | 
  | 
              x = abs(p) + abs(q) + abs(r); | 
| 666 | 
  | 
  | 
              if (x != 0.0) { | 
| 667 | 
  | 
  | 
                p = p / x; | 
| 668 | 
  | 
  | 
                q = q / x; | 
| 669 | 
  | 
  | 
                r = r / x; | 
| 670 | 
  | 
  | 
              } | 
| 671 | 
  | 
  | 
            } | 
| 672 | 
  | 
  | 
            if (x == 0.0) { | 
| 673 | 
  | 
  | 
              break; | 
| 674 | 
  | 
  | 
            } | 
| 675 | 
  | 
  | 
            s = sqrt(p * p + q * q + r * r); | 
| 676 | 
  | 
  | 
            if (p < 0) { | 
| 677 | 
  | 
  | 
              s = -s; | 
| 678 | 
  | 
  | 
            } | 
| 679 | 
  | 
  | 
            if (s != 0) { | 
| 680 | 
  | 
  | 
              if (k != m) { | 
| 681 | 
  | 
  | 
                H(k,k-1) = -s * x; | 
| 682 | 
  | 
  | 
              } else if (l != m) { | 
| 683 | 
  | 
  | 
                H(k,k-1) = -H(k,k-1); | 
| 684 | 
  | 
  | 
              } | 
| 685 | 
  | 
  | 
              p = p + s; | 
| 686 | 
  | 
  | 
              x = p / s; | 
| 687 | 
  | 
  | 
              y = q / s; | 
| 688 | 
  | 
  | 
              z = r / s; | 
| 689 | 
  | 
  | 
              q = q / p; | 
| 690 | 
  | 
  | 
              r = r / p; | 
| 691 | 
  | 
  | 
               | 
| 692 | 
  | 
  | 
              // Row modification | 
| 693 | 
  | 
  | 
               | 
| 694 | 
  | 
  | 
              for (int j = k; j < nn; j++) { | 
| 695 | 
  | 
  | 
                p = H(k,j) + q * H(k+1,j); | 
| 696 | 
  | 
  | 
                if (notlast) { | 
| 697 | 
  | 
  | 
                  p = p + r * H(k+2,j); | 
| 698 | 
  | 
  | 
                  H(k+2,j) = H(k+2,j) - p * z; | 
| 699 | 
  | 
  | 
                } | 
| 700 | 
  | 
  | 
                H(k,j) = H(k,j) - p * x; | 
| 701 | 
  | 
  | 
                H(k+1,j) = H(k+1,j) - p * y; | 
| 702 | 
  | 
  | 
              } | 
| 703 | 
  | 
  | 
               | 
| 704 | 
  | 
  | 
              // Column modification | 
| 705 | 
  | 
  | 
               | 
| 706 | 
  | 
  | 
              for (int i = 0; i <= min(n,k+3); i++) { | 
| 707 | 
  | 
  | 
                p = x * H(i,k) + y * H(i,k+1); | 
| 708 | 
  | 
  | 
                if (notlast) { | 
| 709 | 
  | 
  | 
                  p = p + z * H(i,k+2); | 
| 710 | 
  | 
  | 
                  H(i,k+2) = H(i,k+2) - p * r; | 
| 711 | 
  | 
  | 
                } | 
| 712 | 
  | 
  | 
                H(i,k) = H(i,k) - p; | 
| 713 | 
  | 
  | 
                H(i,k+1) = H(i,k+1) - p * q; | 
| 714 | 
  | 
  | 
              } | 
| 715 | 
  | 
  | 
               | 
| 716 | 
  | 
  | 
              // Accumulate transformations | 
| 717 | 
  | 
  | 
               | 
| 718 | 
  | 
  | 
              for (int i = low; i <= high; i++) { | 
| 719 | 
  | 
  | 
                p = x * V(i,k) + y * V(i,k+1); | 
| 720 | 
  | 
  | 
                if (notlast) { | 
| 721 | 
  | 
  | 
                  p = p + z * V(i,k+2); | 
| 722 | 
  | 
  | 
                  V(i,k+2) = V(i,k+2) - p * r; | 
| 723 | 
  | 
  | 
                } | 
| 724 | 
  | 
  | 
                V(i,k) = V(i,k) - p; | 
| 725 | 
  | 
  | 
                V(i,k+1) = V(i,k+1) - p * q; | 
| 726 | 
  | 
  | 
              } | 
| 727 | 
  | 
  | 
            }  // (s != 0) | 
| 728 | 
  | 
  | 
          }  // k loop | 
| 729 | 
  | 
  | 
        }  // check convergence | 
| 730 | 
  | 
  | 
      }  // while (n >= low) | 
| 731 | 
  | 
  | 
       | 
| 732 | 
  | 
  | 
      // Backsubstitute to find vectors of upper triangular form | 
| 733 | 
  | 
  | 
       | 
| 734 | 
  | 
  | 
      if (norm == 0.0) { | 
| 735 | 
  | 
  | 
        return; | 
| 736 | 
  | 
  | 
      } | 
| 737 | 
  | 
  | 
       | 
| 738 | 
  | 
  | 
      for (n = nn-1; n >= 0; n--) { | 
| 739 | 
  | 
  | 
        p = d(n); | 
| 740 | 
  | 
  | 
        q = e(n); | 
| 741 | 
  | 
  | 
         | 
| 742 | 
  | 
  | 
        // Real vector | 
| 743 | 
  | 
  | 
         | 
| 744 | 
  | 
  | 
        if (q == 0) { | 
| 745 | 
  | 
  | 
          int l = n; | 
| 746 | 
  | 
  | 
          H(n,n) = 1.0; | 
| 747 | 
  | 
  | 
          for (int i = n-1; i >= 0; i--) { | 
| 748 | 
  | 
  | 
            w = H(i,i) - p; | 
| 749 | 
  | 
  | 
            r = 0.0; | 
| 750 | 
  | 
  | 
            for (int j = l; j <= n; j++) { | 
| 751 | 
  | 
  | 
              r = r + H(i,j) * H(j,n); | 
| 752 | 
  | 
  | 
            } | 
| 753 | 
  | 
  | 
            if (e(i) < 0.0) { | 
| 754 | 
  | 
  | 
              z = w; | 
| 755 | 
  | 
  | 
              s = r; | 
| 756 | 
  | 
  | 
            } else { | 
| 757 | 
  | 
  | 
              l = i; | 
| 758 | 
  | 
  | 
              if (e(i) == 0.0) { | 
| 759 | 
  | 
  | 
                if (w != 0.0) { | 
| 760 | 
  | 
  | 
                  H(i,n) = -r / w; | 
| 761 | 
  | 
  | 
                } else { | 
| 762 | 
  | 
  | 
                  H(i,n) = -r / (eps * norm); | 
| 763 | 
  | 
  | 
                } | 
| 764 | 
  | 
  | 
                 | 
| 765 | 
  | 
  | 
                // Solve real equations | 
| 766 | 
  | 
  | 
                 | 
| 767 | 
  | 
  | 
              } else { | 
| 768 | 
  | 
  | 
                x = H(i,i+1); | 
| 769 | 
  | 
  | 
                y = H(i+1,i); | 
| 770 | 
  | 
  | 
                q = (d(i) - p) * (d(i) - p) + e(i) * e(i); | 
| 771 | 
  | 
  | 
                t = (x * s - z * r) / q; | 
| 772 | 
  | 
  | 
                H(i,n) = t; | 
| 773 | 
  | 
  | 
                if (abs(x) > abs(z)) { | 
| 774 | 
  | 
  | 
                  H(i+1,n) = (-r - w * t) / x; | 
| 775 | 
  | 
  | 
                } else { | 
| 776 | 
  | 
  | 
                  H(i+1,n) = (-s - y * t) / z; | 
| 777 | 
  | 
  | 
                } | 
| 778 | 
  | 
  | 
              } | 
| 779 | 
  | 
  | 
               | 
| 780 | 
  | 
  | 
              // Overflow control | 
| 781 | 
  | 
  | 
               | 
| 782 | 
  | 
  | 
              t = abs(H(i,n)); | 
| 783 | 
  | 
  | 
              if ((eps * t) * t > 1) { | 
| 784 | 
  | 
  | 
                for (int j = i; j <= n; j++) { | 
| 785 | 
  | 
  | 
                  H(j,n) = H(j,n) / t; | 
| 786 | 
  | 
  | 
                } | 
| 787 | 
  | 
  | 
              } | 
| 788 | 
  | 
  | 
            } | 
| 789 | 
  | 
  | 
          } | 
| 790 | 
  | 
  | 
           | 
| 791 | 
  | 
  | 
          // Complex vector | 
| 792 | 
  | 
  | 
           | 
| 793 | 
  | 
  | 
        } else if (q < 0) { | 
| 794 | 
  | 
  | 
          int l = n-1; | 
| 795 | 
  | 
  | 
           | 
| 796 | 
  | 
  | 
          // Last vector component imaginary so matrix is triangular | 
| 797 | 
  | 
  | 
           | 
| 798 | 
  | 
  | 
          if (abs(H(n,n-1)) > abs(H(n-1,n))) { | 
| 799 | 
  | 
  | 
            H(n-1,n-1) = q / H(n,n-1); | 
| 800 | 
  | 
  | 
            H(n-1,n) = -(H(n,n) - p) / H(n,n-1); | 
| 801 | 
  | 
  | 
          } else { | 
| 802 | 
  | 
  | 
            cdiv(0.0,-H(n-1,n),H(n-1,n-1)-p,q); | 
| 803 | 
  | 
  | 
            H(n-1,n-1) = cdivr; | 
| 804 | 
  | 
  | 
            H(n-1,n) = cdivi; | 
| 805 | 
  | 
  | 
          } | 
| 806 | 
  | 
  | 
          H(n,n-1) = 0.0; | 
| 807 | 
  | 
  | 
          H(n,n) = 1.0; | 
| 808 | 
  | 
  | 
          for (int i = n-2; i >= 0; i--) { | 
| 809 | 
  | 
  | 
            Real ra,sa,vr,vi; | 
| 810 | 
  | 
  | 
            ra = 0.0; | 
| 811 | 
  | 
  | 
            sa = 0.0; | 
| 812 | 
  | 
  | 
            for (int j = l; j <= n; j++) { | 
| 813 | 
  | 
  | 
              ra = ra + H(i,j) * H(j,n-1); | 
| 814 | 
  | 
  | 
              sa = sa + H(i,j) * H(j,n); | 
| 815 | 
  | 
  | 
            } | 
| 816 | 
  | 
  | 
            w = H(i,i) - p; | 
| 817 | 
  | 
  | 
             | 
| 818 | 
  | 
  | 
            if (e(i) < 0.0) { | 
| 819 | 
  | 
  | 
              z = w; | 
| 820 | 
  | 
  | 
              r = ra; | 
| 821 | 
  | 
  | 
              s = sa; | 
| 822 | 
  | 
  | 
            } else { | 
| 823 | 
  | 
  | 
              l = i; | 
| 824 | 
  | 
  | 
              if (e(i) == 0) { | 
| 825 | 
  | 
  | 
                cdiv(-ra,-sa,w,q); | 
| 826 | 
  | 
  | 
                H(i,n-1) = cdivr; | 
| 827 | 
  | 
  | 
                H(i,n) = cdivi; | 
| 828 | 
  | 
  | 
              } else { | 
| 829 | 
  | 
  | 
                 | 
| 830 | 
  | 
  | 
                // Solve complex equations | 
| 831 | 
  | 
  | 
                 | 
| 832 | 
  | 
  | 
                x = H(i,i+1); | 
| 833 | 
  | 
  | 
                y = H(i+1,i); | 
| 834 | 
  | 
  | 
                vr = (d(i) - p) * (d(i) - p) + e(i) * e(i) - q * q; | 
| 835 | 
  | 
  | 
                vi = (d(i) - p) * 2.0 * q; | 
| 836 | 
  | 
  | 
                if ((vr == 0.0) && (vi == 0.0)) { | 
| 837 | 
  | 
  | 
                  vr = eps * norm * (abs(w) + abs(q) + | 
| 838 | 
  | 
  | 
                                     abs(x) + abs(y) + abs(z)); | 
| 839 | 
  | 
  | 
                } | 
| 840 | 
  | 
  | 
                cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); | 
| 841 | 
  | 
  | 
                H(i,n-1) = cdivr; | 
| 842 | 
  | 
  | 
                H(i,n) = cdivi; | 
| 843 | 
  | 
  | 
                if (abs(x) > (abs(z) + abs(q))) { | 
| 844 | 
  | 
  | 
                  H(i+1,n-1) = (-ra - w * H(i,n-1) + q * H(i,n)) / x; | 
| 845 | 
  | 
  | 
                  H(i+1,n) = (-sa - w * H(i,n) - q * H(i,n-1)) / x; | 
| 846 | 
  | 
  | 
                } else { | 
| 847 | 
  | 
  | 
                  cdiv(-r-y*H(i,n-1),-s-y*H(i,n),z,q); | 
| 848 | 
  | 
  | 
                  H(i+1,n-1) = cdivr; | 
| 849 | 
  | 
  | 
                  H(i+1,n) = cdivi; | 
| 850 | 
  | 
  | 
                } | 
| 851 | 
  | 
  | 
              } | 
| 852 | 
  | 
  | 
               | 
| 853 | 
  | 
  | 
              // Overflow control | 
| 854 | 
  | 
  | 
               | 
| 855 | 
  | 
  | 
              t = max(abs(H(i,n-1)),abs(H(i,n))); | 
| 856 | 
  | 
  | 
              if ((eps * t) * t > 1) { | 
| 857 | 
  | 
  | 
                for (int j = i; j <= n; j++) { | 
| 858 | 
  | 
  | 
                  H(j,n-1) = H(j,n-1) / t; | 
| 859 | 
  | 
  | 
                  H(j,n) = H(j,n) / t; | 
| 860 | 
  | 
  | 
                } | 
| 861 | 
  | 
  | 
              } | 
| 862 | 
  | 
  | 
            } | 
| 863 | 
  | 
  | 
          } | 
| 864 | 
  | 
  | 
        } | 
| 865 | 
  | 
  | 
      } | 
| 866 | 
  | 
  | 
       | 
| 867 | 
  | 
  | 
      // Vectors of isolated roots | 
| 868 | 
  | 
  | 
       | 
| 869 | 
  | 
  | 
      for (int i = 0; i < nn; i++) { | 
| 870 | 
  | 
  | 
        if (i < low || i > high) { | 
| 871 | 
  | 
  | 
          for (int j = i; j < nn; j++) { | 
| 872 | 
  | 
  | 
            V(i,j) = H(i,j); | 
| 873 | 
  | 
  | 
          } | 
| 874 | 
  | 
  | 
        } | 
| 875 | 
  | 
  | 
      } | 
| 876 | 
  | 
  | 
       | 
| 877 | 
  | 
  | 
      // Back transformation to get eigenvectors of original matrix | 
| 878 | 
  | 
  | 
       | 
| 879 | 
  | 
  | 
      for (int j = nn-1; j >= low; j--) { | 
| 880 | 
  | 
  | 
        for (int i = low; i <= high; i++) { | 
| 881 | 
  | 
  | 
          z = 0.0; | 
| 882 | 
  | 
  | 
          for (int k = low; k <= min(j,high); k++) { | 
| 883 | 
  | 
  | 
            z = z + V(i,k) * H(k,j); | 
| 884 | 
  | 
  | 
            } | 
| 885 | 
  | 
  | 
          V(i,j) = z; | 
| 886 | 
  | 
  | 
        } | 
| 887 | 
  | 
  | 
      } | 
| 888 | 
  | 
  | 
    } | 
| 889 | 
  | 
  | 
     | 
| 890 | 
  | 
  | 
  public: | 
| 891 | 
  | 
  | 
 | 
| 892 | 
  | 
  | 
     | 
| 893 | 
  | 
  | 
    /** Check for symmetry, then construct the eigenvalue decomposition | 
| 894 | 
  | 
  | 
        @param A    Square real (non-complex) matrix | 
| 895 | 
  | 
  | 
    */     | 
| 896 | 
  | 
  | 
    Eigenvalue(const DynamicRectMatrix<Real> &A) { | 
| 897 | 
  | 
  | 
      n = A.getNCol(); | 
| 898 | 
  | 
  | 
      V = DynamicRectMatrix<Real>(n,n); | 
| 899 | 
  | 
  | 
      d = DynamicVector<Real>(n); | 
| 900 | 
  | 
  | 
      e = DynamicVector<Real>(n); | 
| 901 | 
  | 
  | 
       | 
| 902 | 
  | 
  | 
      issymmetric = 1; | 
| 903 | 
  | 
  | 
      for (int j = 0; (j < n) && issymmetric; j++) { | 
| 904 | 
  | 
  | 
        for (int i = 0; (i < n) && issymmetric; i++) { | 
| 905 | 
  | 
  | 
          issymmetric = (A(i,j) == A(j,i)); | 
| 906 | 
  | 
  | 
        } | 
| 907 | 
  | 
  | 
      } | 
| 908 | 
  | 
  | 
       | 
| 909 | 
  | 
  | 
      if (issymmetric) { | 
| 910 | 
  | 
  | 
        for (int i = 0; i < n; i++) { | 
| 911 | 
  | 
  | 
          for (int j = 0; j < n; j++) { | 
| 912 | 
  | 
  | 
            V(i,j) = A(i,j); | 
| 913 | 
  | 
  | 
          } | 
| 914 | 
  | 
  | 
        } | 
| 915 | 
  | 
  | 
         | 
| 916 | 
  | 
  | 
        // Tridiagonalize. | 
| 917 | 
  | 
  | 
        tred2(); | 
| 918 | 
  | 
  | 
         | 
| 919 | 
  | 
  | 
        // Diagonalize. | 
| 920 | 
  | 
  | 
        tql2(); | 
| 921 | 
  | 
  | 
         | 
| 922 | 
  | 
  | 
      } else { | 
| 923 | 
  | 
  | 
        H = DynamicRectMatrix<Real>(n,n); | 
| 924 | 
  | 
  | 
        ort = DynamicVector<Real>(n); | 
| 925 | 
  | 
  | 
         | 
| 926 | 
  | 
  | 
        for (int j = 0; j < n; j++) { | 
| 927 | 
  | 
  | 
          for (int i = 0; i < n; i++) { | 
| 928 | 
  | 
  | 
            H(i,j) = A(i,j); | 
| 929 | 
  | 
  | 
          } | 
| 930 | 
  | 
  | 
        } | 
| 931 | 
  | 
  | 
         | 
| 932 | 
  | 
  | 
        // Reduce to Hessenberg form. | 
| 933 | 
  | 
  | 
        orthes(); | 
| 934 | 
  | 
  | 
         | 
| 935 | 
  | 
  | 
        // Reduce Hessenberg to real Schur form. | 
| 936 | 
  | 
  | 
        hqr2(); | 
| 937 | 
  | 
  | 
      } | 
| 938 | 
  | 
  | 
    } | 
| 939 | 
  | 
  | 
     | 
| 940 | 
  | 
  | 
     | 
| 941 | 
  | 
  | 
    /** Return the eigenvector matrix | 
| 942 | 
  | 
  | 
        @return     V | 
| 943 | 
  | 
  | 
    */     | 
| 944 | 
  | 
  | 
    void getV (DynamicRectMatrix<Real> &V_) { | 
| 945 | 
  | 
  | 
      V_ = V; | 
| 946 | 
  | 
  | 
      return; | 
| 947 | 
  | 
  | 
    } | 
| 948 | 
  | 
  | 
     | 
| 949 | 
  | 
  | 
    /** Return the real parts of the eigenvalues | 
| 950 | 
  | 
  | 
        @return     real(diag(D)) | 
| 951 | 
  | 
  | 
    */     | 
| 952 | 
  | 
  | 
    void getRealEigenvalues (DynamicVector<Real> &d_) { | 
| 953 | 
  | 
  | 
      d_ = d; | 
| 954 | 
  | 
  | 
      return ; | 
| 955 | 
  | 
  | 
    } | 
| 956 | 
  | 
  | 
     | 
| 957 | 
  | 
  | 
    /** Return the imaginary parts of the eigenvalues | 
| 958 | 
  | 
  | 
        in parameter e_. | 
| 959 | 
  | 
  | 
         | 
| 960 | 
  | 
  | 
        @pararm e_: new matrix with imaginary parts of the eigenvalues. | 
| 961 | 
  | 
  | 
    */ | 
| 962 | 
  | 
  | 
    void getImagEigenvalues (DynamicVector<Real> &e_) { | 
| 963 | 
  | 
  | 
      e_ = e; | 
| 964 | 
  | 
  | 
      return; | 
| 965 | 
  | 
  | 
    } | 
| 966 | 
  | 
  | 
     | 
| 967 | 
  | 
  | 
    | 
| 968 | 
  | 
  | 
    /**  | 
| 969 | 
  | 
  | 
        Computes the block diagonal eigenvalue matrix. | 
| 970 | 
  | 
  | 
        If the original matrix A is not symmetric, then the eigenvalue  | 
| 971 | 
  | 
  | 
        matrix D is block diagonal with the real eigenvalues in 1-by-1  | 
| 972 | 
  | 
  | 
        blocks and any complex eigenvalues, | 
| 973 | 
  | 
  | 
        a + i*b, in 2-by-2 blocks, (a, b; -b, a).  That is, if the complex | 
| 974 | 
  | 
  | 
        eigenvalues look like | 
| 975 | 
  | 
  | 
<pre> | 
| 976 | 
  | 
  | 
 | 
| 977 | 
  | 
  | 
          u + iv     .        .          .      .    . | 
| 978 | 
  | 
  | 
            .      u - iv     .          .      .    . | 
| 979 | 
  | 
  | 
            .        .      a + ib       .      .    . | 
| 980 | 
  | 
  | 
            .        .        .        a - ib   .    . | 
| 981 | 
  | 
  | 
            .        .        .          .      x    . | 
| 982 | 
  | 
  | 
            .        .        .          .      .    y | 
| 983 | 
  | 
  | 
</pre> | 
| 984 | 
  | 
  | 
        then D looks like | 
| 985 | 
  | 
  | 
<pre> | 
| 986 | 
  | 
  | 
 | 
| 987 | 
  | 
  | 
            u        v        .          .      .    . | 
| 988 | 
  | 
  | 
           -v        u        .          .      .    .  | 
| 989 | 
  | 
  | 
            .        .        a          b      .    . | 
| 990 | 
  | 
  | 
            .        .       -b          a      .    . | 
| 991 | 
  | 
  | 
            .        .        .          .      x    . | 
| 992 | 
  | 
  | 
            .        .        .          .      .    y | 
| 993 | 
  | 
  | 
</pre> | 
| 994 | 
  | 
  | 
    This keeps V a real matrix in both symmetric and non-symmetric | 
| 995 | 
  | 
  | 
    cases, and A*V = V*D. | 
| 996 | 
  | 
  | 
 | 
| 997 | 
  | 
  | 
        @param D: upon return, the matrix is filled with the block diagonal  | 
| 998 | 
  | 
  | 
        eigenvalue matrix. | 
| 999 | 
  | 
  | 
         | 
| 1000 | 
  | 
  | 
*/ | 
| 1001 | 
  | 
  | 
    void getD (DynamicRectMatrix<Real> &D) { | 
| 1002 | 
  | 
  | 
      D = DynamicRectMatrix<Real>(n,n); | 
| 1003 | 
  | 
  | 
      for (int i = 0; i < n; i++) { | 
| 1004 | 
  | 
  | 
        for (int j = 0; j < n; j++) { | 
| 1005 | 
  | 
  | 
          D(i,j) = 0.0; | 
| 1006 | 
  | 
  | 
        } | 
| 1007 | 
  | 
  | 
        D(i,i) = d(i); | 
| 1008 | 
  | 
  | 
        if (e(i) > 0) { | 
| 1009 | 
  | 
  | 
          D(i,i+1) = e(i); | 
| 1010 | 
  | 
  | 
        } else if (e(i) < 0) { | 
| 1011 | 
  | 
  | 
          D(i,i-1) = e(i); | 
| 1012 | 
  | 
  | 
        } | 
| 1013 | 
  | 
  | 
      } | 
| 1014 | 
  | 
  | 
    } | 
| 1015 | 
  | 
  | 
  }; | 
| 1016 | 
  | 
  | 
   | 
| 1017 | 
  | 
  | 
} //namespace JAMA | 
| 1018 | 
  | 
  | 
 | 
| 1019 | 
  | 
  | 
 | 
| 1020 | 
  | 
  | 
#endif | 
| 1021 | 
  | 
  | 
// JAMA_EIG_H |