| 1 | 
/* | 
| 2 | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
 * | 
| 4 | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
 * that the following conditions are met: | 
| 8 | 
 * | 
| 9 | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
 *    the article in which the program was described (Matthew | 
| 13 | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
 * | 
| 18 | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
 * | 
| 21 | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
 *    documentation and/or other materials provided with the | 
| 24 | 
 *    distribution. | 
| 25 | 
 * | 
| 26 | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
 * using, modifying or distributing the software or its | 
| 33 | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
 * such damages. | 
| 40 | 
 */ | 
| 41 | 
  | 
| 42 | 
/*========================================================================= | 
| 43 | 
 | 
| 44 | 
  Program:   Visualization Toolkit | 
| 45 | 
  Module:    $RCSfile: LU.hpp,v $ | 
| 46 | 
 | 
| 47 | 
Copyright (c) 1993-2003 Ken Martin, Will Schroeder, Bill Lorensen  | 
| 48 | 
All rights reserved. | 
| 49 | 
 | 
| 50 | 
Redistribution and use in source and binary forms, with or without | 
| 51 | 
modification, are permitted provided that the following conditions are met: | 
| 52 | 
 | 
| 53 | 
 * Redistributions of source code must retain the above copyright notice, | 
| 54 | 
   this list of conditions and the following disclaimer. | 
| 55 | 
 | 
| 56 | 
 * Redistributions in binary form must reproduce the above copyright notice, | 
| 57 | 
   this list of conditions and the following disclaimer in the documentation | 
| 58 | 
   and/or other materials provided with the distribution. | 
| 59 | 
 | 
| 60 | 
 * Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names | 
| 61 | 
   of any contributors may be used to endorse or promote products derived | 
| 62 | 
   from this software without specific prior written permission. | 
| 63 | 
 | 
| 64 | 
 * Modified source versions must be plainly marked as such, and must not be | 
| 65 | 
   misrepresented as being the original software. | 
| 66 | 
 | 
| 67 | 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' | 
| 68 | 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 69 | 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
| 70 | 
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR | 
| 71 | 
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
| 72 | 
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 
| 73 | 
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | 
| 74 | 
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | 
| 75 | 
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 76 | 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 77 | 
 | 
| 78 | 
=========================================================================*/  | 
| 79 | 
#ifndef MATH_LU_HPP | 
| 80 | 
#define MATH_LU_HPP | 
| 81 | 
 | 
| 82 | 
#include "utils/NumericConstant.hpp" | 
| 83 | 
 | 
| 84 | 
namespace oopse { | 
| 85 | 
 | 
| 86 | 
/** | 
| 87 | 
 * Invert input square matrix A into matrix AI.  | 
| 88 | 
 * @param A input square matrix | 
| 89 | 
 * @param AI output square matrix | 
| 90 | 
 * @return true if inverse is computed, otherwise return false | 
| 91 | 
 * @note A is modified during the inversion | 
| 92 | 
 */ | 
| 93 | 
template<class MatrixType> | 
| 94 | 
bool invertMatrix(MatrixType& A, MatrixType& AI) | 
| 95 | 
{ | 
| 96 | 
  typedef typename MatrixType::ElemType Real; | 
| 97 | 
  if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol()) { | 
| 98 | 
    return false; | 
| 99 | 
  } | 
| 100 | 
   | 
| 101 | 
  int size = A.getNRow(); | 
| 102 | 
  int *index=NULL, iScratch[10]; | 
| 103 | 
  Real *column=NULL, dScratch[10]; | 
| 104 | 
 | 
| 105 | 
  // Check on allocation of working vectors | 
| 106 | 
  // | 
| 107 | 
  if ( size <= 10 ) { | 
| 108 | 
    index = iScratch; | 
| 109 | 
    column = dScratch; | 
| 110 | 
  } else { | 
| 111 | 
    index = new int[size]; | 
| 112 | 
    column = new Real[size]; | 
| 113 | 
  } | 
| 114 | 
 | 
| 115 | 
  bool retVal = invertMatrix(A, AI, size, index, column); | 
| 116 | 
 | 
| 117 | 
  if ( size > 10 ) { | 
| 118 | 
    delete [] index; | 
| 119 | 
    delete [] column; | 
| 120 | 
  } | 
| 121 | 
   | 
| 122 | 
  return retVal; | 
| 123 | 
} | 
| 124 | 
 | 
| 125 | 
/** | 
| 126 | 
 * Invert input square matrix A into matrix AI (Thread safe versions).  | 
| 127 | 
 * @param A input square matrix | 
| 128 | 
 * @param AI output square matrix | 
| 129 | 
 * @param size size of the matrix and temporary arrays | 
| 130 | 
 * @param tmp1Size temporary array | 
| 131 | 
 * @param tmp2Size temporary array | 
| 132 | 
 * @return true if inverse is computed, otherwise return false | 
| 133 | 
 * @note A is modified during the inversion. | 
| 134 | 
 */ | 
| 135 | 
 | 
| 136 | 
template<class MatrixType> | 
| 137 | 
bool invertMatrix(MatrixType& A , MatrixType& AI, int size, | 
| 138 | 
                          int *tmp1Size, typename MatrixType::ElemPoinerType tmp2Size) | 
| 139 | 
{ | 
| 140 | 
  if (A.getNRow() != A.getNCol() || A.getNRow() != AI.getNRow() || A.getNCol() != AI.getNCol() || A.getNRow() != size) { | 
| 141 | 
    return false; | 
| 142 | 
  } | 
| 143 | 
   | 
| 144 | 
  int i, j; | 
| 145 | 
 | 
| 146 | 
  // | 
| 147 | 
  // Factor matrix; then begin solving for inverse one column at a time. | 
| 148 | 
  // Note: tmp1Size returned value is used later, tmp2Size is just working | 
| 149 | 
  // memory whose values are not used in LUSolveLinearSystem | 
| 150 | 
  // | 
| 151 | 
  if ( LUFactorLinearSystem(A, tmp1Size, size, tmp2Size) == 0 ){ | 
| 152 | 
    return false; | 
| 153 | 
  } | 
| 154 | 
   | 
| 155 | 
  for ( j=0; j < size; j++ ) { | 
| 156 | 
    for ( i=0; i < size; i++ ) { | 
| 157 | 
      tmp2Size[i] = 0.0; | 
| 158 | 
    } | 
| 159 | 
    tmp2Size[j] = 1.0; | 
| 160 | 
 | 
| 161 | 
    LUSolveLinearSystem(A,tmp1Size,tmp2Size,size); | 
| 162 | 
 | 
| 163 | 
    for ( i=0; i < size; i++ ) { | 
| 164 | 
      AI(i, j) = tmp2Size[i]; | 
| 165 | 
    } | 
| 166 | 
  } | 
| 167 | 
 | 
| 168 | 
  return true; | 
| 169 | 
} | 
| 170 | 
 | 
| 171 | 
/** | 
| 172 | 
 * Factor linear equations Ax = b using LU decompostion A = LU where L is | 
| 173 | 
 * lower triangular matrix and U is upper triangular matrix.  | 
| 174 | 
 * @param A input square matrix | 
| 175 | 
 * @param index pivot indices | 
| 176 | 
 * @param size size of the matrix and temporary arrays | 
| 177 | 
 * @param tmpSize temporary array | 
| 178 | 
 * @return true if inverse is computed, otherwise return false | 
| 179 | 
 * @note A is modified during the inversion. | 
| 180 | 
 */ | 
| 181 | 
template<class MatrixType> | 
| 182 | 
int LUFactorLinearSystem(MatrixType& A, int *index, int size, | 
| 183 | 
                                  typename MatrixType::ElemPoinerType tmpSize) | 
| 184 | 
{ | 
| 185 | 
  typedef typename MatrixType::ElemType Real; | 
| 186 | 
  int i, j, k; | 
| 187 | 
  int maxI = 0; | 
| 188 | 
  Real largest, temp1, temp2, sum; | 
| 189 | 
 | 
| 190 | 
  // | 
| 191 | 
  // Loop over rows to get implicit scaling information | 
| 192 | 
  // | 
| 193 | 
  for ( i = 0; i < size; i++ ) { | 
| 194 | 
    for ( largest = 0.0, j = 0; j < size; j++ ) { | 
| 195 | 
      if ( (temp2 = fabs(A(i, j))) > largest ) { | 
| 196 | 
        largest = temp2; | 
| 197 | 
      } | 
| 198 | 
    } | 
| 199 | 
 | 
| 200 | 
    if ( largest == 0.0 ) { | 
| 201 | 
      //vtkGenericWarningMacro(<<"Unable to factor linear system"); | 
| 202 | 
      return 0; | 
| 203 | 
    } | 
| 204 | 
      tmpSize[i] = 1.0 / largest; | 
| 205 | 
  } | 
| 206 | 
  // | 
| 207 | 
  // Loop over all columns using Crout's method | 
| 208 | 
  // | 
| 209 | 
  for ( j = 0; j < size; j++ ) { | 
| 210 | 
    for (i = 0; i < j; i++) { | 
| 211 | 
      sum = A(i, j); | 
| 212 | 
      for ( k = 0; k < i; k++ ) { | 
| 213 | 
        sum -= A(i, k) * A(k, j); | 
| 214 | 
      } | 
| 215 | 
      A(i, j) = sum; | 
| 216 | 
    } | 
| 217 | 
    // | 
| 218 | 
    // Begin search for largest pivot element | 
| 219 | 
    // | 
| 220 | 
    for ( largest = 0.0, i = j; i < size; i++ ) { | 
| 221 | 
      sum = A(i, j); | 
| 222 | 
      for ( k = 0; k < j; k++ ) { | 
| 223 | 
        sum -= A(i, k) * A(k, j); | 
| 224 | 
      } | 
| 225 | 
      A(i, j) = sum; | 
| 226 | 
 | 
| 227 | 
      if ( (temp1 = tmpSize[i]*fabs(sum)) >= largest ) { | 
| 228 | 
        largest = temp1; | 
| 229 | 
        maxI = i; | 
| 230 | 
      } | 
| 231 | 
    } | 
| 232 | 
    // | 
| 233 | 
    // Check for row interchange | 
| 234 | 
    // | 
| 235 | 
    if ( j != maxI ) { | 
| 236 | 
      for ( k = 0; k < size; k++ ) { | 
| 237 | 
        temp1 = A(maxI, k); | 
| 238 | 
        A(maxI, k) = A(j, k); | 
| 239 | 
        A(j, k) = temp1; | 
| 240 | 
      } | 
| 241 | 
      tmpSize[maxI] = tmpSize[j]; | 
| 242 | 
    } | 
| 243 | 
    // | 
| 244 | 
    // Divide by pivot element and perform elimination | 
| 245 | 
    // | 
| 246 | 
    index[j] = maxI; | 
| 247 | 
 | 
| 248 | 
    if ( fabs(A(j, j)) <= oopse::NumericConstant::epsilon ) { | 
| 249 | 
      //vtkGenericWarningMacro(<<"Unable to factor linear system"); | 
| 250 | 
      return false; | 
| 251 | 
      } | 
| 252 | 
 | 
| 253 | 
    if ( j != (size-1) ) { | 
| 254 | 
      temp1 = 1.0 / A(j, j); | 
| 255 | 
      for ( i = j + 1; i < size; i++ ) { | 
| 256 | 
        A(i, j) *= temp1; | 
| 257 | 
      } | 
| 258 | 
    } | 
| 259 | 
  } | 
| 260 | 
 | 
| 261 | 
  return 1; | 
| 262 | 
} | 
| 263 | 
 | 
| 264 | 
/** | 
| 265 | 
 * Solve linear equations Ax = b using LU decompostion A = LU where L is | 
| 266 | 
 * lower triangular matrix and U is upper triangular matrix.  | 
| 267 | 
 * @param A input square matrix | 
| 268 | 
 * @param index pivot indices | 
| 269 | 
 * @param size size of the matrix and temporary arrays | 
| 270 | 
 * @param tmpSize temporary array | 
| 271 | 
 * @return true if inverse is computed, otherwise return false | 
| 272 | 
 * @note A=LU and index[] are generated from method LUFactorLinearSystem).  | 
| 273 | 
 * Also, solution vector is written directly over input load vector. | 
| 274 | 
 */ | 
| 275 | 
template<class MatrixType> | 
| 276 | 
void LUSolveLinearSystem(MatrixType& A, int *index,  | 
| 277 | 
                                  typename MatrixType::ElemPoinerType x, int size) | 
| 278 | 
{ | 
| 279 | 
  typedef typename MatrixType::ElemType Real; | 
| 280 | 
  int i, j, ii, idx; | 
| 281 | 
  Real sum; | 
| 282 | 
// | 
| 283 | 
// Proceed with forward and backsubstitution for L and U | 
| 284 | 
// matrices.  First, forward substitution. | 
| 285 | 
// | 
| 286 | 
  for ( ii = -1, i = 0; i < size; i++ ) { | 
| 287 | 
    idx = index[i]; | 
| 288 | 
    sum = x[idx]; | 
| 289 | 
    x[idx] = x[i]; | 
| 290 | 
 | 
| 291 | 
    if ( ii >= 0 ) { | 
| 292 | 
      for ( j = ii; j <= (i-1); j++ ) { | 
| 293 | 
        sum -= A(i, j)*x[j]; | 
| 294 | 
      } | 
| 295 | 
    } else if (sum) { | 
| 296 | 
      ii = i; | 
| 297 | 
    } | 
| 298 | 
 | 
| 299 | 
    x[i] = sum; | 
| 300 | 
  } | 
| 301 | 
// | 
| 302 | 
// Now, back substitution | 
| 303 | 
// | 
| 304 | 
  for ( i = size-1; i >= 0; i-- ) { | 
| 305 | 
    sum = x[i]; | 
| 306 | 
    for ( j = i + 1; j < size; j++ ) { | 
| 307 | 
      sum -= A(i, j)*x[j]; | 
| 308 | 
    } | 
| 309 | 
    x[i] = sum / A(i, i); | 
| 310 | 
  } | 
| 311 | 
} | 
| 312 | 
 | 
| 313 | 
} | 
| 314 | 
 | 
| 315 | 
#endif |