| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 47 | 
  | 
 * @version 1.0 | 
| 48 | 
  | 
 */  | 
| 49 | 
  | 
 | 
| 50 | 
< | 
#ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 51 | 
< | 
#define MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 50 | 
> | 
#ifndef MATH_LEGENDREPOLYNOMIALS_HPP | 
| 51 | 
> | 
#define MATH_LEGENDREPOLYNOMIALS_HPP | 
| 52 | 
  | 
 | 
| 53 | 
  | 
#include <vector> | 
| 54 | 
  | 
#include <cassert> | 
| 55 | 
  | 
 | 
| 56 | 
  | 
#include "math/Polynomial.hpp" | 
| 57 | 
  | 
 | 
| 58 | 
< | 
namespace oopse { | 
| 58 | 
> | 
namespace OpenMD { | 
| 59 | 
  | 
 | 
| 60 | 
  | 
  /** | 
| 61 | 
  | 
   * @class LegendrePolynomial | 
| 62 | 
< | 
   * A collection of Chebyshev Polynomials. | 
| 62 | 
> | 
   * A collection of Legendre Polynomials. | 
| 63 | 
  | 
   * @todo document | 
| 64 | 
  | 
   */ | 
| 65 | 
  | 
  class LegendrePolynomial { | 
| 67 | 
  | 
    LegendrePolynomial(int maxPower); | 
| 68 | 
  | 
    virtual ~LegendrePolynomial() {} | 
| 69 | 
  | 
    /** | 
| 70 | 
< | 
     * Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. | 
| 71 | 
< | 
     * @return The value of the nth Chebyshev Polynomial evaluates at the given x value | 
| 70 | 
> | 
     * Calculates the value of the nth Legendre Polynomial evaluated at the given x value. | 
| 71 | 
> | 
     * @return The value of the nth Legendre Polynomial evaluates at the given x value | 
| 72 | 
  | 
     * @param n | 
| 73 | 
< | 
     * @param x the value of the independent variable for the nth Chebyshev Polynomial  function | 
| 73 | 
> | 
     * @param x the value of the independent variable for the nth Legendre Polynomial  function | 
| 74 | 
  | 
     */ | 
| 75 | 
  | 
         | 
| 76 | 
< | 
    double evaluate(int n, double x) { | 
| 76 | 
> | 
    RealType evaluate(int n, RealType x) { | 
| 77 | 
  | 
      assert (n <= maxPower_ && n >=0);  | 
| 78 | 
  | 
      return polyList_[n].evaluate(x); | 
| 79 | 
  | 
    } | 
| 80 | 
  | 
 | 
| 81 | 
  | 
    /** | 
| 82 | 
< | 
     * Returns the first derivative of the nth Chebyshev Polynomial. | 
| 83 | 
< | 
     * @return the first derivative of the nth Chebyshev Polynomial | 
| 82 | 
> | 
     * Returns the first derivative of the nth Legendre Polynomial. | 
| 83 | 
> | 
     * @return the first derivative of the nth Legendre Polynomial | 
| 84 | 
  | 
     * @param n | 
| 85 | 
< | 
     * @param x the value of the independent variable for the nth Chebyshev Polynomial  function | 
| 85 | 
> | 
     * @param x the value of the independent variable for the nth Legendre Polynomial  function | 
| 86 | 
  | 
     */ | 
| 87 | 
< | 
    double evaluateDerivative(int n, double x) { | 
| 87 | 
> | 
    RealType evaluateDerivative(int n, RealType x) { | 
| 88 | 
  | 
      assert (n <= maxPower_ && n >=0);  | 
| 89 | 
  | 
      return polyList_[n].evaluateDerivative(x);         | 
| 90 | 
  | 
    } | 
| 91 | 
  | 
 | 
| 92 | 
  | 
    /** | 
| 93 | 
< | 
     * Returns the nth Chebyshev Polynomial  | 
| 94 | 
< | 
     * @return the nth Chebyshev Polynomial | 
| 93 | 
> | 
     * Returns the nth Legendre Polynomial  | 
| 94 | 
> | 
     * @return the nth Legendre Polynomial | 
| 95 | 
  | 
     * @param n | 
| 96 | 
  | 
     */ | 
| 97 | 
  | 
    const DoublePolynomial& getLegendrePolynomial(int n) const { | 
| 112 | 
  | 
  };     | 
| 113 | 
  | 
 | 
| 114 | 
  | 
 | 
| 115 | 
< | 
} //end namespace oopse | 
| 116 | 
< | 
#endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP | 
| 115 | 
> | 
}  | 
| 116 | 
> | 
#endif  | 
| 117 | 
  | 
 |