| 97 |
|
// reading 624 consecutive values. |
| 98 |
|
|
| 99 |
|
// Access to 32-bit random numbers |
| 100 |
< |
double rand(); // real number in [0,1] |
| 101 |
< |
double rand( const double& n ); // real number in [0,n] |
| 102 |
< |
double randExc(); // real number in [0,1) |
| 103 |
< |
double randExc( const double& n ); // real number in [0,n) |
| 104 |
< |
double randDblExc(); // real number in (0,1) |
| 105 |
< |
double randDblExc( const double& n ); // real number in (0,n) |
| 100 |
> |
RealType rand(); // real number in [0,1] |
| 101 |
> |
RealType rand( const RealType& n ); // real number in [0,n] |
| 102 |
> |
RealType randExc(); // real number in [0,1) |
| 103 |
> |
RealType randExc( const RealType& n ); // real number in [0,n) |
| 104 |
> |
RealType randDblExc(); // real number in (0,1) |
| 105 |
> |
RealType randDblExc( const RealType& n ); // real number in (0,n) |
| 106 |
|
uint32 randInt(); // integer in [0,2^32-1] (modified for striding) |
| 107 |
|
uint32 rawRandInt(); // original randInt |
| 108 |
|
uint32 randInt( const uint32& n ); // integer in [0,n] for n < 2^32 |
| 109 |
< |
double operator()() { return rand(); } // same as rand() |
| 109 |
> |
RealType operator()() { return rand(); } // same as rand() |
| 110 |
|
|
| 111 |
< |
// Access to 53-bit random numbers (capacity of IEEE double precision) |
| 112 |
< |
double rand53(); // real number in [0,1) |
| 111 |
> |
// Access to 53-bit random numbers (capacity of IEEE RealType precision) |
| 112 |
> |
RealType rand53(); // real number in [0,1) |
| 113 |
|
|
| 114 |
|
// Access to nonuniform random number distributions |
| 115 |
< |
double randNorm( const double mean = 0.0, const double variance = 0.0 ); |
| 115 |
> |
RealType randNorm( const RealType mean = 0.0, const RealType variance = 0.0 ); |
| 116 |
|
|
| 117 |
|
// Re-seeding functions with same behavior as initializers |
| 118 |
|
void seed( const uint32 oneSeed ); |
| 156 |
|
seed(); |
| 157 |
|
} |
| 158 |
|
|
| 159 |
< |
inline double MTRand::rand() |
| 160 |
< |
{ return double(randInt()) * (1.0/4294967295.0); } |
| 159 |
> |
inline RealType MTRand::rand() |
| 160 |
> |
{ return RealType(randInt()) * (1.0/4294967295.0); } |
| 161 |
|
|
| 162 |
< |
inline double MTRand::rand( const double& n ) |
| 162 |
> |
inline RealType MTRand::rand( const RealType& n ) |
| 163 |
|
{ return rand() * n; } |
| 164 |
|
|
| 165 |
< |
inline double MTRand::randExc() |
| 166 |
< |
{ return double(randInt()) * (1.0/4294967296.0); } |
| 165 |
> |
inline RealType MTRand::randExc() |
| 166 |
> |
{ return RealType(randInt()) * (1.0/4294967296.0); } |
| 167 |
|
|
| 168 |
< |
inline double MTRand::randExc( const double& n ) |
| 168 |
> |
inline RealType MTRand::randExc( const RealType& n ) |
| 169 |
|
{ return randExc() * n; } |
| 170 |
|
|
| 171 |
< |
inline double MTRand::randDblExc() |
| 172 |
< |
{ return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); } |
| 171 |
> |
inline RealType MTRand::randDblExc() |
| 172 |
> |
{ return ( RealType(randInt()) + 0.5 ) * (1.0/4294967296.0); } |
| 173 |
|
|
| 174 |
< |
inline double MTRand::randDblExc( const double& n ) |
| 174 |
> |
inline RealType MTRand::randDblExc( const RealType& n ) |
| 175 |
|
{ return randDblExc() * n; } |
| 176 |
|
|
| 177 |
< |
inline double MTRand::rand53() |
| 177 |
> |
inline RealType MTRand::rand53() |
| 178 |
|
{ |
| 179 |
|
uint32 a = randInt() >> 5, b = randInt() >> 6; |
| 180 |
|
return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada |
| 181 |
|
} |
| 182 |
|
|
| 183 |
< |
inline double MTRand::randNorm( const double mean, const double variance ) |
| 183 |
> |
inline RealType MTRand::randNorm( const RealType mean, const RealType variance ) |
| 184 |
|
{ |
| 185 |
|
// Return a real number from a normal (Gaussian) distribution with given |
| 186 |
|
// mean and variance by Box-Muller method |
| 187 |
|
assert(variance > 0); |
| 188 |
< |
double r = sqrt( -2.0 * log( 1.0-randDblExc()) * variance); |
| 189 |
< |
double phi = 2.0 * 3.14159265358979323846264338328 * randExc(); |
| 188 |
> |
RealType r = sqrt( -2.0 * log( 1.0-randDblExc()) * variance); |
| 189 |
> |
RealType phi = 2.0 * 3.14159265358979323846264338328 * randExc(); |
| 190 |
|
return mean + r * cos(phi); |
| 191 |
|
} |
| 192 |
|
|